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Abstract We detail and theoretically analyse the so-called fast vector (or velocity) penalty-
projection methods (VPPε ) of which the main ideas and features are briefly introduced in
[8,9,10]. This family of numerical schemes proves to efficiently compute the solution of
unsteady Navier-Stokes/Brinkman problems governing incompressible or low Mach multi-
phase viscous flows with variable mass density and/or viscosity or anisotropic permeability.
In this paper, we describe in detail the connections and essential differences with usual
methods to solve the Navier-Stokes equations.

The key idea of the basic (VPPε ) method is to compute at each time step an accurate
and curl-free approximation of the pressure gradient increment in time. This is obtained by
proposing new Helmholtz-Hodge decomposition solutions of L2-vector fields in bounded
domains to get fast methods with suitable adapted right-hand sides; see [11]. This procedure
only requires a few iterations of preconditioned conjugate gradients whatever the spatial
mesh step. Then, the splitting (VPPε ) method performs a two-step approximate divergence-
free vector projection yielding a velocity divergence vanishing as O(ε δ t), δ t being the
time step, with a penalty parameter ε as small as desired until the machine precision, e.g.
ε = 10−14, whereas the solution algorithm can be extremely fast and cheap. Indeed, the pro-
posed velocity correction step typically requires only one or two iterations of a suitable pre-
conditioned Krylov solver whatever the spatial mesh step [10]. Moreover, the robustness of
our method is not sensitive to large mass density ratios since the velocity penalty-projection
step does not include any spatial derivative of the density.
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In the present work, we also prove the theoretical foundations as well as global sol-
vability and optimal unconditional stability results of the (VPPε ) method for Navier-Stokes
problems in the case of homogeneous flows, which are the main new results.

Keywords Vector penalty-projection method · divergence-free penalty-projection · penalty
method · splitting prediction-correction scheme · fast Helmholtz-Hodge decompositions ·
Navier-Stokes/Brinkman equations · stability analysis · incompressible homogeneous
flows · dilatable flows · low Mach number flows · incompressible non-homogeneous or
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1 Introduction to the mathematical models

Notations. We use below the usual functionnal setting for the unsteady Navier-Stokes equa-
tions, see [53,54,51,55,75,40,20]. Let Ω ⊂Rd (d=2 or 3 in practice) be an open bounded
and connected set with a Lipschitz continuous boundary Γ = ∂Ω and n be the outward unit
normal vector on Γ . Due to some further technicalities, we also assume that either Γ is of
class C 1,1 or Ω is a convex domain.

In particular, we use ‖.‖0 for the L2(Ω)-norm, ‖.‖1 for the H1(Ω)-norm, ‖.‖−1 for the
H−1(Ω)-norm, (., .)0 for the L2(Ω) inner product and 〈., .〉−1 for the duality pairing between
H−1(Ω) and H1

0 (Ω).
We define below some Hilbert spaces with their usual respective inner products and

associated norms:

Hdiv(Ω) =
{

u ∈ L2(Ω)d ; ∇ ·u ∈ L2(Ω)
}

Hdiv,0(Ω) =
{

u ∈ L2(Ω)d ; ∇ ·u ∈ L2(Ω), u ·n = 0 on Γ

}
H =

{
u ∈ L2(Ω)d ; ∇ ·u = 0, u ·n = 0 on Γ

}
Hrot(Ω) =

{
u ∈ L2(Ω)d ; ∇×u ∈ L2(Ω)d

}
H1

n (Ω) =
{

u ∈ H1(Ω)d ; u ·n = 0 on Γ

}
L2

0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

qdx = 0
}
.

For T > 0, we consider the following unsteady Navier-Stokes/Brinkman problem [50,
23] governing incompressible non-homogeneous or multiphase flows with Dirichlet bound-
ary conditions for the velocity v|Γ = 0 on Γ . The force term f ∈ L2(0,T ;H−1(Ω)d) and
initial data v(t = 0) = v0 ∈H, ϕ(t = 0) = ϕ0 ∈ L∞(Ω) with ϕ0 ≥ 0 a.e. in Ω , are given. We
focus on the model problem (1-3), as a part of more complex fluid mechanics problems, e.g.
[52,56], written below for isothermal configurations:

ρ (∂t v+(v ·∇)v)−2∇ · (µ d(v))+µ K−1 v+∇p = f in Ω × (0,T ) (1)

∇ ·v = 0 in Ω × (0,T ) (2)

∂t ϕ +v ·∇ϕ = 0 in Ω × (0,T ) (3)
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where d(v) denotes the strain rate tensor:

d(v) =
1
2
(
∇v+(∇v)T ) .

The permeability tensor K in the Darcy’s drag term is supposed to be symmetric, uni-
formly positive definite and bounded in Ω . We refer to [50,19,49,23,24] and the references
therein for the mathematical or numerical modelling of flows inside complex fluid-porous-
solid heterogeneous systems with the Navier-Stokes/Brinkman or Darcy equations. Let us
mention [22,4,6,65,50,5] for the mathematical analysis and numerical validations of the fic-
titious domain model using the so-called L2 or H1 volume penalty methods to take account
of porous or solid obstacles in flow problems with the Navier-Stokes/Brinkman equations.

The equation (3) for the positive phase function ϕ governs the transport by the flow of
the interface Σ , either between two fluid phases, or between fluid and solid phases, respec-
tively in the case of two-phase fluid flows or fluid-structure interaction problems. A level-set
function can be used as well. The previous set of equations must be supplemented by some
given state laws of the form:

ρ = ρ(ϕ) and µ = µ(ϕ)

which are given for both the density and viscosity fields. For example, we use in the nu-
merical results for non-miscible two-phase flows the following laws with a volume (VOF)
or discrete phase function ϕ ∈ [0,1], the iso-surface ϕ = 0.5 denoting the sharp interface Σ

separating the two phases:

ρ(ϕ) = ρ1 (1−H(ϕ−0.5))+ρ2 H(ϕ−0.5)

µ(ϕ) = µ1 (1−H(ϕ−0.5))+µ2 H(ϕ−0.5)

where H(X) denotes the value of the Heaviside function equal to 0 for X < 0 and 1 for
X ≥ 1. The function ϕ can be practically a volume of fluid (VOF) function, e.g. VOF-PLIC
[80] or SVOF [61], or also a level-set function [58]; see [66,67,77] for some improvements
and comparisons.

The force f may include some volumic forces like the gravity force ρ g as well as the
surface tension force fst to describe the capillarity effects at the phase interfaces. Thus we
have:

f = ρ g+ fst = ρ g+σ κ n|Σ δΣ

where σ is the surface tension coefficient, κ the local curvature of the interface, n|Σ the
outward unit normal to the interface (associated with one of the fluids) and δΣ the Dirac
measure supported by the interface Σ . Hence, our approach is essentially Eulerian using
a non boundary/interface-fitted background mesh with a Lagrangian front-tracking of the
sharp interfaces accurately reconstructed on the fixed Eulerian cartesian mesh, see e.g. [50,
78,77,66,67,61,79,19,49] and the references therein.

When non-isothermal configurations are considered, the advection-diffusion equation
for the temperature θ must be added:

(ρcp)(∂t θ +v ·∇θ)−∇ · (λ ∇θ) = Sθ in Ω × (0,T ) (4)

supplemented by adequate initial and boundary conditions for the temperature or the heat
flux which will be precised in the numerical results. In those cases, we also assume some
given state laws: ρ = ρ(ϕ,θ) and µ = µ(ϕ,θ) for each phase, where the functions are
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continuous and positive, e.g. the state law of an ideal gas. Besides, we assume for sake of
simplicity that: µ = µ(ϕ,θ)≥ µ0 > 0.

The case of nonhomegeneous velocity Dirichlet boundary conditions, for example with
v|Γ = vD ∈ L2(0,T ;H

1
2 (Γ )d) on Γ , also requires some given boundary conditions for ϕ on

the inflow part Γ− of Γ where vD ·n|Γ < 0. For homogeneous flows with constant density,
the initial velocity v0 can be taken in L2(Ω)d . We refer to [71,56,20] for the study of global
existence of weak solutions to density-dependent Navier-Stokes problems.

The article is organized as follows. In the next Section 2, we describe in detail the
(VPPε ) method for the solution of non-homogeneous viscous flow problems (1-3), and we
discuss the main differences and/or connections with other usual methods. We also justify
that the method can be very fast if the penalty parameter ε is chosen sufficiently small by
the asymptotic expansion of the discrete solution to the velocity penalty-projection step.
The Section 3 is devoted to the basic construction of the method where we state the theoret-
ical foundations and proves the theorems 1 and 2 justifying the name ”vector (or velocity)
penalty-projection” of the method. The last Section 4 before the conclusion deals with the
theoretical analysis of the (VPPε ) method for incompressible and unsteady homogeneous
flow problems governed by the Navier-Stokes equations. More precisely, we prove in The-
orem 3 the global solvability of the method as well as optimal and unconditional stability
results in the case of Navier-Stokes problems with constant density.

The (VPPε ) methods, analysed in the sequel to solve Darcy or Navier-Stokes problems,
are briefly presented in the recent Conference paper [8] and in the short Letter [10].

2 The fast vector-penalty projection method (VPPε )

2.1 Description of the method

We present hereafter the two-step vector (or velocity) penalty-projection (VPPε ) method
with a penalty parameter 0 < ε � 1. For ϕ0 = ϕ0 ∈ L∞(Ω) with ϕ0 ≥ 0 a.e. in Ω , v0 =
v0 ∈ L2(Ω)d and p0 ∈ L2

0(Ω) given, the method reads as below with usual notations for the
semi-discrete setting in time, δ t > 0 being the time step.

For all n ∈N such that (n+1)δ t ≤ T , find ṽn+1, v̂n+1 and vn+1, pn+1 ∈ L2
0(Ω), ϕn+1 ∈

L∞(Ω), such that:

ρ
n
(

ṽn+1−vn

δ t
+(vn ·∇)ṽn+1

)
−2∇ ·

(
µ

n d(ṽn+1)
)
+µ

n K−1 ṽn+1 +∇pn = fn in Ω (5)

with ṽn+1 = 0 on Γ

ε
ρn

δ t
v̂n+1−∇

(
∇ · v̂n+1)= ∇

(
∇ · ṽn+1) in Ω (6)

with v̂n+1 ·n = 0 on Γ

vn+1 = ṽn+1 + v̂n+1, and ∇(pn+1− pn) =−ρn

δ t
v̂n+1 in Ω (7)

ϕn+1−ϕn

δ t
+vn+1 ·∇ϕ

n = 0 in Ω . (8)

For non homogeneous Dirichlet conditions, we have: ṽn+1
|Γ = vn+1

D and v̂n+1 ·n|Γ = 0. Here
vn, pn are desired to be first-order approximations of the exact velocity and pressure solu-
tions v(tn), p(tn) at time tn = nδ t. Since the end-of-step velocity divergence is not exactly
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zero, the additional spherical part λ ∇ · vI with 〈= −2µ/3 of the Newtonian stress tensor
is included within the dynamical pressure gradient ∇p. Once the equations (5-8) have been
solved, the advection-diffusion equation of temperature can be solved too for θ n+1, e.g.
with a standard linearly implicit Euler scheme, and we can find: ρn+1 = ρ(ϕn+1,θ n+1) and
µn+1 = µ(ϕn+1,θ n+1).

For the sake of simplicity in the numerical procedure, a semi-implicit scheme where
the nonlinear term is linearized by the first term is here chosen since it does not suffer from
stability conditions. It can be also treated fully explicitly with a CFL-like stability condition.
In any case, a CFL condition must be verified due to the explicit scheme (8) generally used
to solve the advection equation for the phase function ϕ . The error analysis of the fully
implicit scheme is generally simpler but it also requires to use a quasi-Newton algorithm to
solve the corresponding non linear system at each time step in the practical computations.

Remark 1 (Vector correction for Navier-Stokes/Brinkman problems.)
In order to get a method with a better consistency, specially in the case of variable perme-

ability, the velocity correction (6) and pressure gradient correction (7) steps are respectively
replaced by:

ε

(
ρn

δ t
+µ

n K−1
)

v̂n+1−∇
(
∇ · v̂n+1)= ∇

(
∇ · ṽn+1) in Ω (9)

with v̂n+1 ·n = 0 on Γ

vn+1 = ṽn+1 + v̂n+1, and ∇(pn+1− pn) =−
(

ρn

δ t
+µ

n K−1
)

v̂n+1 in Ω (10)

This actually corresponds to the (VPPε ) method proposed in [8,10] which is also analyzed
and studied to solve anisotropic and heterogeneous Darcy problems in [12].

The consistency of the (VPPε ) method is ensured with (7) since we have using the fact
that v̂n+1 = vn+1− ṽn+1:

ρ
n vn+1− ṽn+1

δ t
+∇(pn+1− pn) = 0 with vn+1− ṽn+1 = v̂n+1. (11)

Then, summing this last equation with the prediction step (5), we get the evolution equation
satisfied by the velocity field vn+1 in Ω with the first-order linear implicit Euler scheme:

ρ
n
(

vn+1−vn

δ t
+(vn ·∇)ṽn+1

)
−2∇ ·

(
µ

n d(ṽn+1)
)
+µ

n K−1 ṽn+1 +∇pn+1 = fn. (12)

The key feature of our method is to calculate an accurate and curl-free approximation of
the momentum vector correction ρn v̂n+1 in (6). Indeed (6-7) ensures that ρn v̂n+1 is exactly
a gradient which justifies the choice for ∇φ n+1 = ∇(pn+1− pn) since we have:

ρn

δ t
v̂n+1 =

1
ε

∇
(
∇ ·vn+1) ⇒ ∇(pn+1− pn) =−1

ε
∇
(
∇ ·vn+1) . (13)

From the mathematical point of view, since the domain Ω is connected and p0 and ∇ ·vn+1

(with vn+1 ·n= 0 on Γ ) have a null average in Ω with the divergence formula, pn+1 ∈ L2
0(Ω)

for all n ∈ N such that (n+1)δ t ≤ T and the equivalence below holds:

∇(pn+1− pn) =−1
ε

∇
(
∇ ·vn+1) ⇔ pn+1− pn =−1

ε
∇ ·vn+1. (14)
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However, we generally do not use the above result for practical algorithms to avoid round-off
errors when ε is too small; see Remark 5.

The (VPPε ) method really takes advantage of the splitting method proposed in [9] for
augmented Lagrangian systems or general saddle-point computations to get a very fast so-
lution of (6); see [9, Theorem 1.1 and Corollary 1.2, 1.3].

When we need the pressure field itself pn+1, e.g. to compute stress vectors at each time
step, it is calculated in an incremental way as an auxiliary step. We propose to reconstruct
φ n+1 = pn+1− pn from its gradient ∇φ n+1 given in (7) as follows:

Auxiliary step: pn+1 = pn +φ
n+1

with φ
n+1 reconstructed from its gradient ∇φ

n+1 =−ρn

δ t
v̂n+1 in Ω . (15)

Since this reconstruction is not at all necessary to run the numerical process, it is described
below in Remark 2.

Remark 2 (Reconstruction of φ n+1 =(pn+1− pn) from its gradient if necessary.)
It is possible to reconstruct the discrete pressure field from its gradient calculated by the

(VPPε ) method with (15) on the meshed domain.
By circulating on a suitable path starting from a point on the boundary where φ n+1 = 0 is

fixed and going through all the pressure nodes in the mesh, we get with the gradient formula
between two neighbour points A and B using the mid-point quadrature:

φ
n+1(B)−φ

n+1(A) =
∫ B

A
∇φ

n+1 ·dl =−
∫ B

A

ρn

δ t
v̂n+1 ·dl≈−ρn

δ t
|v̂n+1|hAB, (16)

where hAB = distance(A,B). The field φ n+1 is calculated point by point from the bound-
ary and then passing successively by all the pressure nodes. Hence, this fast algorithm is
performed at each time step to get the pressure field pn+1 from the known field pn, if it is
necessary.

The prediction step (5) being standard within splitting methods and its solution ṽn+1

belonging to H1
0 (Ω)d , we now state below that the original vector (or velocity) penalty-

projection step (6) is well-posed at each time step tn. For that, we need the hypothesis below,
assuming that the density remains uniformly bounded and that no vacuum appears:

(H ) ρ
n ∈ L∞(Ω) and ∃ρmin > 0, ρ

n(x)≥ ρmin > 0 a.e. in Ω , ∀n∈N, nδ t ≤ T. (17)

Lemma 1 (Well-posedness of the velocity correction step (6).)
For all ṽn+1 given in Hdiv(Ω), ρn ∈ L∞(Ω) satisfying the hypothesis (H ) in (17) and

all ε > 0, δ t > 0, there exists at each time step a unique solution v̂n+1 in Hdiv,0(Ω) to
the velocity correction step (6). Moreover,

√
ρn v̂n+1 ∈ L2(Ω)d and ρn v̂n+1 is curl-free:

∇×(ρn v̂n+1) = 0 a.e. in Ω . Then ρn v̂n+1 belongs to Hrot(Ω) and ∇ ·(v̂n+1+ ṽn+1) belongs
to H1(Ω) at each time step.

PROOF.
For all u ∈Hdiv(Ω), we recall the Green’s formula defining the continuous normal trace

u ·n|Γ in H−
1
2 (Γ ), e.g. [40, Theorem 2.5], where 〈., .〉−1/2,Γ denotes the duality pairing

between H−
1
2 (Γ ) and H

1
2 (Γ ), and the resulting trace inequality:∫

Ω

u ·∇φ dx+
∫

Ω

∇ ·uφ dx = 〈u ·n,φ〉−1/2,Γ , for all φ ∈ H1(Ω)

‖u ·n‖− 1
2 ,Γ
≤ ‖u‖Hdiv, where ‖u‖2

Hdiv = ‖u‖2
0 +‖∇ ·u‖2

0.
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With ε = η δ t, we define the bilinear form a(., .) in Hdiv,0(Ω)×Hdiv,0(Ω) and the linear
form l(.) in Hdiv,0(Ω) (for all ṽn+1 ∈ Hdiv(Ω)) respectively by:

a(v,w) = η

∫
Ω

ρ
n v ·wdx+

∫
Ω

∇ ·v∇ ·wdx, ∀v, w ∈ Hdiv,0(Ω)

l(w) =
∫

Ω

∇ · ṽn+1
∇ ·wdx, ∀w ∈ Hdiv,0(Ω).

Then, with the previous Green’s formula and the boundary condition v̂n+1 ·n = 0 on Γ , it is
clear that the weak form of (6) reads at each time step:

a(v̂n+1,w) = l(w), ∀w ∈ Hdiv,0(Ω).

With the assumption (H ) in (17), it is an easy matter to prove with the Lax-Milgram theo-
rem, e.g. [57,21], that the weak problem above admits a unique solution v̂n+1 in the Hilbert
space Hdiv,0(Ω) (as a closed subspace of Hdiv(Ω)). Since ρn is bounded, ρn v̂n+1 belongs to
L2(Ω)d at each time step.

Conversely, we now interpret the weak form to show that v̂n+1 is the strong solution
of (6) in some sense. By taking a smooth and compactly supported test function w = ϕ in
C ∞

c (Ω)d = D(Ω)d , we get for all η > 0 in the distribution sense〈
η ρ

n v̂n+1−∇
(
∇ · (v̂n+1 + ṽn+1)

)
,ϕ
〉
D ′,D = 0, ∀ϕ ∈D(Ω)d .

Since both ∇ · v̂n+1 and ∇ · ṽn+1 belong to L2(Ω) and thus having their gradients in H−1(Ω)d ,
this implies that

η ρ
n v̂n+1−∇

(
∇ · v̂n+1)= ∇

(
∇ · ṽn+1) in H−1(Ω)d ,

which means that v̂n+1 ∈ Hdiv,0(Ω) is the strong solution to the velocity correction step (6)
in the sense of H−1(Ω)d . Since ρn v̂n+1 belongs to L2(Ω)d , this equation is also satisfied in
the sense of L2(Ω)d in the form below:

η ρ
n v̂n+1−∇

(
∇ · (v̂n+1 + ṽn+1)

)
= 0 a.e. in Ω .

Moreover, this implies that ∇ · (v̂n+1 + ṽn+1) belongs to H1(Ω) and since ρn v̂n+1 is
exactly a gradient, ρn v̂n+1 is curl-free. Thus, ∇× (ρn v̂n+1) = 0 in the sense of H−1(Ω)d ,
and also in the sense of L2(Ω)d , which completes the proof. 2

Remark 3 (Regularization property of the penalty method.)
From Lemma 1, it comes that the velocity divergence ∇ · (v̂n+1 + ṽn+1) = ∇ · vn+1 be-

longs to H1(Ω)∩L2
0(Ω) at each time step. From the pressure correction (14), this implies

that the pressure increment in time φ n+1 = pn+1− pn belongs to H1(Ω)∩L2
0(Ω) too, and

thus gets an extra regularity. This is due to the regularizing effect of the penalty method
which will be observed several times further in the paper.

Remark 4 (Connection with the original idea of Caltagirone.)
Taking formally the limit of the vector penalty-projection step (6) when ε/δ t tends to

zero yields for a constant density ρ: ∇(∇ · v̂n+1) =−∇(∇ · ṽn+1) with vn+1 = ṽn+1 + v̂n+1 ∈
H1

n (Ω). which corresponds to the original idea introduced in [25]. However, such a vector
projection with ε = 0 is ill-posed since the div operator has not a null kernel and the grad(div)
operator has many zero eigenvalues; see the numerical computation of grad(div) spectrum
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in e.g. [2] with spectral methods. This has led to the introduction of the vector penalty-
projection methods proposed in [7]. Indeed, the singular vector correction step has a unique
solution only with an additional constraint for v̂n+1, such that for example: ∇× v̂n+1 = 0 with
v̂n+1 ·n|Γ = 0. This is what the present (VPPε ) method effectively carries out by calculating,
with a penalty method, a curl-free vector correction ρn v̂n+1 of the momentum; see Lemma
1.

2.2 Analogy and difference with other usual or less classical methods

2.2.1 Velocity penalty-projection and pressure gradient update versus projection methods

The (VPPε ) splitting method uses a standard prediction step (5) which does not take the
divergence-free constraint into account. The vector correction step (6-7) carries out an approxi-
mate divergence-free projection of the velocity, see Section 3, with the penalty parameter
ε > 0 chosen as small as desired. The time increment of pressure pn+1− pn is never used to
calculate vn+1− ṽn+1. Moreover, the pressure field pn+1 is thus only updated by its gradient
(7), and it can be reconstructed very fast from its gradient or simply calculated with (14) for
ε not too small, only as a post-processing step. Besides, the method gets completely rid of
explicit pressure boundary conditions. Those are fundamental differences from all projec-
tion or penalty-projection methods, both for incompressible flows [29,73,74,60,75,64,76,
62,45,44,47,63] or low Mach number dilatable flows [31,32,48], where a scalar correction
step is performed by solving the homogeneous Neumann Poisson-like problem below for
the pressure increment φ n+1 := pn+1− pn:

∇ ·
(

δ t
ρn ∇φ

n+1
)
= ∇ · ṽn+1 in Ω , with ∇φ

n+1 ·n|Γ = 0. (18)

Indeed, the corresponding pressure update for the (VPPε ) method amounts, at each time
step, to the Neumann-Poisson problem below with the known velocity correction v̂n+1 (ob-
tained by taking the divergence in Eq. (7)):

−∆φ
n+1 = ∇ ·

(
ρn

δ t
v̂n+1

)
in Ω , with ∇φ

n+1 ·n|Γ = 0, φ
n+1 = pn+1− pn. (19)

However, the (VPPε ) method does not require to solve (19) since the velocity and pressure
gradient corrections are completely defined by the vector equations (6,7), despite it is always
a pure Poisson problem even with variable density, which is not the case for the scalar
projection methods. Very recently, a new scalar projection method was proposed in [46]
for the variable density flow. However, this method seems restricted to weak mass density
variations since only the case with a density ratio equal to 7 is computed. Besides, this
method does not seem to be able to correctly compute the hydrostatic non-miscible diphasic
case.

Furthermore, we would like to point out that the pressure correction (18) with the scalar
projection methods involves a spatial derivative of the mass density. Conversely, the vector
form of equations (6,7) for the (VPPε ) method does not include any density spatial deriva-
tive, which is far more in agreement with the continuous equations (1,2).
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2.2.2 Fast-(V PP) method versus scalar penalty-projection (SPP) method

In the scalar penalty-projection methods introduced in [47], an augmented Lagrangian term
[39,41] with a parameter r ≥ 0 is added in the prediction step whereas a consistent exact
divergence-free projection is carried out; see also [68] where the case r = 1/δ t2 is analysed.
In the first versions of V PP method [7], the main part of this augmentation term is splitted
within the velocity correction step, which performs only an approximate divergence-free
projection, since we have in fact:

r = r0 +
1
ε

where r0 ≥ 10−4; see [9] and Remark 5. In the present V PP method, we have now com-
pletely eliminated the augmentation term from the prediction step, i.e. the method works
well also with r0 = 0. Indeed, we use the splitting augmented Lagrangian method recently
proposed in [9] to get a fast solver for ε = 1/r small enough where the right-hand side is
adapted to the left-hand side operator in the correction step. Hence, although the correction
step in the V PP is completely different than in the SPP where a consistent incremental pro-
jection method is used, see Section 2.2.1, the results of both methods can be compared. In
particular, we refer to the SPP methods with sufficiently large values of r for vanishing the
splitting errors [47,48], with theoretical analysis in [68,18,37], and for drastically reducing
the spurious pressure boundary layer or yielding good convergence results in the case of
open or outflow boundary conditions; see [47,48] for details.

2.2.3 Fast-(V PP) versus the first (V PP) method

By comparing the present fast-V PP with our first version of the V PP method [7], we notice
that we have now completely eliminated both the diffusion and convection term in the vector
correction step (6). This was in fact already suggested in [7] from the numerical point of
view, but we can now justify it by the theoretical considerations in Section 3. By this way,
we lose a little consistency, e.g. the fact that v̂n+1 ∧n|Γ = 0, but we gain back two crucial
properties: ρn v̂n+1 is exactly a gradient which is thus directly used for the pressure gradient
update and the new correction step is far more faster and cheaper. Indeed, the fast discrete
solution to the present (VPPε ) method is confirmed by the numerical results given in [9,10,
11]; see also Section 2.3.

Remark 5 (Pressure update.)
From the mathematical point of view, we can simply calculate the pressure with (14)

as made in the first version of the V PP method [7]. However, we have observed that it is
numerically far better to run the method by updating directly the pressure gradient (7) to
avoid the effect of round-off errors when ε is very small. Indeed, the first V PP method
requires an augmentation parameter r0 > 0 in the prediction step to act as a preconditioner
in order to get the first-order convergence of the pressure with the time step when the penalty
parameter ε is very small.

2.2.4 High-order accuracy in time and open boundary conditions

The method can be written by using the Crank-Nicolson or 2nd-order backward finite dif-
ference (BDF2) schemes, instead of the Euler scheme, with suitable Richardson’s extrap-
olations to get the second-order accuracy in time as it is usually made for other methods:
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preconditioned fully coupled solver [16,30], Uzawa augmented Lagrangian [39,41,42] with
finite elements or [26,50] with finite volumes on the MAC staggered mesh, scalar incremen-
tal projection [44] or scalar penalty-projection [47,48,37] methods. In order to naturally
increase the time accuracy, the following evolution version of the (VPPε ) method is also
considered [14,15], where ṽ0 = v0 and v̂0 = 0 are given:

ρ
n
(

ṽn+1− ṽn

δ t
+(vn ·∇)ṽn+1

)
−2∇ ·

(
µ

n d(ṽn+1)
)
+µ

n K−1 ṽn+1 +∇pn = fn in Ω (20)

with ṽn+1 = 0 on Γ

ε ρ
n v̂n+1− v̂n

δ t
−∇

(
∇ · v̂n+1)= ∇

(
∇ · ṽn+1) in Ω (21)

with v̂n+1 ·n = 0 on Γ

vn+1 = ṽn+1 + v̂n+1, and ∇(pn+1− pn) =−ρ
n v̂n+1− v̂n

δ t
in Ω .(22)

By summing the prediction (20) and V PP-correction (21) steps using (22), it yields the same
evolution equation (12) of the velocity field vn+1 as for the V PP version (5,6,7).

It is shown in [14,15] and see also [27] that the suitable second-order versions of the
(VPPε ) method effectively reach the second-order accuracy in time for both velocity and
pressure, not only with a Dirichlet boundary condition for the velocity, but also for an open
boundary condition with a given traction on a part of the border Γ . It is well-known, see
e.g. [43,44] and the references therein, that this not at all the case with the scalar projec-
tion methods, even for the linear Stokes problem, except with the scalar penalty-projection
method introduced and studied in [47,48,37,18].

2.2.5 A new two-step artificial compressibility method

By summing the prediction and correction steps (5–7), we get below the problem which is
effectively satisfied by the discrete velocity vn+1 and pressure pn+1 and resulting from the
proposed (VPPε ) splitting method: see also the equations (12) and (14).

ρ
n
(

vn+1−vn

δ t
+(vn ·∇)ṽn+1

)
−2∇ ·

(
µ

n d(ṽn+1)
)
+µ

n K−1 ṽn+1 +∇pn+1 = fn (23)

(ε δ t)
∇(pn+1− pn)

δ t
+∇

(
∇ ·vn+1)= 0 ⇔ (ε δ t)

pn+1− pn

δ t
+∇ ·vn+1 = 0. (24)

These equations are never solved in this form in the computational process. Nevertheless,
they can be also viewed as defining a new two-step artificial or pseudo-compressibility
method. Indeed, the previous method (23-24) differs from the original artificial compressi-
bility method of Chorin-Temam [28,72] by three important features. This is a splitting
method with a prediction-correction scheme which also works for non-homogeneous flows
and the analogous continuous pressure equation reads here with an additional parameter
ξ > 0:

(ε ξ )∂t∇p+∇(∇ ·v) = 0 in Ω × (0,T ), (25)

or (ε ξ )∂t p+∇ ·v = 0 in Ω × (0,T ),

where we have ξ = δ t in the practical (VPPε ) splitting method and ξ = 1 corresponds to
the standard artificial compressibility method. The method (23,24) is also different from the
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pseudo-compressibility methods issued from projection methods; see [69,44] and Section
2.2.1 above.

The convergence analysis of such a continuous version of two-step artificial compress-
ibility method in the case of a constant density is theoretically performed in [17] when
ε→ 0. More precisely, by performing a compactness method using the Fourier transform, it
is proved that the weak solutions of the compressibility method converge to weak solutions
of the Navier-Stokes equations when ε → 0 and whatever the fixed parameter ξ > 0.

In the case of low Mach number flows, typically when M < 0.2, it is possible to connect
the parameter ε with the Mach number M :=V ?/c, V ? being a given reference velocity and
c the velocity of acoustic waves; e.g. [23,24] :

c :=

√(
∂ p
∂ρ

)
S
=

√
1

ρ χS
=

√
γ

ρ χθ

,

where γ :=
cp

cv
≥ 1, χS :=

1
ρ

(
∂ρ

∂ p

)
S
> 0, χθ :=

1
ρ

(
∂ρ

∂ p

)
θ

= γ χS > 0,

χS, χθ being respectively the isentropic and isothermal compressibility coefficients of the
fluid. Now, from one hand we have with the continuity equation :

dρ

dt
=

∂ρ

∂ t
+v ·∇ρ =−ρ ∇ ·v.

With a state law of the fluid like ρ = ρ(p,θ), a function of pressure and temperature, we
have from another hand :

dρ

dt
=

(
∂ρ

∂ p

)
θ

dp
dt

+

(
∂ρ

∂θ

)
p

dθ

dt

= ρ χθ

dp
dt
−ρ β

dθ

dt
, where β :=− 1

ρ

(
∂ρ

∂θ

)
p
> 0

is the coefficient of thermal volume expansion of the fluid. By combining the previous equal-
ities, it yields the pressure equation below :

χθ

∂ p
∂ t

+∇ ·v = β
dθ

dt
−χθ v ·∇p.

Comparing this equation with (25) for the (VPPε ) method, i.e. ξ = δ t, in the case of a
barotropic fluid (β ≈ 0) or an isothermal flow at a constant temperature, and neglecting the
last term in the right-hand side, we get

ε δ t = χθ = γ χS.

Hence, we find

M2 :=
V ?2

c2 =
ρ V ?2 χθ

γ
=

ρ V ?2 ε δ t
γ

, or also γ M2 = ρ V ?2
ε δ t� 1. (26)
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2.3 On the fast discrete solution to the (VPPε ) method

Let us now consider any space discretization of our problem. We denote by B = −divh
the m× n matrix corresponding to the discrete divergence operator, BT = gradh the n×m
matrix corresponding to the discrete gradient operator, whereas I denotes the n×n identity
matrix with n > m and D the n× n diagonal nonsingular matrix containing all the discrete
density values of ρn > 0 a.e. in Ω . Here n is the number of velocity unknowns whereas m
is the number of pressure unknowns. Then, the discrete vector penalty-projection problem
corresponding to (6) with ε = η δ t or (43) with D = I reads:(

D+
1
η

BT B
)

v̂η =− 1
η

BT Bṽ, with vη = ṽ+ v̂η . (27)

We proved in [9] a crucial result due to the adapted right-hand side in the correction step
(27) which lies in the range of the limit operator BT B. Indeed, (27) can be viewed as a
singular perturbation problem with well-suited data in the right-hand side. More precisely,
we state in [9, Theorem 1.1 and Corollary 1.3] the asymptotic expansion of the solution v̂η

to (27):

v̂η =− 1
η

(
D+

1
η

BT B
)−1

BT Bṽ (28)

when the penalty parameter η is chosen sufficiently small. We also refer to [9, Corollary
1.2] for the very good effective conditioning of the whole linear system (27) when η is
sufficiently small.

This explains why the solution can be obtained only within a few iterations of a suitable
preconditioned conjugate gradient whatever the size of the mesh step or the dimension n.
This is confirmed by the numerical results obtained in [9,10,11] with the ILU(0)-BiCGStab2
preconditioned Krylov iterations or in [14,15] with the IC(0)-PCG preconditioned iterative
solver.

3 Theoretical foundations of the vector penalty-projection

We present and analyze an approximate divergence-free projection problem and its solution
using the splitting method proposed in [9] for general saddle-point problems. We also refer
to [11] where fast Helmholtz-Hodge decompositions are proposed in bounded domains.

We first recall the Helmholtz-Hodge orthogonal decomposition of L2(Ω)d for a bounded
domain, see [53,51,75]:

L2(Ω)d = H⊕ H⊥ with:

H = {u ∈ L2(Ω)d ; ∇ ·u = 0, u ·n = 0 on Γ }, H⊥ = {∇φ , φ ∈ H1(Ω)}.

Thus, for all ṽ ∈ L2(Ω)d , there exists a unique (v,q) ∈ H ×H1(Ω)/R solution to the L2

divergence-free projection:

v+∇q = ṽ with ∇ ·v = 0 in Ω , and v ·n = 0 on Γ . (29)

This gives immediately the following bounds with Pythagore and the mean Poincaré in-
equality since

∫
Ω

qdx = 0:

‖v‖2
0 +‖∇q‖2

0 = ‖ṽ‖2
0 and thus ‖q‖0 ≤ c0(Ω)‖∇q‖0 ≤ c0(Ω)‖ṽ‖0. (30)
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If ṽ belongs to Hdiv,0(Ω), by writing ∆q = ∇ · ṽ with ∇q ·n|Γ = 0, it is easy to show that the
solution q ∈ H1(Ω)/R of this homogeneous Neumann-Poisson problem satisfies: ‖∇q‖0 ≤
‖ṽ‖0. Moreover, if the domain Ω is convex, then q belongs to H2(Ω)/R, see e.g. [1,36].

That leads to the very popular Chorin-Temam projection methods [29,73,74,60,75] and
their many variants; see [44,31,32,47,48]. This decomposition is also at the basis of the
family of SIMPLER methods introduced by Patankar and Spalding [59] which are very
often used in computational fluid dynamics and heat or mass transfer.

3.1 The approximate penalty-projection (APP)

Now, we adopt a completely different point of view. The key idea of our method is to directly
calculate an accurate curl-free approximation of the pressure gradient ∇q (the force inducing
the motion) instead of determining the pressure itself (the Lagrange multiplier) to satisfy the
exact velocity free-divergence constraint. We consider the solution of this problem with the
penalty method, originally introduced by Courant [33] in a different context of constrained
optimization to get problems with no constraint.

Let us study the following approximate penalty-projection (APP) problem for all η > 0
and all ṽ given in L2(Ω)d , where we are looking for (vη ,qη) ∈ Hdiv,0(Ω)×H1(Ω)/R:

(APP) vη +∇qη = ṽ with qη =− 1
η

∇ ·vη in Ω , and vη ·n = 0 on Γ

⇒ vη −
1
η

∇(∇ ·vη) = ṽ in Ω and vη ·n = 0 on Γ . (31)

We prove the following optimal error estimates.

Theorem 1 (Approximate divergence-free penalty-projection.)
For all ṽ given in L2(Ω)d and η > 0, there exists a unique solution vη in Hdiv,0(Ω)

and qη in H1(Ω)∩L2
0(Ω) to the approximate penalty-projection problem (31) and we have:

∇× (vη − v) = 0 and then (vη − v) ∈ H1
n (Ω) and (qη − q) ∈ H2(Ω), where (v,q) ∈ H×

H1(Ω)/R is the solution to (29) and satisfies (30). Moreover, there exists c(Ω) > 0 such
that the error estimate below holds:

‖vη −v‖1 +‖∇ ·vη‖0 +‖qη −q‖2 ≤ c(Ω)‖q‖0 η . (32)

PROOF.
First, it is an easy matter to prove with the Lax-Milgram theorem that (31) admits a

unique solution vη in Hdiv,0(Ω): see for details the proof of Lemma 1 which considers a

problem of the same type. Then we have qη = − 1
η

∇ · vη in L2
0(Ω) since vη ·n|Γ = 0 and

because ∇qη = ṽ−vη in L2(Ω)d , we have also both qη and ∇ ·vη in H1(Ω).
Second, from the difference between (31) and (29), we get since ∇ ·v = 0:

vη −v+∇(qη −q) = 0 with qη =− 1
η

∇ ·vη =− 1
η

∇ · (vη −v), (vη −v) ·n|Γ = 0

and it yields the problem below satisfied by vη −v for all η > 0:

vη −v− 1
η

∇(∇ · (vη −v)) = ∇q in Ω and (vη −v) ·n = 0 on Γ . (33)
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Since vη − v = −∇(qη − q), we have: ∇× (vη − v) = 0, and as ∇ · (vη − v) ∈ L2(Ω)
with (vη − v) ·n|Γ = 0, then vη − v belongs to H1

n (Ω), see [35,38,34]. Indeed, the space
Hdiv,0(Ω)∩Hrot(Ω) is continuously imbedded in H1

n (Ω), see also [40,3]. Then qη −q be-
longs to H2(Ω) with q∈H1(Ω)/R and thus qη ∈H1(Ω)/R. The fact that (qη−q)∈H2(Ω)
is due to the regularization effect of the penalty method, see [40] and Remark 3.

Taking the L2-inner product of (33) with vη −v, we get using the Green’s formula with
(vη −v) ·n|Γ = 0, and then the Cauchy-Schwarz and Young inequalities:

‖vη −v‖2
0 +

1
η
‖∇ · (vη −v)‖2

0 = −(q,∇ · (vη −v))0

≤ 1
2η
‖∇ · (vη −v)‖2

0 +
η

2
‖q‖2

0

and thus:

‖vη −v‖2
0 +

1
2η
‖∇ · (vη −v)‖2

0 ≤
η

2
‖q‖2

0 hence ‖∇ · (vη −v)‖0 ≤ ‖q‖0 η . (34)

Then, taking the L2-inner product of (33) with ∇(qη − q), we get since (vη − v) ·n|Γ = 0
and using the mean Poincaré inequality [57,21] with

∫
Ω
(qη −q)dx = 0:

‖vη −v‖0 = ‖∇(qη −q)‖0 ≤ c0(Ω)‖q‖0 η (35)

‖qη −q‖0 ≤ c0(Ω)‖∇(qη −q)‖0 ≤ c0(Ω)2 ‖q‖0 η .

Since (vη − v) ·n|Γ = 0, we now observe that the H1-norm ‖vη − v‖1 is equivalent to the
norm (‖vη −v‖0 +‖div(vη −v)‖0 +‖curl(vη −v)‖0), see [35,38,40] or [3] for a complete
review. Thus with (34) and (35), since ∇× (vη −v) = 0, there exists c1(Ω)> 0 such that:

‖∇(qη −q)‖1 = ‖vη −v‖1 ≤ c1(Ω)(‖vη −v‖0 +‖∇ · (vη −v)‖0)

≤ c1(Ω)(1+ c0(Ω))‖q‖0 η = c(Ω)‖q‖0 η .
(36)

This concludes the proof of (32) with the previous estimates (34,35,36). 2

Then, using a similar idea of Temam [75] for the Stokes problem, we can refine the
previous result with an asymptotic expansion of (vη ,qη) in powers of η . More precisely,
we define by induction a sequence (vk,qk) ∈ Hdiv,0(Ω)×H1(Ω)/R as the solution of the
following problem for any integer k ≥ 1:

vk +∇qk = 0 and ∇ ·vk =−qk−1, where v0 = v, q0 = q (37)

⇒ ∆qk = qk−1 with ∇qk ·n|Γ = 0.

It is easy to show, knowing qk−1, that (37) defines a unique pair (vk,qk) ∈ Hdiv,0(Ω)×
H1(Ω)/R for all k ∈ N. Then, we have the following result by defining below the errors of
(vη ,qη) from the asymptotic series at any order N ∈ N:

wN
η = vη −v−

N

∑
k=1

vk η
k and λ

N
η = qη −q−

N

∑
k=1

qk η
k, ∀N ∈ N. (38)
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Theorem 2 (Error estimates with asymptotic expansion.)
The sequence (vk,qk) solution to (37) for k≥ 1 verifies: ∇×vk = 0 and (vk,qk) belongs

to H1
n (Ω)×H2(Ω)/R. Moreover, for any N ∈ N, there exists c0(Ω), c(Ω) > 0 such that,

∀ṽ ∈ L2(Ω)d and ∀η > 0, the error (38) of the approximate penalty-projection solution to
(31) satisfies:

‖wN
η‖1 = ‖∇λ

N
η ‖1 ≤ c(Ω)c0(Ω)2N ‖q‖0 η

N+1

‖λ N
η ‖0 ≤ c0(Ω)2N+2 ‖q‖0 η

N+1

‖∇ ·wN
η‖0 ≤ c0(Ω)2N ‖q‖0 η

N+1. (39)

PROOF.
The proof is similar to that of Theorem 1 where the estimates (34,35,36) correspond to

the case N = 0.
First from (37), we have for all k ≥ 1: ∇× vk = 0, and, since ∇ · vk ∈ L2(Ω) with

vk ·n|Γ = 0, then vk belongs to H1
n (Ω) and thus qk belongs to H2(Ω)/R. We also get by

an easy induction using the mean Poincaré inequality that:

‖qk‖0 ≤ c0(Ω)2k ‖q‖0 and ‖∇qk‖0 ≤ c0(Ω)2k ‖∇q‖0, ∀k ∈ N.

Now, an easy calculation from (31,29) with (38) and (37) yields that (wN
η ,λ

N
η ) is the solution

to the problem below:

wN
η +∇λ

N
η = 0 and ∇ ·wN

η =−qN η
N+1 ⇒ ∆λ

N
η = qN η

N+1 with ∇λ
N
η ·n|Γ = 0.

Then, we get with the previous bound:

‖∇ ·wN
η‖0 ≤ ‖qN‖0 η

N+1 ≤ c0(Ω)2N ‖q‖0 η
N+1. (40)

Since wN
η = −∇λ N

η , we have: ∇×wN
η = 0, and as ∇ ·wN

η ∈ L2(Ω) with wN
η ·n|Γ = 0, then

wN
η belongs to H1

n (Ω), see [38]. Then λ N
η belongs to H2(Ω)/R. Moreover, using the mean

Poincaré inequality, we get similarly to (35):

‖wN
η‖0 = ‖∇λ

N
η ‖0 ≤ c0(Ω)2N+1 ‖q‖0 η

N+1

‖λ N
η ‖0 ≤ c0(Ω)‖∇λ

N
η ‖0 ≤ c0(Ω)2N+2 ‖q‖0 η

N+1. (41)

Besides, similarly to (36) with the equivalent H1 norm of wN
η since wN

η ·n|Γ = 0 and ∇×
wN

η = 0, we have:

‖∇λ
N
η ‖1 = ‖wN

η‖1 ≤ c1(Ω)
(
‖wN

η‖0 +‖∇ ·wN
η‖0
)

≤ c(Ω)c0(Ω)2N ‖q‖0 η
N+1.

(42)

This completes the proof with the previous estimates. 2
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3.2 The vector penalty-projection (VPP)

Since the (APP) problem (31) is ill-conditioned when η is small, we now study an efficient
splitting method to solve (31) as proposed in [9] for general saddle-point problems. Here, it
amounts to directly seek the curl-free vector correction v̂η =−∇qη such that vη = ṽ+ v̂η be
the solution of (31), which requires a more regular data ṽ. Thus, for any ṽ given in Hdiv(Ω),
we consider the so-called vector penalty-projection (VPP) problem below for all η > 0:

(V PP) v̂η −
1
η

∇(∇ · v̂η) =
1
η

∇(∇ · ṽ) with vη = ṽ+ v̂η , qη =− 1
η

∇ ·vη (43)

⇒ v̂η =
1
η

∇(∇ ·vη) , for all η > 0.

This problem is well-posed in Hdiv,0(Ω), see Lemma 2 below. Moreover, for all ṽ∈Hdiv,0(Ω),
the problems (31) and (43) are equivalent and thus the error estimates in Theorems 1 and 2
hold. This actually gives the proof of [11, Theorem 3.3] which was just stated there without
proof for sake of shortness. Let us also notice that (43) corresponds to the vector correction
step (6) performed at each time step in the proposed (VPPε ) method with ε = η δ t, whereas
ṽ is calculated by a prediction step which does not take the divergence-free constraint into
account.

Lemma 2 (Well-posedness of the vector penalty-projection (VPP).)
For any ṽ given in Hdiv(Ω) and all η > 0, there exists at each time step a unique solution

v̂η in Hdiv,0(Ω) to the vector penalty-projection (43), i.e. also to the velocity correction step
(6) with ε = η δ t for a constant density ρ > 0. Moreover, v̂η is curl-free: ∇× v̂η = 0 and
since v̂η ·n|Γ = 0, then we have v̂η ∈H1

n (Ω) and satisfies the bound below with c1(Ω)> 0:

‖v̂η‖1 = ‖∇qη‖1 ≤ c1(Ω)(‖v̂η‖0 +‖∇ · v̂η‖0)≤ c1(Ω)(2‖ṽ‖0 +‖∇ · ṽ‖0) , ∀η > 0.

PROOF.
By using the previous Lemma 1, there exists a unique solution v̂η in Hdiv,0(Ω) to (43)

and we have: ∇× v̂η = 0 since vη = ṽ+ v̂η and thus v̂η is exactly a gradient for all η > 0.
Since v̂η in Hdiv(Ω) is curl-free with v̂η ·n|Γ = 0, then v̂η belongs to H1

n (Ω), see [38].
Besides, with the equivalence of the H1-norm to the norm (‖.‖0 +‖div.‖0 +‖curl.‖0) for
functions in H1

n (Ω), see [35,38,40], there exists c1(Ω) such that:
‖v̂η‖1 ≤ c1(Ω)(‖v̂η‖0 +‖∇ · v̂η‖0). Then, a simple energy estimate with (43) gives:

‖v̂η‖2
0 +

1
2η
‖∇ · v̂η‖2

0 ≤
1

2η
‖∇ · ṽ‖2

0.

This implies that:
‖∇ · v̂η‖0 ≤ ‖∇ · ṽ‖0, for all η > 0.

Furthermore, by a simple energy estimate with (31), we get:

1
2
‖vη‖2

0 +
1
η
‖∇ ·vη‖2

0 ≤
1
2
‖ṽ‖2

0.

Thus we have ‖vη‖0 ≤ ‖ṽ‖0, and it also gives with the triangular inequality:

‖v̂η‖0 ≤ ‖ṽ‖0 +‖vη‖0 ≤ 2‖ṽ‖0, for all η > 0.

This finally yields the desired bound for ‖v̂η‖1 with the previous estimates. 2
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The great interest of solving (43) instead of (31) is explained in Section 2.3 issued from
[8,9] which shows that the method can be ultra-fast and very cheap if η is sufficiently small
since (43) includes a right-hand side which is adapted to the left-hand side operator. This is
also confirmed by the numerical results given in [10,11].

The present section fully justifies the name of the method as a vector penalty-projection.
Moreover, we have shown that the velocity correction step (6) in the (VPPε ) splitting method
carries out an approximate divergence-free projection with a penalty method which yields
at each time step tn a divergence error for the velocity of order O(ε/δ t) at least.

4 Analysis of the (VPPε ) method for homogeneous flows

4.1 Preliminary on the nonlinear convection term

To deal with the nonlinear convection term, we use the trilinear skew-symmetric form
b(., ., .) introduced by Temam [72,75] and defined by:
for all u ∈ H1

n (Ω) and v, w ∈ H1(Ω)d ,

b(u,v,w) =
∫

Ω

((u ·∇)v) ·wdx+
1
2

∫
Ω

(∇ ·u)v ·wdx

=
1
2

∫
Ω

((u ·∇)v) ·wdx− 1
2

∫
Ω

((u ·∇)w) ·vdx. (44)

The corresponding bilinear operator B(., .) is defined on H1
n (Ω)×H1(Ω)d as below:

B(u,v) = (u ·∇)v+
1
2
(∇ ·u)v. (45)

Moreover, the following proposition holds.

Proposition 1 (Skew-symmetry property.)
The trilinear form b(., ., .) defined in (44) satisfies for all u, v, w in H1(Ω)d:

b(u,v,w) =−b(u,w,v)+
d

∑
i, j=1

∫
Γ

(ui ni)v j w j ds.

PROOF.
Using the usual convention of implicit summation on the repeated index, we have:

b(u,v,w) =
∫

Ω

ui
∂v j

∂xi
w j dx+

1
2

∫
Ω

∂ui

∂xi
v j w j dx

=
∫

Ω

∂ (ui v j)

∂xi
w j dx−

∫
Ω

∂ui

∂xi
v j w j dx+

1
2

∫
Ω

∂ui

∂xi
v j w j dx

=
∫

Ω

∂ (ui v j)

∂xi
w j dx− 1

2

∫
Ω

∂ui

∂xi
v j w j dx.

Then, applying the Green formula on the first term in the right-hand side, we get the desired
result:

b(u,v,w) =−
∫

Ω

ui v j
∂w j

∂xi
dx− 1

2

∫
Ω

∂ui

∂xi
v j w j dx+

∫
Γ

(ui ni)v j w j ds.

2

Thus, we have from the previous Proposition 1 the following skew-symmetry property
of b(., ., .) with respect to the two last arguments:

b(u,v,w) =−b(u,w,v), b(u,v,v) = 0, ∀u ∈ H1
n (Ω), ∀v, w ∈ H1(Ω)d . (46)
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4.2 Stability analysis of the (VPPε ) method for homogeneous Navier-Stokes flows

In the case of Navier-Stokes problems for incompressible flows with a constant density ρ > 0
and viscosity µ > 0, we use the dimensionless equations with Re := ρV ?L?/µ denoting the
Reynolds number and Da := K?/L?2 the Darcy number, where the quantities with a star
index are some chosen reference values; see [50]. Hence, the prediction (5) and correction
steps (6,7) now read:

ṽn+1−vn

δ t
+B

(
vn, ṽn+1)− 1

Re
∆ ṽn+1 +

1
ReDa

K−1 ṽn+1 +∇pn = fn+1 in Ω (47)

ε

δ t
v̂n+1−∇

(
∇ · v̂n+1)= ∇

(
∇ · ṽn+1) in Ω (48)

vn+1 = ṽn+1 + v̂n+1, and
vn+1− ṽn+1

δ t
+∇(pn+1− pn) = 0 in Ω (49)

with ṽn+1
|Γ = 0 and v̂n+1 ·n|Γ = 0.

Then, we prove the well-posedness of the (VPPε ) method (47-49).

Lemma 3 (Global solvability of (VPPε ) method for homogeneous Navier-Stokes.)
For f ∈ L2(0,T ;H−1(Ω)d), v0 ∈ L2(Ω)d and p0 ∈ L2

0(Ω) given, the (VPPε ) method
is well-posed for all 0 < δ t ≤ T and ε > 0, i.e. for all n ∈ N such that (n+ 1)δ t ≤ T ,
there exists a unique solution (ṽn+1,vn+1, pn+1)∈H1

0 (Ω)d×H1
n (Ω)×L2

0(Ω) to the (VPPε )
scheme (47-49) such that:

vn+1−vn

δ t
+B

(
vn, ṽn+1)− 1

Re
∆ ṽn+1 +

1
ReDa

K−1 ṽn+1 +∇pn+1 = fn+1 in Ω (50)

(ε δ t)
pn+1− pn

δ t
+∇ ·vn+1 = 0 in Ω (51)

which is the discrete problem effectively solved by this two-step artificial compressibility
splitting scheme.

Moreover, we have both ∇ · vn+1 and φ n+1 := pn+1− pn belonging to H2(Ω)∩L2
0(Ω)

and hence pn+1 ∈ H2(Ω)∩L2
0(Ω) if the initial pressure p0 is chosen in H2(Ω)∩L2

0(Ω).

PROOF.
The proof is made by induction for all n ∈ N such that (n+ 1)δ t ≤ T from the given

initial conditions v0 ∈ L2(Ω)d and p0 ∈ L2
0(Ω).

At each time step tn+1, there exists a unique solution ṽn+1 ∈ H1
0 (Ω)d to the predic-

tion step (47). Indeed, it is an easy application of the Lax-Milgram theorem for this linear
advection-diffusion problem where b(vn, ṽn+1,w) = 0 for all w ∈H1

0 (Ω)d from Proposition
1, which ensures the coercivity of this problem in H1

0 (Ω)d .
Moreover, from Lemma 2, there exists a unique solution v̂n+1 ∈ H1

n (Ω) to the velocity
correction step (48). Thus, we have vn+1 = ṽn+1 + v̂n+1 which belongs to H1

n (Ω). From
another hand with (14), since both p0 and ∇ · vn+1 belong to L2

0(Ω) and the domain Ω is
connected, then pn+1 belongs to L2

0(Ω) and satisfies (51).
Hence, the well-posedness of the whole (VPPε ) scheme (47-49) follows by an immedi-

ate induction.
Furthermore, the additional regularity of the velocity divergence and pressure is brought

by the regularizing effect of the penalty method, see Remark 3, and with (48) by the con-
tinuous imbedding of the space Hdiv,0(Ω)∩Hrot(Ω) in H1

n (Ω), see e.g. [40,3], and thus
v̂n+1 ∈ H1

n (Ω) from Lemma 2. This concludes the proof. 2
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We now prove below the unconditional stability of the (VPPε ) method. Here we omit
the Darcy’s drag term in (47) since it brings no additional complication; see [12] for the
study of Darcy problems.

Theorem 3 (Stability of (VPPε ) method for homogeneous Navier-Stokes problems.)

For f ∈ L2(0,T ;H−1(Ω)d), v0 ∈ L2(Ω)d and p0 ∈ L2
0(Ω)∩H1(Ω), there exists C j > 0

for j = 0, 2 with C j =C j

(
Ω ,T,Re,‖f‖L2(0,T ;H−1),‖v0‖0,‖p0‖1

)
such that, for all 0 < ε ≤ 1

and 0< δ t ≤ T , the solution (ṽn+1,vn+1, pn+1) of the (VPPε ) method (47-49) satisfies for all
n ∈ N with (n+1)δ t ≤ T the following estimates where c0(Ω) denotes the mean Poincaré
constant:

(i) ‖vn+1‖2
0 +

n

∑
k=0
‖ṽk+1−vk‖2

0 +
1

Re

n

∑
k=0

δ t ‖∇ṽk+1‖2
0

+δ t2 ‖∇pn+1‖2
0 + ε δ t ‖pn+1‖2

0 + ε

n

∑
k=0

δ t ‖pk+1− pk‖2
0 ≤C0

(ii)
n

∑
k=0

δ t ‖∇ ·vk+1‖2
0 ≤C0 ε

(iii) ‖πn+1‖2
1 ≤

(
1+ c0(Ω)2)C0 with π

n+1 = δ t pn+1

(iva)
n

∑
k=0

δ t ‖∇vk+1‖2
0 +

n

∑
k=0

δ t ‖∇(vk+1− ṽk+1)‖2
0 ≤C1, if Ω simply connected.

Moreover, if we assume that: ε = λ δ t with a given constant λ > 0, we have the addi-
tional bounds below including the time increments of velocity which hold without the as-
sumption that Ω is simply connected:

(ivb)
n

∑
k=0

δ t ‖∇vk+1‖2
0 +

n

∑
k=0

δ t ‖∇(vk+1− ṽk+1)‖2
0 ≤C2

δ t
ε
,

(v)
n

∑
k=0

(
‖vk+1− ṽk+1‖2

−1 +‖vk+1−vk‖2
−1

)
≤ 2C0

1+λ

λ
= 2C0

(
1+

δ t
ε

)
.

PROOF.
Proof of (i). With (47, 49, 51), we get the energy equations below since the solution of (47)
is ṽn+1 ∈ H1

0 (Ω)d with vD = 0, v̂n+1 ∈ H1
n (Ω) with Lemma 2, then vn+1 ∈ H1

n (Ω) and
b(vn, ṽn+1, ṽn+1) = 0 from (46).

Moreover, with p0 ∈ H1(Ω)/R, we have pn+1 ∈ H1(Ω)/R for all n ∈ N such that (n+
1)δ t ≤ T , since ∇(pn+1− pn) belongs to H1

n (Ω) with (49) or (13). Let us also notice that
if p0 ∈ H2(Ω)/R, then we have pn+1 ∈ H2(Ω)/R. This is due to the regularization effect
of the penalty method, already encountered in Section 3. Then, using the Green formula by
taking respectively the duality product of (47) with 2δ t ṽn+1, the L2 inner product of (49)
with 2δ t vn+1, the L2 inner product of (51) with 2δ t pn+1 and the L2 inner product of (49)
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with 2δ t2
∇pn+1, we get for all n ∈ N such that (n+1)δ t ≤ T :

‖ṽn+1‖2
0−‖vn‖2

0 +‖ṽn+1−vn‖2
0 +

2δ t
Re
‖∇ṽn+1‖2

0−2δ t
(

pn,∇ · ṽn+1)
0

= 2δ t
〈
fn+1, ṽn+1〉

−1

‖vn+1‖2
0−‖ṽn+1‖2

0 +‖vn+1− ṽn+1‖2
0−2δ t

(
pn+1− pn,∇ ·vn+1)

0 = 0

ε δ t
(
‖pn+1‖2

0−‖pn‖2
0 +‖pn+1− pn‖2

0
)
+2δ t

(
pn+1,∇ ·vn+1)

0 = 0

δ t2 (‖∇pn+1‖2
0−‖∇pn‖2

0 +‖∇(pn+1− pn)‖2
0
)
−2δ t

(
pn+1,∇ · (vn+1− ṽn+1)

)
0 = 0.

Then, by summing the four previous equations, we get the following energy equality:

‖vn+1‖2
0−‖vn‖2

0 + ‖ṽn+1−vn‖2
0 +‖vn+1− ṽn+1‖2

0 +
2δ t
Re
‖∇ṽn+1‖2

0

+ δ t2 (‖∇pn+1‖2
0−‖∇pn‖2

0 +‖∇(pn+1− pn)‖2
0
)

+ ε δ t
(
‖pn+1‖2

0−‖pn‖2
0 +‖pn+1− pn‖2

0
)

− 2δ t
(

pn+1− pn,∇ · (vn+1− ṽn+1)
)

0

= 2δ t
〈
fn+1, ṽn+1〉

−1 . (52)

Moreover, with the Green formula and using (49), we have the equality:

2δ t
(

pn+1− pn,∇ · (vn+1− ṽn+1)
)

0 = −2δ t
(
∇(pn+1− pn),vn+1− ṽn+1)

0

= 2‖vn+1− ṽn+1‖2
0 = 2δ t2 ‖∇(pn+1− pn)‖2

0

= ‖vn+1− ṽn+1‖2
0 +δ t2 ‖∇(pn+1− pn)‖2

0. (53)

Let us now give some bound of the right-hand side term in (52). With the duality pairing,
the Poincaré inequality and using ab≤ (a2 +b2)/2, we have:

2δ t
〈
fn+1, ṽn+1〉

−1 ≤ 2c(Ω)δ t ‖fn+1‖−1 ‖∇ṽn+1‖0

≤ δ t
Re
‖∇ṽn+1‖2

0 + c(Ω)2 Reδ t ‖fn+1‖2
−1.

By using this bound in (52) and summing with (53), we get:

‖vn+1‖2
0−‖vn‖2

0 + ‖ṽn+1−vn‖2
0 +

δ t
Re
‖∇ṽn+1‖2

0

+ δ t2 (‖∇pn+1‖2
0−‖∇pn‖2

0
)

+ ε δ t
(
‖pn+1‖2

0−‖pn‖2
0 +‖pn+1− pn‖2

0
)

≤ c(Ω)2 Reδ t ‖fn+1‖2
−1.

We now write the previous inequality with the index k instead of n, and then sum it for
k = 0, . . . ,n. This yields the following energy estimate for all n ∈N such that (n+1)δ t ≤ T :

‖vn+1‖2
0 +

n

∑
k=0
‖ṽk+1−vk‖2

0 +
1

Re

n

∑
k=0

δ t ‖∇ṽk+1‖2
0

+ δ t2 ‖∇pn+1‖2
0 + ε δ t ‖pn+1‖2

0 + ε

n

∑
k=0

δ t ‖pk+1− pk‖2
0

≤ ‖v0‖2
0 + ε δ t ‖p0‖2

0 +δ t2 ‖∇p0‖2
0 + c(Ω)2 Re

n

∑
k=0

δ t ‖fk+1‖2
−1

≤ C0 (54)
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which concludes the proof of (i) with ε ≤ 1 and δ t ≤ T .

Proof of (ii). From (14) or (51), we have: ∇ · vn+1 = −ε (pn+1− pn). Hence, using the
bound in (54) or (i), this immediately yields (ii) with:

n

∑
k=0

δ t ‖∇ ·vk+1‖2
0 =

n

∑
k=0

δ t ‖pk+1− pk‖2
0 ε

2 ≤C0 ε. (55)

Proof of (iii). The previous estimate (i) immediately gives: ‖∇πn+1‖2
0 ≤C0 by denoting

πn+1 = δ t pn+1. Then, the bound (iii) is obtained by using the mean Poincaré inequality:
‖πn+1‖0 ≤ c0(Ω)‖∇πn+1‖0 since πn+1 belongs to L2

0(Ω)∩H1(Ω).

Proof of (iva) for a simply connected domain Ω . We recall from Lemma 2 that v̂n+1 =

(vn+1− ṽn+1) ∈ H1
n (Ω) with zero curl since the space Hdiv,0(Ω)∩Hrot(Ω) is continuously

imbedded in H1
n (Ω), see [40,3]. Then, with the H1-norm ‖.‖1 equivalence to the norm(

‖div.‖2
0 +‖curl.‖2

0
) 1

2 for functions in H1
n (Ω) when the domain Ω is simply connected, see

[35,38], there exists c1(Ω)> 0 such that:

‖vn+1− ṽn+1‖1 = ‖v̂n+1‖1 ≤ c1(Ω)‖∇ · v̂n+1‖0 ≤ c1(Ω)
(
‖∇ ·vn+1‖0 +‖∇ · ṽn+1‖0

)
.

Then, using the fact that: ‖∇ · ṽn+1‖0 ≤ ‖∇ṽn+1‖0 since ṽn+1 ∈ H1
0 (Ω)d and the inequality

(a+b)2 ≤ 2(a2 +b2), we get with the previous bounds in (54,55):

n

∑
k=0

δ t ‖vk+1− ṽk+1‖2
1 ≤ 2c1(Ω)2

(
n

∑
k=0

δ t ‖∇ ·vk+1‖2
0 +

n

∑
k=0

δ t ‖∇ṽk+1‖2
0

)
≤ 2c1(Ω)2 C0 (ε +Re) . (56)

Finally, using the triangular inequality: ‖∇vk+1‖0 ≤ ‖∇(vk+1− ṽk+1)‖0 + ‖∇ṽk+1‖0, and
the bounds in (54,56), yields (iva) with:

n

∑
k=0

δ t ‖∇vk+1‖2
0 +

n

∑
k=0

δ t ‖∇(vk+1− ṽk+1)‖2
0

≤ C1

(
Ω ,T,Re,‖f‖L2(0,T ;H−1),‖v

0‖0,‖p0‖1

)
. (57)

Proof of (ivb). When the domain Ω is not simply connected, the H1-norm ‖.‖1 is equiv-

alent to the norm
(
‖.‖2

0 +‖div.‖2
0 +‖curl.‖2

0
)1/2. By a simple energy estimate with (48), we

have :

‖v̂n+1‖2
0 +

δ t
2ε
‖∇ · v̂n+1‖2

0 ≤
δ t
2ε
‖∇ · ṽn+1‖2

0.

Thus we have with ‖∇ · ṽn+1‖0 ≤ ‖∇ṽn+1‖0:

‖v̂n+1‖2
1 := ‖vn+1− ṽn+1‖2

1 ≤ c1(Ω)

(
1+

δ t
2ε

)
‖∇ṽn+1‖2

0.

Hence, we get (ivb) using the bound (i):

n

∑
k=0

δ t ‖∇vk+1‖2
0 +

n

∑
k=0

δ t ‖∇(vk+1− ṽk+1)‖2
0 ≤ C2

δ t
ε
.
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Proof of (v). With (48), we have:

v̂n+1 = vn+1− ṽn+1 =
δ t
ε

∇
(
∇ ·vn+1)

and using the definition of the H−1 norm, we get:

‖vn+1− ṽn+1‖−1 =
δ t
ε
‖∇
(
∇ ·vn+1)‖−1 ≤

δ t
ε
‖∇ ·vn+1‖0.

Hence, using the divergence bound in (ii) and assuming that ε = λ δ t for a given constant
λ > 0, it yields:

n

∑
k=0
‖vk+1− ṽk+1‖2

−1 ≤
δ t
ε2

n

∑
k=0

δ t ‖∇ ·vk+1‖2
0

≤ C0
δ t
ε

=
C0

λ
. (58)

Then, writing vk+1− vk = (vk+1− ṽk+1)+ (ṽk+1− vk) and using the triangular inequality,
we get the bound (v) with the canonical injection of L2(Ω)d inside H−1(Ω)d and the bound
in (i):

n

∑
k=0
‖vk+1−vk‖2

−1 ≤
n

∑
k=0

(
‖vk+1− ṽk+1‖−1 +‖ṽk+1−vk‖−1

)2

≤ 2
n

∑
k=0

(
‖vk+1− ṽk+1‖2

−1 +‖ṽk+1−vk‖2
−1

)
≤ 2C0

1+λ

λ
= 2C0

(
1+

δ t
ε

)
. (59)

This completes the proof of the theorem. 2

Remark 6 (Unconditional stability of the fully implicit (VPPε ) method.)
If we consider the non-linear implicit (VPPε ) method by replacing the linearized im-

plicit convection term B
(
vn, ṽn+1

)
in the prediction step (47) either by B

(
ṽn+1, ṽn+1

)
or

B
(
vn+1, ṽn+1

)
, the previous Theorem 3 of unconditional stability still holds. Indeed, with

(46) we have both b(ṽn+1, ṽn+1, ṽn+1) = 0 and b(vn+1, ṽn+1, ṽn+1) = 0, and hence the sta-
bility proof is exactly the same as in Theorem 3.

Remark 7 (Convergence to Navier-Stokes solutions.)
By using compactness arguments from Aubin-Lions-Simon [55,70] or with Kolmogorov’s

theorem [21,20], since we have a bound of the dissipation with the time translates in (v),
Theorem 3 allows us to prove the convergence of the (VPPε ) solution to Navier-Stokes so-
lutions when ε = δ t tends to zero, without additional regularity assumption. Moreover, the
convergence can be also carried out when δ t → 0 for a fixed value of ε > 0. These conver-
gence analyses will deserve a further study.

Remark 8 (Splitting error of the (VPPε ) method.)
We prove in Theorem 3 (ii) that the L2-norm of the velocity divergence at least vani-

shes as O(
√

ε). Besides, the previous works on first versions of the V PP method [7,9]
suggest that the l2(0,T ;L2(Ω)) norm of the velocity divergence vanishes as O(ε δ t), i.e.
as O(γ M2/ρ V ?2) with (26). This will be rigourously proved in a further paper, but it is
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already confirmed by the numerical results in [10]. It also suggests that the l2(0,T ;L2(Ω)d)
norm of the velocity splitting error vanishes as O(ε δ t), and that the l∞(0,T ;L2(Ω)d) and

l2(0,T ;H1(Ω)d) norms of the velocity splitting error vanish as O(ε δ t
3
4 ) whereas the norm

in l2(0,T ;L2(Ω)) of the pressure splitting error vanishes as O(ε δ t
1
2 ); see [9, Theorem 2.4]

for more details. This is also in agreement with the estimates proved in [18, Theorem 4.5]
for the scalar penalty-projection method [47,48,37] where the augmentation parameter r,
playing here the role of 1/ε , takes large values. By choosing only ε = δ t, these splitting
errors are thus already of the same order of those known for the best incremental projection
methods. Up to our knowledge, the splitting errors of the incremental projection method in
the case of the Stokes problem with Dirichlet boundary conditions scale as O(δ t

3
2 ) in the

l∞(0,T ;L2(Ω)d) norm and O(δ t2) in l2(0,T ;L2(Ω)d) norm for the velocity and O(δ t
3
2 )

for the pressure in l2(0,T ;L2(Ω)) norm; see [44] and the references therein for the details.
However, the splitting errors of the (VPPε ) method can be made as small as desired until

the machine precision, and thus completely negligible with respect to the time consistency
error of the scheme, i.e. O(δ t) in the present case or O(δ t2) for second-order (VPPε ) me-
thods [14,15], by choosing ε = δ t2 or ε = δ t3. This is also another nice advantage of our
method.

5 Conclusion and perspectives

We have described in detail and analysed the fast vector penalty-projection method (VPPε )
for the solution of both homogeneous or non-homogeneous or also multiphase incompress-
ible Navier-Stokes/Brinkman problems.

The method is also numerically validated in [10] where several benchmark problems
concerning homogeneous, dilatable, non-homogeneous or multiphase flows are investigated
and where we compare it to the Uzawa augmented Lagrangian and scalar incremental pro-
jection methods. More recently, a severe multiphase benchmark with strong stresses has
been computed where the mass density ratio is equal to 8000 with a large capillarity cons-
tant and corresponding to air bubble dynamics in a melted liquid steel [13]. Nevertheless
for dispersed bubbly flows, it is difficult to compare our numerical method with others since
most of them have difficulties to compute results with a suitable mesh convergence when
the mass density ratio exceeds several hundreds. However, to evaluate and validate the ro-
bustness of the (VPPε ) method with respect to large density or viscosity ratios, we have
computed the motion of an heavy solid ball of constant density ρs = 106 which freely falls
vertically in air with the gravity force f = ρs g, and corresponding to a low-Mach number
flow with ε = 10−6 and δ t = 210−4. The rigid motion of the body is obtained by letting the
viscosity µs tend to infinity inside the ball in order to penalize the tensor of deformation rate
d(v). We refer to [8,10] for the numerical results of this test case where the mass density ra-
tio equals 106 and the viscosity ratio equals 1017. Hence, this benchmark for fluid-structure
interaction problems allows us to assess the robustness and versatility of the method for large
density or viscosity ratios. Indeed, a very nice and important feature of the (VPPε ) method
is that, contrary to all other splitting methods, its robustness is not sensitive to large mass
density ratios since the velocity penalty-projection step does not include any spatial deriva-
tive of the density. The method is also validated to compute anisotropic and heterogeneous
Darcy problems with large permeability ratios in [12].

The (VPPε ) method finally proves to be really promising since it is fast, cheap, and ro-
bust whatever the density, viscosity or anisotropic permeability jumps. Indeed, our method
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can efficiently and accurately compute some severe test cases, whereas other famous meth-
ods either fail or cannot reach the suitable mesh convergence and run slower.
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