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A shallow water with variable pressure model for

blood flow simulation

O. Delestre∗, A.R. Ghigo†, J.-M. Fullana‡and P.-Y. Lagrée§

September 12, 2015

Abstract

We performed numerical simulations of blood flow in arteries with a
variable stiffness and cross-section at rest using a finite volume method
coupled with a hydrostatic reconstruction of the variables at the interface
of each mesh cell. The method was then validated on examples taken from
the literature. Asymptotic solutions were computed to highlight the effect
of the viscous and viscoelastic source terms. Finally, the blood flow was
computed in an artery where the cross-section at rest and the stiffness
were varying. In each test case, the hydrostatic reconstruction showed
good results where other simpler schemes did not, generating spurious
oscillations and nonphysical velocities.

1 Introduction

In this work we are interested in modeling and simulating blood flow in arteries
with varying stiffness and cross-section. The blood flow in the main arteries of
the systemic network is governed by the 3D Navier-Stokes equations which can
be complicated and time-consuming to solve numerically. Fortunately, using
well-known hypothesis valid in the case of blood flow in arteries (long wave
approximation D/λ << 1, axial symmetry ∂θ = 0), this system of equations can
be simplified and then integrated over the cross-section of the artery in order to
obtain a 1D hyperbolic system of equations, similar to the Saint-Venant system
for shallow water flows. Details on the derivation of the model are presented in
section (2) and can also be found in [23, 38]. Finally, we are left with a set of
mass and momentum conservation equations with non dimensionless variables
and parameters:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3
√
πρ
A3/2

)
=

A√
πρ

(
∂xA0 −

2

3

√
A∂xk

)
− Cf

Q

A
,

(1)
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with A(x, t) = πR(x, t)2 the cross-section area (R is the radius of the artery),
Q(x, t) = A(x, t)u(x, t) the discharge, u(t, x) the mean flow velocity, ρ the blood
density, Cf the friction coefficient and A0 = k

√
A0 with k(x) the stiffness of

the artery and A0(x) = πR0(x)2 the cross-section at rest.
The vast majority of arteries in the systemic network are tapered, meaning

that the cross-section at rest A0 (x) varies throughout the length of the artery.
Similarly, in the presence of arterial pathologies such as aneurysm or stenoses,
the stiffness k (x) of the arterial wall can vary locally. As for shallow water
equations with topography, the presence of tapper or variable stiffness in an
artery modifies the blood flow, and both behaviors are accounted for in (1)
through the source term A ( ∂xA0 − 2

√
A∂xk/3 ) /

√
πρ. To numerically solve

(1), it is necessary, among other things, to discretize this source term. A naive
treatment of the topography gradients will most likely generate numerical os-
cillations, therefore the use of the so-called well-balanced schemes is required to
properly balance the fluxes and the source terms. In the following, we will focus
on a specific well-balance method, called the hydrostatic reconstruction.

We will first present the derivation of the model and its properties, then the
numerical method and in particular the derivation of the well-balanced scheme
applied to the case of blood flow in arteries. We will then validate our method
on examples taken from the literature and verify asymptotic behaviors of the
numerical solution. Finally, we will compute the blood flow in an artery with
varying cross-section and stiffness.

2 Derivation of the 1D blood flow equations

The 1D model for blood flow equations is derived from the conservative form of
the Navier-Stokes equations for an incompressible fluid with constant viscosity
µ:

∂tρ+∇ρu = 0 (2)

∂tρu+∇ · (ρuu+ pI + τ) = 0, (3)

where u is the velocity vector, ρ the density, supposed constant, p the pressure
and τ the stress tensor to be defined. Using the control volume of the Figure
1, we integrate the Navier-Stokes equations over a volume V of cross-section A
surrounded by a surface S (V = S ∪ A) and of length dz. We define then the
average velocity U and pressure P as

{U,P} =
1

A

∫
∂A

{u, p}dA.

From the mass conservation equation (2) we have:∫
∂V

(∇ρu)dV =

∫
∂S

ρu · ndS +

∫
∂A

ρu · ndA.

We then transform the volume integral using the Green (Divergence) theorem
and writing the surface integral as S ∪ A. The surface element is dS = Rdθdz
and the two terms are written as∫

∂S

ρu · ndS = 2π

∫
ur|RRdx = 2πρ

∫
∂R

∂t
Rdx = ρ

∫
∂A

∂t
dx
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Figure 1: Control volume for integration (see text).

and ∫
∂A

ρu · ndA = (ρAU)1 − (ρAU)2 =

∫
d(ρAU) =

∫
∂x

∂ρAU

∂x
,

We retrieve therefore the first equation of our system

∂tA+ ∂x(AU) = 0.

For the conservation of momentum equation (3), the temporal term ∂tρu be-
comes ∫

∂V

∂t(ρu)dV = ρ

∫
∂V

∂tudAdx = ρ

∫
∂x

∂t(UA)dx

and the divergence term∫
∂V
∇ · (ρuu+ pI + τ) =

∫
∂S

(ρuu+ pI + τ) · ndS +∫
∂A

(ρuu+ pI + τ) · ndA.

In the last two integrals the integration over the surface S is∫
∂S

(ρuu+ pI + τ) · ndS =

∫
∂S

(pnx + τrx)dS,

where the term uudS tends to zero. Finally, the integration over the area A
gives ∫

∂A
(ρuu+ pI + τ) · ndA = [A(ρU2 + P + τxx)]21

= ρ

∫
∂x

∂A(U2 + P/ρ)

∂x
dx.

In terms of the cross-section A and the flow rate Q, we obtained the following
system of equations:

∂tA+ ∂xQ = 0

∂tQ+ ∂x
Q2

A = −Aρ ∂xP − fv.
(4)
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The viscous effects are contained in fv which is computed by the integration
of the shear stress at the wall τrx over the internal surface dS. Therefore, it
depends on the exact flow condition. To close the mathematical problem we
need a relation between the pressure P and the cross-section A, P = P (A),
called the wall or state law. For fv = CfQ/A and the state law P = P0 +

k (x) /
√
π(
√
A (x, t) −

√
A0 (x)), which corresponds to the elastic response of

the artery, we obtain the proposed system of equations. (1).

3 Conservative hyperbolic system and steady states

Considering an artery with a constant stiffness k and a variable cross-section
at rest A0 (x), (1) reduces to the following system, similar to the shallow water
equations with topography:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3ρ
√
π
A3/2

)
=

A

ρ
√
π
∂xA0 − Cf

Q

A
.

(5)

As a reminder, the shallow water system is:
∂th+ ∂xq = 0

∂tq + ∂x

(
q2

h
+
g

2
h2
)

= gh (S0 − Sf ) ,
(6)

with h(x, t) the water height, q(x, t) = h(x, t)u(x, t) the unit discharge, u(x, t)
the mean flow velocity, g the constant of gravity, S0 = −∂xz the opposite of
the slope, z the topography and Sf the friction term (which takes the form of
Manning’s, Stickler’s, Chézy’s, ... empirical friction law).

3.1 Hyperbolic system

The system (5) can be written using the following vectorial form:

∂tU + ∂xF (U) = S(U), (7)

where U is the vector of the conservative variables, F (U) is the flux:

U =

(
A
Q

)
, F (U) =

 Q
Q2

A
+

k

3ρ
√
πA3/2

 , (8)

and S(U) is the source term, taking into account the shape of the vessel at rest
A0 (x) and the friction term

S(U) =

 0
A

ρ
√
π
∂xA0 − Cf

Q

A

 . (9)

The analogous term for the shallow water equations is the topography source
term. The gradient of the flux (8) can be written as the product of the Jacobian
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matrix J(U) with the partial derivative of the vector of conservative variables
U :

∂xF (U) =

 0 1

k
√
A

2ρ
√
π
− Q2

A2

2Q

A

 .∂x

(
A
Q

)
= J(U).∂xU. (10)

When the cross-section A > 0, the Jacobian matrix admits two different real
eigenvalues, λ1 and λ2:

λ1 =
Q

A
−

√
k
√
A

2ρ
√
π

= u− c and λ2 =
Q

A
+

√
k
√
A

2ρ
√
π

= u+ c, (11)

with c the Moens-Korteweg wave propagation velocity (for the shallow water
equations (6), c =

√
gh). In this case, the system is said to be strictly hyperbolic,

which is a generalization of the advection phenomenon [18, 45, 30]: a part of
the information concerning the flow propagates at the velocity λ1 and the other
part at the velocity λ2. For blood flow under physiological conditions, we have
λ1 > 0 and λ2 < 0, hence the flow is subcritical.

3.2 Steady states

Since the works of [3, 2] on the shallow water equations, it is well known that if a
numerical scheme does not preserve steady states at the discrete level, spurious
oscillations and artificial non zero velocities will be generated. The steady states
for the system (5) are obtained when considering a stationary flow (i.e. there
is no evolution in time) and are governed by the following equations:

∂xQ = 0

∂x

(
Q2

2A2
+ b
√
A− b

√
A0 (x)

)
= −Cf

Q

A2
,

(12)

with b = k/(ρ
√
π) constant since we are considering an artery with a constant

stiffness k. Neglecting the viscous friction effects (inviscid flow) by setting Cf =
0, we obtain the conservation of the discharge and Bernoulli’s law for blood
flow:  Q = Q0

Q2
0

2A2
+ b
√
A− b

√
A0 (x) = cst.

. (13)

In the literature [8, 37, 44, 6], we can find well-balanced numerical methods able
to preserve the following steady state: q = q0

q20
2gh2

+ h+ z (x) = cst ,
(14)

which is the analogous of (13) in the case of the shallow water equations. How-
ever, these methods are complicated to handle due to the occurrence of critical
points when solving (13) or (14). Therefore we chose to focus on simpler steady
states that we call the rest steady states or the ”man at eternal rest” equilib-
rium [13] by analogy with the ”lake at rest” (introduced in [1]) or the hydrostatic
equilibrium for the shallow water equations:{

q = u = 0
∂x(h+ z (x)) = ∂xη = 0 ,

(15)
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where η is the water level. In this case we have a hydrostatic balance between
the hydrostatic pressure and the gravitational acceleration. By analogy, we have
the following equilibrium for the blood flow in arteries:{

Q = u = 0

∂x

(
b
√
A− b

√
A0 (x)

)
= 0 .

(16)

Numerical methods able to preserve at least the steady states (16) are said to be
”well-balanced” since the work of [19]. A wide panel of well-balanced methods
has been developed for shallow water equations. Among others we can mention
[29, 24, 39, 27, 16, 25, 1, 11, 36, 17, 4, 22, 5, 20]. In [13], we adapted the hydro-
static reconstruction introduced in [1] to the system with constant stiffness (5).

We will now present the hydrostatic reconstruction introduced in [1] adapted
to the original system of equations (1) with varying stiffness k(x) and cross-
section at rest A0 (x). By a combination of the mass and momentum equations
in (1), under some regularity assumptions, we have:

∂tu+ ∂x

(
u2

2
+

1√
πρ
k (x)

√
A− 1√

πρ
A0 (x)

)
= −Cf

Q

A2
, (17)

with A0 (x) = k (x)
√
A0 (x). Considering a stationary flow where the viscous

friction is neglected by setting Cf = 0, we recover Bernoulli’s law (13). The
notable difference is that k is now a function of x. In the case of the ”man at
rest” equilibrium” (without artifacts such as [26, 35]) we obtain:{

Q = u = 0

∂x

(
k (x)

√
A−A0 (x)

)
= 0 .

(18)

The fact that now k is a function of x will influence the way the well-balanced
scheme is obtained. In the following section, we will present a well-balanced
scheme for system (1), based on the hydrostatic reconstruction for Saint-Venant/shallow
water equations with variable pressure [5].

4 The numerical method

4.1 Numerical context

Several numerical methods have been used to solve the blood flow equations.
In [43], they are solved thanks to the Methods of Characteristics (MOC). In
[51, 50], they use a conservative form of the model

∂tA+ ∂x(Au) = 0

∂tu+ ∂x

(
u2

2
+
P

ρ

)
= −Cf Q

A2
,

(19)

with the non-conserved vector (A, u) and equations (19) are solved with a two-
step Lax-Wendroff scheme. In [42], a quasi conservative form of the equations
(with s(U) a source term)

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A

)
+
A

ρ
∂xp = s(U) ,

(20)
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is solved thanks to a first order explicit in time upwind finite difference scheme.
In [38], they are the first to solve blood flow equations under a conservative
form, thanks to a two-step Lax-Wendroff scheme. The solutions of the equations
under the form (19) using an upwind Discontinuous Galerkin method (used by
[49, 48]) and a Taylor Galerkin finite element method (also used in [33, 14, 34])
have been compared in [41]. A MacCormack finite difference method has been
applied in [15] followed by [40]. Finite volume methods seem to be first used to
solve these equations in [9, 10]. In [13], a well-balanced finite volume method
based on the hydrostatic reconstruction (introduced in [1]) is applied on system
(5), and this method is compared with a Taylor Galerkin method in [46]. We
will present in the following sections the extension of the well-balanced scheme
(based on an extension of the hydrostatic reconstruction) we have used to solve
the system (1), which can be written under the following vectorial form

∂tU + ∂xF (U,Z) = S1(U,Z) + S2(U), (21)

with

U =

(
A
Q

)
, Z =

(
A0

k

)
, F (U, k) =

 Q
Q2

A
+

1

3
√
πρ
kA3/2

 , (22)

and the source terms

S1(U,Z) =

 0
A√
πρ

(
∂xA0 −

2

3

√
A∂xk

)  and S2(U) =

(
0

−Cf
Q

A

)
.

(23)

4.2 Convective step

For the homogeneous system

∂tU + ∂xF (U,Z) = 0 (24)

which is (21) without source term, an explicit first order in time conservative
scheme can be written as:

Un+1
i − Uni

∆t
+
Fni+1/2 − F

n
i−1/2

∆x
= 0, (25)

where i refers to the cell Ci = (xi−1/2, xi+1/2) = (xi−1/2, xi−1/2 + ∆x) and n to
time tn with tn+1 − tn = ∆t. Uni is an approximation of U :

Uni '
1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx ,

and Fi+ 1
2

is an approximation of the flux function F (U,Z) at the cell interface

i+ 1/2
Fni+1/2 = F(Uni , U

n
i+1, Zi, Zi+1).

This numerical flux will be detailed in subsection 4.4.
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4.3 Source terms treatment

4.3.1 Topography source term S1 (U,Z)

In the system (21), the term S1 (U,Z) is involved in the steady state preserva-
tion, therefore requires a well-balanced treatment. Following a variant of the
hydrostatic reconstruction [5, p.93-94], the variables are reconstructed locally
from (18) on both sides of the interface i+ 1/2 of the cell Ci:

√
Ai+1/2L = max(ki

√
Ai + min(∆A0i+1/2, 0), 0)/k∗i+1/2

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(ki+1

√
Ai+1 −max(∆A0i+1/2, 0), 0)/k∗i+1/2

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t ,

(26)

with ∆A0i+1/2 = A0i+1−A0i = ki+1

√
A0i+1−ki

√
A0i and k∗i+1/2 = max(ki, ki+1).

In order to help the understanding of the principle of the hydrostatic recon-
struction (26), we present the hydrostatic reconstruction for the shallow water
system of equations (6):

hi+1/2L = max(hi + zi − zi+1/2, 0)
Ui+1/2L = (hi+1/2L, hi+1/2L.ui)

t

hi+1/2R = max(hi+1 + zi+1 − zi+1/2, 0)
Ui+1/2R = (hi+1/2R, hi+1/2R.ui+1)t ,

(27)

with zi+1/2 = max(zi, zi+1). The water height is reconstructed in a way that
allows to have locally the hydrostatic equilibrium h+z = cst on each side of the
interface i+ 1/2. As mentioned in [1], max(., 0) is there to ensure the positivity
of the water height in case of drying and the upwind evaluation of zi+1/2 ensures
that 0 ≤ hi+1/2L ≤ hi and 0 ≤ hi+1/2R ≤ hi+1, which has been proved in [1]
to ensures the positivity of the water height. For blood flow equations with a
constant stiffness k, the corresponding equilibrium writes

√
A−
√
A0 = cst, so√

A (respectively −
√
A0) ”plays the role” of h (resp. z), thus in that case the

hydrostatic reconstruction writes:
√
Ai+1/2L = max(

√
Ai −

√
A0i +

√
A0i+1/2, 0)

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(
√
Ai+1 −

√
A0i+1 +

√
A0i+1/2, 0)

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t .

(28)

As we have −
√
A0 instead of z, we take

√
A0i+1/2 = min(

√
A0i,

√
A0i+1), thus

we have: 
√
Ai+1/2L = max(

√
Ai + min(∆

√
A0i+1/2, 0), 0)

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(
√
Ai+1 −max(∆

√
A0i+1/2, 0), 0)

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t ,

(29)

with ∆
√
A0i+1/2 =

√
A0i+1−

√
A0i. We can notice that we recover reconstruc-

tion (29) if the stiffness k is constant in reconstruction (26). For consistency,
the scheme (25) is modified as follows:

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2L − F

n
i−1/2R

)
, (30)

8



where
Fni+1/2L = Fni+1/2 + Si+1/2L ,

Fni−1/2R = Fni−1/2 + Si−1/2R ,

with

Fni+1/2 = F
(
Ui+1/2L, Ui+1/2R, k

∗
i+1/2

)
,

Si+1/2L =

(
0

P(Ani , ki)−P(Ani+1/2L, k
∗
i+1/2)

)
,

Si−1/2R =

(
0

P(Ani , ki)−P(Ani−1/2R, k
∗
i−1/2)

)
,

and P(A, k) = k (x)A3/2/(3ρ
√
π). Thus blood flow in a artery with varying

cross-section at rest and stiffness is treated in a well-balanced way.

4.3.2 Viscous source term S2 (U)

In system (21), the friction term −CfQ/A in S2 (U) is treated semi-implicitly.
This treatment is classical in shallow water simulations [7, 31] and has proven
efficient in blood flow simulation as well [13]. Furthermore, this treatment
preserves the ”dead man” equilibrium (18). It consists in using first (30) as a
prediction step without friction, i.e.:

U∗i = Uni −
∆t

∆x

(
Fni+1/2L − F

n
i−1/2R

)
,

then applying a semi-implicit friction correction on the predicted values (U∗i ):

A∗i

(
un+1
i − u∗i

∆t

)
= −Cfun+1

i .

Thus we get the corrected velocity un+1
i and we have An+1

i = A∗i .

4.4 HLL numerical flux

As presented in [13], several numerical fluxes can be used (Rusanov, HLL,
VFRoe-ncv and kinetic fluxes) for numerical simulations of blood flow in ar-
teries. Details can be found in [5, 12, 13]. In this work we will use the HLL
flux (Harten Lax and van Leer [21]) because it is the best compromise between
accuracy and CPU time consumption (see [12, chapter 2]). It writes:

F(UL, UR, k
∗) =


F (UL, k

∗) if 0 ≤ c1
c2F (UL, k

∗)− c1F (UR, k
∗)

c2 − c1
+

c1c2
c2 − c1

(UR − UL) if c1 < 0 < c2

F (UR, k
∗) if c2 ≤ 0 ,

with

c1 = inf
U=UL,UR

( inf
j∈{1,2}

λj(U, k
∗)) and c2 = sup

U=UL,UR

( sup
j∈{1,2}

λj(U, k
∗)),

where λ1(U, k∗) and λ2(U, k∗) are the eigenvalues of the system and k∗ =
max(kL, kR).
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To prevent a blow up of the numerical values, we impose the following CFL
(Courant, Friedrichs, Lewy) condition:

∆t ≤ nCFL
∆x

max
i

(|ui|+ ci)
,

where ci =
√
ki
√
Ai/(2ρ

√
π) and nCFL = 1.

5 Validation of the method

To validate the well-balanced scheme presented in the previous sections for blood
flow in arteries with varying stiffness k (x) and cross-section at rest A0 (x), we
applied it to different test cases taken from [13], where arteries with a varying
cross-section at rest A0 (x) and a constant stiffness k were considered. For each
of these examples, the rest equilibrium state was: Q = 0 and

√
A −

√
A0 = 0

and non-reflecting boundary conditions were set at each end of the computa-
tional domain in the form of homogeneous Neumann boundary conditions. The
hydrostatic reconstruction scheme as well as a naive centered discretization of
the source term were systematically tested to clearly evaluate the benefit of us-
ing a well-balanced scheme. According to [13], several Riemann solvers can be
used, but we only display results obtained using the HLL flux. In the following,
we present the numerical parameters, the analytic solution if it exists and the
numerical results. For further details we refer the reader to [13].

5.1 ”The man at eternal rest”

We considered an artery at its equilibrium state, where there is no flow and
the radius of the cross-section at rest R0(x) varies throughout the artery, as for
example in a dead man with an aneurysm. This equilibrium state is exactly the
one well-balanced methods are designed to preserve. If the topography source
term is not treated correctly, non-physical velocity may be generated.

We used the following numerical values: L = 0.14 m, J = 50 cells, Tend =
5 s, ρ = 1060 kg.m−3, Cf = 0 and k = 4.0 × 108 Pa.m−1. We used the
equilibrium state as an initial condition, setting Q(x, 0) = 0 and:

R (x, 0) = R0 (x) =



R0 if x ∈ [0, x1]

R0 +
∆R

2

[
1 + sin

(
−π

2
+ π

(
x− x1
x2 − x1

))]
if x ∈ ]x1, x2[

R0 + ∆R if x ∈ [x2, x3]

R0 +
∆R

2

[
1 + cos

(
π

(
x− x3
x4 − x3

))]
if x ∈ ]x3, x4[

R0 if x ∈ [x4, L] ,

with R0 = 4.0 × 10−3 m, ∆R = 1.0 × 10−3 m, x1 = 1.0 × 10−2 m, x2 =
3.05× 10−2 m, x3 = 4.95× 10−2 m and x4 = 7.0× 10−2 m. The radius at rest
is plotted on Figure 2 left.
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The results obtained are presented in Figure 2 right. As expected, a naive
centered discretization of the topography source term results in nonphysical os-
cillations of the velocity u (x, t), whereas the well-balanced solution preserves
the equilibrium state.
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Figure 2: The ”dead man case”: (Left) The radius of the artery R0 (x); (Right)
Comparison of the velocity at time t = 5 s between an explicit treatment of the
source term (dashed line) and the hydrostatic reconstruction (full line).

5.2 The ideal ”Tourniquet”

This test case is the equivalent of the dam break problem for the Shallow Water
equations (Stoker’s solution in [12]). We considered an artery with a constant
radius at rest R0, a constant stiffness k and no viscous friction (Cf = 0), there-
fore the governing system of equations was (24). Initially, a tourniquet was
applied and then immediately removed. We have a Riemann problem and the
method of characteristics allowed us to compute an analytic solution that we
compared to the numerical solutions. This Riemann problem has been first in-
troduced in compressible gas dynamic with the Sod tube (for further details we
refer the reader to [28, 32]) and extended to blood flow in [13].

We considered an artery of length L = 8.0× 10−2 m with x ∈
[
−L2 ,

L
2

]
and

used the following numerical parameters: J = 100 cells, Tend = 5.0 × 10−3 s,
ρ = 1060 kg.m−3 and k = 1.0 × 107 Pa.m−1. We used a perturbation of the
equilibrium state as an initial condition, setting Q(x, 0) = 0 and:

A (x, 0) =


AL =π (R0 + ∆R)

2
if x ∈

[
−L

2
, 0

]
AR =πR2

0 if x ∈
]
0,
L

2

]
,

with R0 = 4.0× 10−3 m and ∆R = 1.0× 10−3 m.
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The results obtained are presented in Figure 3. We can see that the nu-
merical solution obtained with the well balanced scheme is in good agreement
with the analytic solution presented in [13]. This is also true for the solution
obtained using a centered discretization of the topography source term, which
is superposed on the well-balanced solution, since in this case the source term
is null.
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Figure 3: The Tourniquet: (Left) Radius of the artery R (x) at t = 5× 10−3 s;
(Right) Flow rate of the artery Q(x) at t = 5 × 10−3s. Comparison between
the exact analytic solution (full line) and the numerical solution obtained with
an explicit treatment of the topography source term and the hydrostatic recon-
struction (dashed lines). The numerical solutions are superposed.

5.3 Wave reflection-transmission of the pulse towards a
constriction

In this section we considered the propagation of a pulse towards constriction.
This configuration is an idealized representation of a transition between a parent
artery and a daughter artery of smaller cross-section. We tested here the ability
of the numerical scheme to capture the propagation of a small perturbation of
the equilibrium state at the beginning of an artery with a varying radius at
rest R0(x). In order to accurately compute the numerical solution, the forward
and backward traveling waves need to be correctly captured as well as the re-
flected and transmitted waves generated by the abrupt change in topography at
the transition point. To test if these reflections were accurately described, we
computed the analytic reflection and transmission coefficients at the transition
point and compared them to the amplitude of the numerical reflected waves.
For further details we refer the reader to [13].

We considered an artery of length L = 0.16 m and used the following numer-
ical parameters: J = 1500 cells, Tend = 8.0× 10−3 s, ρ = 1060 kg.m−3, Cf = 0
and k = 1.0×108 Pa.m−1. The constriction was defined by the following radius
of the cross-section at rest:

12



R0 (x) =


RR + ∆R if x ∈ [0, x1]

RR +
∆R

2

[
1 + cos

(
π
x− x1
x2 − x1

)]
if x ∈ ]x1, x2]

RR if x ∈ ]x2, L] ,

with RR = 4.0 × 10−3 m, ∆R = 1.0 × 10−3 m, x1 = 19
40L and x2 = L

2 . We set
Q(x, 0) = 0 as an initial condition and we defined the initial perturbation as:

R (x, 0) =

R0(x)

[
1 + ε sin

(
100

20L
π (x− x3)

)]
if x ∈ [x3, x4]

R0(x) else ,

with x3 = 15
100L < x1, x4 = 35

100L < x2 and ε = 5.0 × 10−3 a small parameter
ensuring that we stayed in the range of small perturbations of the equilibrium
state.

The numerical results are plotted in Figure 4. We can see that the propaga-
tion of the pulse as well as the wave reflections and transmissions are accurately
described using the well balanced scheme (Figure 4 left) whereas spurious waves
appear with the centered discretization of the source term (Figure 4 right).
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Figure 4: (Left) Hydrostatic reconstruction; (Right) Centered discretization of
the topography source term. R(x)−R0(x) at 3 time steps: t = 0, t = Tend

4 , t =

3Tend

4 . The straight dashed lines represent the level of the predicted reflection
(Re) and transmission (Tr) coefficients.

6 Asymptotic solutions for a uniform vessel

In this section we studied the propagation of a pulse wave in a uniform vessel
(k = cst, A0 = cst) and derived asymptotic solutions of the system of equation

(1), following the work of Wang and al. [47]. Small perturbations
(
εQ̃, A0 + εÃ

)
13



of the base state (Q = 0, A = A0) were considered, resulting in the following
linearized system of equations:

∂tÃ+ ∂xQ̃ = 0

∂tQ̃+ c20∂xÃ = −Cf
Q̃

A0
,

(31)

where c0 =
√
kR0/ (2ρ) is the Moens-Korteweg celerity.

In the following numerical examples, we only present results obtained for
the hydrostatic reconstruction since we considered a uniform vessel. The nu-
merical parameters were defined as follows: L = 3 m, R0 = 1.0 × 10−2 m,
J = 1500 cells, Tend = 0.5 s, ρ = 1060 kg.m−3, µ = 3.5 × 10−3 Pa.s and
k = 1.0 × 107 Pa.m−1. The parameters Cf and Cv, respectively the viscous
coefficient and the viscoelastic coefficient, were set according to the desired test
case.

Initially, the system was at its equilibrium state
(
Q = 0, A = A0 = πR2

0

)
and

an inflow boundary condition was prescribed as Q (x = 0, t) = Qin (t) with:

Qin (t) = Qc sin(
2π

Tc
t)H

(
−t+

Tc
2

)
, t > 0 ,

where H(t) is the Heaviside function, Tc the period of the sinusoidal wave and
Qc the maximum amplitude of the inflow wave. We set Qc = 1.0×10−6 m3.s−1

and Tc = 0.4 s to insure that only small perturbations from the equilibrium state
were considered. The cross-section at the inlet A(x = 0, t) was reconstructed by
a matching of the outgoing characteristic, technique that takes advantage of the
hyperbolic nature of the problem. A homogeneous Neumann boundary condi-
tion was prescribed at the outlet to simplify the computation of the asymptotic
solutions and to avoid reflections.

6.1 The d’Alembert equation

Following ideas developed in [47], we set Cf = 0 in (31) and we obtained the

d’Alembert equation, which admits the following pure wave solution c0Ã0 =
Q̃ = Qin (x− c0t).

In Figure 5, we can see the propagation of a pulse wave without dissipation
or diffusion, as predicted by the analytic solution.

6.2 Dissipation due to the viscosity of the blood

We also investigated the effect of the blood viscosity on the propagation of the
pulse wave and set Cf 6= 0. Starting from the linearized system of equations

(31), we considered the small parameter εf = Tc
Cf

A0
and performed the change

of variables ξ = x − c0t and τ = εf t to place ourselves in the moving frame at
slow times to properly capture the effects of the viscous term. The first order
solution obtained in [47] is:
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Figure 5: Pure wave solution: u (x) at time t = {0.1, 0.2, 0.3, 0.4, 0.5} for the
well-balanced scheme. The straight black dotted line represents the maximum
amplitude of the pure wave solution.

c0Ã0 = Q̃0 = Q̃0 (x− c0t) exp

(
−εf

t

2Tc

)
,

where exp
(
−εf t

2Tc

)
is the exponential envelop of the pure wave solution Q̃0 (x− c0t).

To obtain this asymptotic solution numerically, we set Cf = 40πν = 4.15 ×
10−4 m2.s−1, therefore εf = 0.53.

In Figure 6, we can see the propagation of the pulse with dissipation (or
attenuation) of its amplitude due to the viscosity of the blood. The straight

doted line represents the exponential envelop exp
(
−εf x

2Tcc0

)
computed previ-

ously and is in good agreement with the decrease in amplitude of the pulse wave.
One can note that as expected, there is no diffusion, since the wavelength of the
pulse does not change while it propagates in the artery.

6.3 Diffusion due to the viscoelasticity of the arterial wall

In this section, we set the friction coefficient to zero (Cf = 0) and focused on an
other important characteristic of the blood flow in the arteries: the viscoelastic-
ity of the arterial wall. We chose here to take into account this time-dependent
behavior in our governing system of equations through a very simple lumped
model, the Kelvin-Voigt model, resulting in an additional parabolic term in the
governing system of equations:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3
√
πρ
A3/2

)
= −Cf

Q

A
+ Cv∂

2
xQ ,

(32)

where the viscoelastic coefficient Cν is defined as Cν = 2
3
φh
ρR0

= 1.57 m2.s−1

with φ = 5000 Pa.s and h = 5.0 × 10−3 m. The parabolic term was treated
by performing a temporal splitting of the problem. First the purely hyperbolic
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Figure 6: Viscous damping: u (x) at time t = {0.1, 0.2, 0.3, 0.4, 0.5} for the
well-balanced scheme. The straight black dotted line represents the exponential
envelop of the asymptotic solution.

problem with a non reflecting boundary condition at the outlet was solved, and
its solution was then used as an initial condition of the parabolic problem. A
Crank-Nicolson scheme coupled with homogeneous Neumann boundary condi-
tions was than used to solve the parabolic problem.

To correctly capture the behavior of this new viscoelastic term, we defined
a new small parameter εν = Cv

c20Tc
= 8.3× 10−2 and applied the same technique

as in the previous section. From [47] we have the following first order diffusive
analytic solution, which is a solution of the heat equation:

Q̃0(τ, ξ) =

∫ ∞
−∞

Q̃0 (0, η)G (τ, ξ − η) dη

G(τ, ξ) =
1√

2πτc20Tc
e−ξ

2/(2τc20Tc) .

The numerical results for several times and the analytic solution at t = 0.4 s
are presented in Figure 7. We can see that the viscoelastic term induces a
diffusion of the pulse wave, changing its wavelength, and that the numerical
solution at t = 0.4 s perfectly matches with the asymptotic solution at t = 0.4 s.

7 Real artery simulation

In this section, we focused on simulating the propagation of a pulse wave in a
tapered artery of length L = 3 m, where the the radius of the cross section at
rest R0(x) was linearly decreasing from the proximal to the distal end of the
artery:

R0(x) =


RL if x ∈ [0, x1[

RL − (x− x1)∆R if x ∈ [x1, x2[

RL − (x2 − x1)∆R if x ∈ [x2, L[ ,
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Figure 7: Viscoelastic diffusion: u (x) at time t = {0.1, 0.2, 0.3, 0.4, 0.5} for
the well-balanced scheme (dashed lines). The black dotted line represents the
asymptotic solution at t = 0.4 s.

with RL = 4.0× 10−3 m, ∆R = 1.0× 10−3 m, x1 = 4
20L and x2 = 16

20L. Follow-

ing [47], the stiffness of the arterial wall was defined as k(x) = 4
3

Eh
R2

0(x)
with E the

Young’s modulus and h the width of the arterial wall. Therefore we were in a
configuration where R0 and k were varying throughout the length of the artery
and if the well-balanced scheme was not used, spurious waves might have arisen.

We used the following numerical parameters to mimic the geometrical and
mechanical properties of a real artery: J = 1500 cells, Tend = 0.5 s, ρ =
1060 kg.m−3, µ = 3.5 × 10−3 Pa.s, E = 4.0 × 105 Pa, h = 5.0 × 10−4 m,
Cf = 8πν, φ = 5000 Pa.s and Cv = 2

3
φh
ρR0

. We used the same initial inflow
condition as for the asymptotic solutions.
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Figure 8: Tapered artery - Pure wave solution: u (x) at time t =
{0.1, 0.2, 0.3, 0.4, 0.5} for Cf = 0 and Cν = 0: (Left) Centered discretization
of the topography source term; (Right) Hydrostatic reconstruction.
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Figure 9: Tapered artery: viscous and viscoelastic effects: u (x) at time t =
{0.1, 0.2, 0.3, 0.4, 0.5} for the well-balanced scheme.

The results are presented in figures 8 and 9. We can see that in the absence
of friction and viscoelastic effects (figure 8), if the well-balanced scheme is not
used (figure 8 left) nonphysical reflections appear. On the contrary, the well-
balanced scheme provides a satisfactory numerical solution, where a continuous
reflection phenomena takes place due to the tapering, resulting in a decrease of
the amplitude of the backward traveling wave and an increase of the amplitude
of the forward traveling wave. Indeed, in the case of a tapered artery, the
transmission coefficient Tr > 1 and the reflection coefficient Re < 1. When
viscous and viscoelastic effects are taken into account (figure 9), all phenomena
add up and we recognize the effects of the continuous reflection, the viscous
dissipation and the viscoelastic diffusion.

Conclusion and perspectives

In this work we have presented a numerical method based on a well-balanced
finite volume scheme for the blood flow equations with variable wall elasticity.
This scheme based on an extension of the hydrostatic reconstruction gave very
good results on several tests, for which classical methods failed. In further work,
we will try to improve the accuracy of the numerical method by raising the order
of the numerical method and to apply this method to real network modeling.
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