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Abstract

We simulate pattern formation in the deformations of a pantographic lattice using a model of elastic surfaces that
accounts for the geodesic bending of the constituent fibers. The theory predicts an unusual arrangement of coexistent
phases observed in an actual lattice, manufactured by a 3D printing process, in which the fibers undergo part-wise
uniform shears separated by internal transition layers controlled by geodesic bending stiffness.
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1. Introduction

In this work we apply a recently developed
two-dimensional continuum theory of elastic surfaces
(Steigmann and dell’Tsola 2015) to model the main fea-
tures of the deformations observed in pantographic lat-
tices. The lattice is composed of intersecting fibers, or
rods, that form two orthogonal families in an unstressed
reference plane. Each member of a given fiber family -
regarded as a collection of parallel material curves - in-
tersects every member of the second family at internal
pivots. The resistance of these pivots to rotation about
an axis aligned with the surface normal is modelled as
elastic resistance to a change of angle, or shear, of the in-
tersecting fiber families. The model also accommodates
fiber stretch and three-dimensional deformations of the
lattice surface. In deformations that involve a change of
surface shape, the convected fibers of the pantograph flex
to conform to the evolving embedding geometry. This is
modelled by assigning strain energy to the normal cur-
vatures and twists of the fibers. These variables, in turn,
are determined by the second fundamental form (the cur-
vature) of the surface, and so in this respect the present
model is similar to conventional plate theory. However,
in contrast to the conventional framework, the present
model also accounts for the geodesic bending of the fibers.
This mode of deformation occurs when, for example, the
lattice is bent while deforming in a fixed plane. In the
continuum theory, the effect is associated with geodesic
curvature of the fibers, which in turn is controlled by
the metric geometry of the surface. In particular, it
involves the metric and its spatial derivatives via the
Levi-Civita connection coefficients. Geodesic bending is

therefore a strain-gradient effect. The pantographic sub-
structure thus furnishes an explicit realization of strain-
gradient elasticity (Toupin, 1964; Mindlin and Tiersten,
1962; Koiter, 1964; Germain, 1973; dell'Isola, Seppecher
and Madeo, 2012; dell’Isola, Seppecher and Madeo, 2012;
Ferretti, Madeo, dell’Isola and Boisse, 2013).

In Section 2 we discuss deformations observed in
the so-called bias test of an actual pantographic sheet
manufactured by 3D printing. These reveal a remark-
able pattern of distinct phases in which the fiber shear
is nearly uniform, separated by narrow internal transi-
tion layers exhibiting pronounced geodesic bending. Sec-
tion 3 is devoted to a synopsis of the continuum the-
ory developed more fully in (dell'Isola and Steigmann,
2015; Steigmann and dell’Isola, 2015). This framework
may be viewed as a further development of a line of re-
search on the continuum mechanics of fibrous materi-
als initiated by Rivlin (1955), Green and Adkins (1970)
and Pipkin (1980, 1981), concerning surfaces with per-
fectly flexible embedded fibers; Wang and Pipkin (1986),
for inextensible fibers with flexural resistance; and more
recent developments in the setting of generalized bulk
continua (Spencer and Soldatos, 2007; Steigmann, 2012,
2015; Cheviakov et al, 2015; Nikopour and Selvadurai,
2013), biological materials (Federico et al, 2005; Grillo et
al, 2012) and anisotropic mixtures (Placidi and Hutter
2006a,b). In Section 4 we discuss the details of a finite-
element solution procedure and illustrate the model with
a simulation of the phase coexistence observed in the bias
test, regarded as an in-plane deformation. Finally, in
Section 5 we exhibit a simulation of a three-dimensional
deformation that induces a similar internal strain pattern
combined with substantial fiber twist.
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A difficult unresolved problem, not addressed here,
concerns the modelling of the complex internal structure
of the lattice and the implementation of a suitable ho-
mogenization procedure leading to an appropriate con-
tinuum theory (Alibert, Seppecher and dell’Isola, 2003;

Seppecher, Alibert and dell’Isola, 2011). However, to the
extent that the present theory faithfully predicts the de-
tails of the observed phenomenology, it may be viewed
as furnishing an appropriate target model for deeper in-
vestigations of this kind.

Figure 1: Pantographic lattice topology.

2. Observations on pattern formation and phase
segregation in the bias test of a uniform pan-
tographic lattice

Figure 1 depicts a pantographic lattice topology gen-
erated by SolidWorks. The same software controls the
3D printer FORMIGA P100 (EOS GmbH), which was
used to construct specimens for extensional bias test-
ing. The material used was PA 2200 (polyamide powder).
The geometry of the specimen was specified by means of
the STL format files (i.e., a standard file format broadly
used for rapid prototyping, 3D printing and computer-
aided manufacturing), which provided the input to the
3D printer. In Figure 2 the periodic cell of the printed
specimen is shown in detail.

Figure 2: Details of the periodic cell of the printed specimen.

We remark that the process of 3D printing allows for
the contextual construction of the specimen to be tested
and the clamping devices used for connecting it to the
testing apparatus.

The terminal pivots in the structure connect the ter-
minal ends of the fibers meeting at the external boundary
of the lattice. The pivots are realized by means of short
connecting cylinders whose dimensions can be varied to
endow the lattice with a suitably tuned shear elastic en-
ergy.

On the basis of a simplified 2D continuum model for
a lattice with inextensible fibers (dell’Isola et al, 2015),
it is anticipated that in the extensional bias test two tri-
angular regions bounded by fibers remain rigid and that
distinct phases exhibiting piecewise constant shear defor-
mations emerge. This is precisely what is observed (see
Fig. 3, 4).

It is further observed that the shear deformation is
segregated into distinct coexistent phases separated by
internal transition layers in which geodesic bending pre-
dominates. Also, some of the fibers exhibit substantial
stretching, the modeling of which calls for an extended
theory of the kind adopted here.

In Figure 3 the physical mesh is relatively coarse and
the ratio between the rigidity of the pivots and the bend-
ing stiffness of the fibers is such that the thickness of the
transition layers is limited to approximately three times
the mesh size.

In Figure 4 the physical mesh is finer and the imposed
elongation is larger. The shear deformation in the cen-
tral region is more pronounced and the internal transition
layers are thicker.



Figure 4: An example of bias extension test for pantographic lattice with finer mesh.

3. A two-dimensional surface model incorporat-
ing second-gradient elasticity

To simulate these observations we adopt the model
developed in (dell’Isola and Steigmann, 2015; Steigmann
and dell’Isola, 2015), in which the pantographic sheet
is regarded as an elastic surface endowed with suitable
kinematic descriptors and an associated constitutive re-
sponse in the form of an areal strain-energy density. The
latter is assumed to depend on the stretches of the fibers
and on their curvatures and twists. Further, as tangen-
tial stretch gradients appear in the constitutive equations
for one-dimensional models of thin fibers that account
for finite-thickness effects (Coleman, 1983; Coleman and
Newman, 1988), we also include a constitutive sensitivity
to the tangential derivatives of the stretches. In addition,

we incorporate a non-standard constitutive sensitivity to
the cross derivatives of the fiber stretches; these record
the variation in the stretch of a fiber family as the (ini-
tially) orthogonal family is traversed. This effect is dis-
cussed more fully below. To make the paper reasonably
self contained, we devote the remainder of the present
section to a brief summary of the theory proposed in
(Steigmann and dell'Isola, 2015).

The deformation of the surface is described by a map
r(x): Q — E3 where Q C E? is a connected plane re-
gion in the 2D Euclidean space E? and E? is Euclidean 3-
space. Let L, M € E? be orthogonal unit vectors defining
the fiber directions prior to deformation; in this work we
assume these to be uniformly distributed on 2 and hence
the fibers to be initially straight. The fiber stretches
{\, pu} and fiber directions {1, m} induced by the defor-



mation are
Al=(Vr)L and pm = (Vr)M, (1)

where V(+) is the (two-dimensional) gradient with respect
to x. Here 1 and m are unit vectors spanning the de-
formed tangent plane at the material point x € Q. We
use them to define the fiber shear angle v by

siny=1-m. (2)

Because {L,M} is an orthonormal basis for 2, we
may use (1) to conclude that

Vr=AM&®L+umeM (3)

and thus represent the Cauchy-Green deformation ten-
sor, C = F'F, in the form

C=NLRL+ MM+ \usiny(LeM+MaL).
(4)

Further, eqs. (1) provide
Jn = (Vr)L x (Vr)M, (5)
where n is the unit normal to the deformed surface, and
J = A |cos | (6)

is the local areal dilation induced by the deformation.
Accordingly,
1 x m = |cosvy|n. (7)

To describe the fiber curvatures and twist we require
the second gradient VVr of the deformation. This may
be represented in the form (Steigmann and dell’Isola,
2015)

VVr=(g +Kin)@LeL+
(gm + Kyn) @ M @ M+
(T+Tn)® (L&M+M®L), (8)

with
g = Nnp+(L-VN, g, = p’nmq+(M-Vy)m (9)
and

I'=(L-Vu)m+ Audmg = (M- VA1 + Augp, (10)

in which n; and 7, are the geodesic curvatures of the
deformed fibers, ¢; and ¢,, are the so-called Tchebychev
curvatures, and

p=nxl g=nxm (11)

define the orthogonal directions of the fibers on the de-
formed surface. The second of eqgs. (10) expresses the
equality of the cross derivatives of the deformation in

the two fiber directions and therefore furnishes a com-
patibility condition. Further,

Ki =Xk, Ky =p*km and T = \ur, (12)

where k; and k,, are the normal curvatures of the de-
formed fibers and 7 measures the twist of the deformed
surface. These are non-zero, collectively or individually,
if and only if the deformation is such as to engender cur-
vature of the surface in 3-space. Accordingly, they de-
scribe those parts of the fiber curvatures that can be
attributed to surface flexure, whereas the geodesic cur-
vatures represent the components of fiber curvatures in
the tangent planes of the deformed surface. The latter
arise from the surface strain and the strain gradient; the
explicit expressions are (Steigmann and dell’Tsola, 2015)

Jy =L-V(usiny) — M- VA (13)

and
Im =L -V —M-V(Asiny), (14)

whereas the Tchebychev curvatures are given by
(Steigmann and dell’Tsola, 2015)

Jor = Jnm + AM - V(sin ) (15)

and

o = Jni — L - V(siny). (16)
The latter formulas also involve the strain and strain
gradient. When combined with either of egs. (10), they
yield the conclusion that I'" ultimately depends only on
the fiber stretches and their cross derivatives L - Vp
and M - VJ; and, moreover, that I' vanishes if and
only if the cross derivatives vanish together whenever
J > 0. These statements are proved in (dell’Isola and
Steigmann, 2015). In the alternative case (J = 0) the
fibers collapse locally onto a curve. This degenerate case
is penalized by our constitutive assumptions.

All constitutive information in the model is codified
in an areal strain-energy density W that depends on the
first and second gradients of the deformation. To non-
dimensionalize the variables appearing in this function it
is necessary to introduce a local length scale. Candidates
for this are the thickness of the actual sheet represented
by our surface model, the characteristic spacing of the in-
ternal pivot points of the actual pantographic lattice, or
the widths of the constituent fibers. If any of these is used
as the length scale, then in typical applications the non-
dimensionalized vectors g;, g.» and I' are so small that
the dependence of the strain energy on them is quadratic
at leading order, assuming the associated couple stresses
and bending/twisting moments to vanish when the fibers
are straight and untwisted. A simple strain-energy func-
tion of this type, incorporating the orthotropic symmetry
conferred by the initial fiber geometry, is

W = w1, J) + 3(Argil” + Am lgml* +
Ap D) + kL K2 + kK3 + krT?),  (17)



where the coefficients A; ., r and kg a7 are constants;
this form is assumed for the sake of definiteness and
tractability. Other forms are, of course, possible. In
particular, we might separate out the effects of geodesic
curvature and tangential stretch gradient in g; or g,
and assign different elastic moduli to each. Here we take
Aimr and kr, a7 to be strictly positive and observe that
the part of the energy depending on the second gradient
VVr is then non-negative, vanishing if and only if g,
gm, I', Ki, Ky and T all vanish simultaneously. In
view of (8) it is thus a convex function of VVr, which is
enough to secure the existence of energy-minimizing de-
formations in conservative boundary-value problems via
the direct method of the calculus of variations (Ball, Cur-
rie and Olver, 1981). Further, the existence of a solution
to the weak form of the equilibrium equations for similar
problems in second-gradient elasticity has been proved
in (Healey and Kromer, 2008), albeit under hypotheses
slightly more stringent than those satisfied by the present
model.

The constitutive sensitivities to geodesic and normal
curvatures are readily understood in terms of the me-
chanics of the lattice substructure. Specifically, fibers
are expected to offer resistance to any mode of bending,
be it of the geodesic type or the type induced by surface
flexure. Regarding fiber twist, in the present model this
is determined by the twist of the surface because of the
presumed connectivity of the lattice; that is, both fami-
lies of intersecting fibers are assumed to pivot about the
surface normal, which of course evolves in the course of a
general three-dimensional deformation. This constraint
implies that fiber twist is controlled entirely by surface
geometry and is therefore not an independent kinematic
variable (Steigmann and dell’Isola, 2015).

We have already discussed grounds for introducing
elastic resistance to the tangential derivatives of the fiber
stretches. The influence of the cross derivatives, repre-
sented by the vector I', may be motivated by consider-
ing a fiber with stretch equal to unity at a particular
point. While this particular fiber does not contribute to
the energy density, a non-zero cross derivative imposes
extensional strain on the neighboring parallel fibers and
therefore generates an energy in the lattice in a neighbor-
hood of the considered point. The average energy in the
neighborhood is then assigned by the local strain-energy
function to the point in question. Further, we find that
inclusion of this effect is necessary to secure the convex-
ity of the strain-energy function with respect to VVr;
its absence, corresponding to Ar = 0, yields a strain-
energy function that is only positive semi-definite in the
second gradient of deformation and hence ill-posed from
the standpoint of energy minimization.

For the strain-dependent function w, we adopt

w(\ p, J) = 2(Ere] + Enery) — G(lnJ +1—J), (18)

where

=51, ev=12-1)  (19)

are the extensional fiber strains and Ep, p and G are
positive constants. This energy does not include a term
proportional to epep; and therefore does not accommo-
date a Poisson effect with respect to the fiber axes. Pois-
son effects are generally non-negligible in woven fabrics
due to fiber crimping and de-crimping (dell’Isola and
Steigmann, 2015; Steigmann and dell’lsola, 2015; Atai
and Steigmann, 2014), a mechanism that is absent in
pantographic lattices. Finally, the term involving J pe-
nalizes fiber collapse (J — 0) by imposing unbounded
growth of the attendant energy, whereas the remaining
terms are appropriate for small-to-moderate fiber strains.

In the case of large fiber strains, it is possible to in-
clude the effects of damage and plasticity, as described,
for example, in (Placidi, 2014; Rinaldi, 2015; Yang et
al, 2011) and (Placidi, in press), respectively. For other
types of fibers configurations the symmetry analysis per-
formed in (Eremeyev and Pietraszkiewicz, 2006) may be
useful for construction of the 2D strain energy density.

Our solution procedure, discussed in Section 4, is
a finite-element scheme based on the weak form of the
equilibrium equations derived from the proposed strain-
energy function. For the sake of brevity we do not exhibit
this system here but instead refer the interested reader
to (Steigmann and dell’Tsola, 2015), where both the weak
and strong formulations may be found. Recent applica-
tions of the finite element method and related methods
to second-gradient elasticity are discussed in (Fischer et
al, 2010 and 2011; Rudrarajua et al, 2014; Cazzani et al,
2014; Greco and Cuomo, 2013; Turco and Aristodemo,
1998).

4. Finite-element solution

The plane region 2 considered here is a rectangle
whose sides are in the ratio 1:3.

= A
e,=M

>
rd

\4

Figure 5: The simulated fibered sheet and a plot of the finite ele-
ment mesh used.



The two orthogonal families of fibers are arranged so
as to form an angle of 45 degrees with the sides of this re-
gion; thus, placing the rectangle according to the bisector
of the first quadrant of the reference plane, the unit vec-
tors L, M are simply the basis elements e, e associated
with a Cartesian system (see Fig. 5). In the numerical
simulations, a non-dimensional form of the problem is
achieved by normalizing the strain energy with respect
to a reference stiffness; and the lengths with respect to
the length of the shorter edge. Using a tilde to denote
the non-dimensional quantities, the normalized moduli
employed in the numerical simulations are:

e F; = Ey = 100;

e G =0.02
o A=A, =0.001;
e Ar =0.01
o k= ky = 0.001;
o kr =0.01

We imposed displacement boundary conditions on the
opposing short sides of the lattice. In particular, the dis-
placement u = r(x) — x is zero on one edge, while on the
other we impose the rigid displacement u = u;e;, with

up = ug + (s — 1/2) (cos(#) — 1) cos(mw/4)

us = ug — (s — 1/2) (cos(#) — 1) sin(7/4) , (20)

uz = (s — 1/2) sin()

where s, which varies from 0 to 1, is a parameter, 6 is
a rotation angle with respect to the longitudinal axis of
rectangle, and ug is a stretching displacement along the
same axis.

Because the normal derivative of position is not as-
signed, then implicitly we are assigning (in the weak
sense) zero double force on edges where position is as-
signed. Elsewhere we assign zero double force and zero
traction.

We note that, in the finite element analysis performed
with the commercial software COMSOL Multiphysics, we
employed Argyris elements having C!' continuity; these
can be used to properly approximate functions in the
Sobolev space H?, which is the appropriate space for
problems of the present kind involving the second gra-
dient of the placement. Indeed, in Argyris triangles, the
interpolation functions are quintic polynomials and the
21 degrees of freedom characterizing this element are cho-
sen to be the values of the considered field (or each com-
ponent of a vector field), the first and second derivatives
at the vertices, and the normal derivative at the middle
of the sides.

In a first simulation we assigned ug = 0.5 and 6 = 0.
The predicted deformation, depicted by selected fiber tra-
jectories in the deformed configuration in Figure 6, shows

remarkable agreement with that actually observed and
discussed in Section 2, particularly with respect to the
distinct phases of uniform fiber shear separated by nar-
row internal transition layers.

a0

Figure 6: Numerical simulation of the bias extension test. The
colors indicate the shear strain relative to the initial fiber axes.

a0

Figure 7: An example of torsion of a square sheet (=60 degrees).
The colors indicate the out-of-plane component of displacement,
us.

5. A three-dimensional example

We close with some examples in which the surface is
caused to bend, stretch and twist in three dimensions by
the relative rotation and translation of opposing bound-
aries where position is assigned (see Figures 7-12).

The effect is to produce together with elongation also
a substantial fiber twist with the coexistent distribution
of shear phases remaining embedded in the surface. As
the novelty of the presented model consists in the depen-
dence of deformation energy on geodesic curvature and in
its coupling with twisting and elongation, we present in
figg. 8-12 the calculated shear deformation (as function
of Lagrange coordinates) relative to the cases:

1. where the rectangular specimens may reduce to
squares or have one side two or three times longer
than the shorter;



2. where the imposed twist relative rotation (amount-
ing to 60 degrees) of opposing boundaries is added
to a stretching (see figg. 8-10);

3. where the imposed twist relative rotation (amount-
ing to 45 degrees) of opposing boundaries is added
to a global specimens shear relative displacement
(see figg. 11, 12).

As expected the effect of the relative twist rotation
on fiber extension and shear, is enhanced when the ratio
of the two sides of the rectangles is closer to one. More-
over it can be seen in the presented plots that the shear
deformation patterns determined by geodesic bending,
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and in particular the transition zones separating differ-
ent shear regions, are greatly influenced by the interac-
tion of elongation, global and local shear and twist. Cor-
roborative experimental evidence for these simulations
is not currently available, but will be sought as part of
our ongoing investigation into the complex deformations
of pantographic lattices. In all previous examples the
deformation is supported by reactive corner forces simi-
lar to those of classical plate-bending theory, except that
here these forces may have also components tangential to
the deformed surface, in addition to normal components,
due to the non-standard geodesic bending resistance of
the lattice (Steigmann and dell’Isola, 2015).
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Figure 8: The shear strain relative to the initial fiber axes; from left to right: only twist, only stretching, both (up = 0.1, =60 degrees).
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6. Conclusions

In this paper, we consider an elastic fibered sheet,
in which the fibers are arranged in a pantographic lat-
tice. This two-dimensional continuum theory of elastic
surfaces which accounts for the geodesic bending of the
constituent fibers, and recently developed by (Steigmann
and dell'Tsola, 2015), is employed to simulate pattern
formation in the deformations of a pantographic lattice.
The theoretical framework may be viewed as a further
development of a line of research on the continuum me-
chanics of fibrous materials originated by Rivlin (1955),
Green and Adkins (1970) and Pipkin (1980, 1981) con-
cerning surfaces with perfectly flexible embedded fibers,
and Wang and Pipkin (1986) for inextensible fibers with
flexural resistance. The theory predicts an unusual ar-
rangement of coexistent phases observed in an actual
lattice, manufactured by a 3D printing process, in which
the fibers undergo part-wise uniform shears separated by
internal transition layers controlled by geodesic bending
stiffness. The model is illustrated with a simulation of
the phase coexistence observed in the bias test, regarded
as an in-plane deformation. Finally, some simulations of
a three-dimensional deformation that induces a similar
internal strain pattern combined with substantial fiber
twist are presented on rectangular samples whose sides
are in different ratios.
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