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SUMMARY

In the present paper, a constitutive model for the description of the dissipation in the concrete is provided. 
The theoretical description is based on a micromorphic model in which the microstructure is constituted 
by a kinematical scalar descriptor � whose time derivative is linked to a dissipative potential. The scalar 
� can be interpreted as the relative displacement between two opposite faces of the microcracks, and our 
physical interpretation of dissipation is indeed linked to the friction force (in a mixed Coulomb-type and 
viscous-type behavior) between them. To evaluate the effects of bending on the dissipation, the 3D model is 
then reduced by means of standard Saint-Venant’s procedure in case of combined compression and bending 
over a cylindrical domain. A qualitative analysis of the reduced ODEs model is then provided. Numerical 
results showing comparison between different types of dissipative force and between pure compression and 
combined compression and bending are included in a dedicated section. Finally, the proposed model and 
our physical interpretation of the dissipation are supported by some experimental data concerning standard 
concrete and a concrete enriched by adding to the mixture a filler constituted by micro-particles capable of 
improving the dissipative behavior of the material. Measured data show very good fit with our theoretical 
previsions and provide a sufficiently sound basis for further deepening of the theoretical description of the 
considered phenomena. 
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1. INTRODUCTION

Dissipative phenomena still pose a significant amount of scientifically open questions. As usually
is the case, open questions naturally entail the possibility to investigate new promising applications
– in otherwise hardly conceivable directions – as soon as a reasonable amount of reliable evidence
is at disposal and a suitable theoretical framework is developed. In particular, the possibility to
reach an optimized dissipation from mechanical to internal energy to achieve damping effects in
building materials, and particular in concrete, is of course a very ‘hot’ scientific topic (an impor-
tant general reference on concrete is [1]; for a second gradient approach for damage in concrete,
see [2, 3]). The kind of dissipation investigated in the present paper is related to internal friction,
and potentially has a relevant role in Civil Engineering, and in particular in cases of large structures,
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when a considerable amount of concrete is employed. The external actions for which the considered
dissipation could be important include the case of seismic solicitation. In this case, when an overall
motion is imposed to the structure, a distributed dissipation due to the characteristic of the material
is indeed advantageous over the employment of localized dampers.

Of course, internal friction plays a relevant role in many different fields, for instance concerning
porous elastic solids containing a viscous fluid [4, 5] where internal friction changes, even in some
cases heavily, the mechanical behaviour of the media.

From an historical perspective, concretes have been usually considered as elasto-damageable
materials [6] or elasto-plastic media [7], while more recently, some coupling between damage and
plasticity has been taken into account [8–11]. With the same perspective but in a different context,
the evolution of the damage can be treated and modelled as a phase transition (see e.g. [12]). These
purely phenomenological models have been also recently revisited to introduce more physically
based arguments by taking into account the underlying microstructure through some homogeniza-
tion techniques [13, 14]. Besides internal friction, therefore, other dissipation phenomena have been
taken into account in the literature, such as concrete damage, friction of macrocrack faces asso-
ciated to permanent strain (plasticity) and plasticity of rebars. Among these possibilities, the kind
of internal friction herein considered occupies a special place, as it is not linked to irreversible
changes. Damage-associated and permanent-strain associated dissipation can be seen as the ‘emer-
gency brake’ of a structure under heavy solicitation, capable to avoid overall collapsing. Internal
friction because of microcrack faces’ sliding represent instead a prophylactic element, which can
be able to delay the time at which the emergency brake must work, potentially preventing the costs
associated to repair work.

The problem of the cyclic behaviour is still an open question. More precisely, some experi-
ments are showing that, even inside the so-called elastic domain (i.e. the stress domain delimited
by the yield surface), stress–strain cycles can be slightly open, so exhibiting some internal dissi-
pation (on general characteristics of dissipation in solid materials the reader is referred to [15–18],
and references therein). This feature might be viewed as a paradox of limited importance; but, for
the sustainability of constructions under seismic events, this small dissipation appearing for cycles
inside the yield surface is an important aspect. Indeed, the use of a concrete able to dissipate as much
energy as possible for a small strain level will have in practice a considerable impact. Moreover,
these considerations also apply in case of other environmental solicitations which can determine
similar effects (as those considered, e.g. [19]).

The aim of the present work is to link this abstract possibility to three sets of clear-cut
scientific ideas, which are as follows:

1. a (new) microstructured constitutive model for an enriched concrete, in the framework of
which dissipation/damping can be naturally considered and do not involve any significant
effect on the strength of the material in the long run;

2. a numerical model providing realistic and computationally stable simulations of the
behaviour of the system in practically relevant conditions;

3. a set of experimental data sound enough to support the previously mentioned theoretical and
numerical results.

The idea of employing a micromorphic model to theoretically ‘capture’ the nature of energy dissi-
pation is, in our view, a very natural one (the literature on micromorphic materials is by now a very
large chapter in continuum mechanics; as a baseline, the reader can see [20–25]). Indeed, if one is
interested in a material capable to dissipate energy without losing strength, one can reasonably start
from a formal tool in which dissipation is described by the behaviour of variables not directly related
with mechanical characterization (for the rational formulation of the yield criteria of the concrete, it
is in our opinion very useful the method developed in [26]). In this connection, because strength is
described by a set of well-defined bulk properties, it is quite natural to think to link the dissipation to
lesser scale (‘micro’) phenomena, whose coupling with the bulk properties determines dissipation,
entails damping and does not change ‘macro’ properties.
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In our experimental work, we studied the internal dissipation in concrete under cyclic loading
inside the yield surface. According to the experiments [27, 28], in which large campaigns of triaxial
tests on enriched concrete were performed, the addition of specific granular fillers can significantly
increase the dissipation, opening a way to improve the behaviour of concrete in relation with seismic
loading. As for our theoretical approach, we considered the ‘macro’ structure (i.e. the concrete
skeleton) as an isotropic linear elastic medium which includes some microcracks whose opposite
faces are able to dissipate energy by mixed Coulomb-type and viscous friction during their sliding
under cyclic loading. The dimension of the employed micro-filler is of the order 100 � 101 �m,
while the observed length of the micro-cracks ranges between 1 and 500�m [27]. We also recall that
the microcracks here considered have to be seen as pores naturally present (for chemical reasons)
in the concrete, rather than as true cracks arisen as a consequence of micro-fractures occurred after
the drying of the concrete. This is consistent with the experimental evidence showing that they
already exist when the drying of the concrete has just completed [1]. It is then natural to assume
that some micro-particles can be found inside the microcracks in a non-negligible amount if their
percentage is high enough, and therefore to imagine that the micro-particles are capable to modify
the aforementioned considered frictional phenomena, enhancing it if their amount and geometrical
characteristics are suitable and worsening it if they are too much so as to hinder the relative motion
of the faces of the micro-cracks.

To characterize the micro-slide of the microcrack faces, a new scalar variable � is introduced. Of
course this new variable is playing a basic role in the model, which justifies the fact that it has its own
specific constitutive equation. This parameter can be interpreted as an internal variable (as conceived
in similar models, see e.g. [29, 30]) or as a true micro-structural parameter (see e.g. [20, 23, 31–34]).
The first interpretation implies that the deformation energy only depends on the variable �, while in
the second case, also a dependence on the spacial derivative r� can be taken into consideration to
account for longer range effects due to the micro-deformation in the neighbourhood of a considered
representative elementary volume (REV). Related problems concerning the high heterogeneity
characterizing the concrete may be linked to the high variability of the mechanical properties of
this material at the micro-scale level, and can thus be modelled by introducing in the strain energy
higher-order derivatives of the displacement field (see e.g. [34–42]). Indeed, various higher-gradient
and micromorphic models have been proposed in the last decades to investigate different effects of
physical systems with microstructure (see e.g. [43–47]).

The newly introduced variable � is also included in the expression of the local Coulomb fric-
tion force to obtain a full coupling between the skeleton and the microcracks (as general references
on internal friction the reader can refer to [48–52]). Eventually, a comparison between theoretical
modelling, numerical analysis and experimental results will be provided; the latter, in particular, to
exhibit the influence of the addition of a suitable filler on the dissipative behaviour of enriched con-
crete. Some prospects on future developments to enlarge the frequency range of modelling validity
will also be given in the conclusions.

2. A MODEL OF INTERNAL FRICTION FOR THE CONCRETE

2.1. The model

Concrete is a composite material, basically constituted by a (variable) mixture of aggregate, cement
and water. Its physical properties are of course determined by the proportion between the afore-
mentioned elements and by the possible presence of other additives. A variety of mathematical
approaches have been developed in order to describe concrete. The characteristics of the employed
model are varying depending on different features like, for example, the type of loading, the avail-
able experimental results to calibrate material parameters and computational feasibility. Actually, as
often is the case when considering theoretical models from hard sciences, the choice of the formal
tools employed is also dependent on the questions to answer which one is constructing the model.
As already said, in the present paper, the focus is mostly directed on the description of dissipation
phenomena. A few models, mostly based on fracture/dislocation phenomena, have been proposed
in literature to describe dissipation in concrete (see e.g. [53–58]).
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In our physical interpretation, the dissipation is in fact conceived as due to internal friction
between the overlying faces of microcracks distributed in a uniform and isotropic way in the con-
crete. Moreover, the average characteristics of the microcracks are assumed to not change in time
(see on this respect [59, 60]). These assumptions are reasonably verified in the bulk of the material,
far enough from the boundary. We remark that the size of the structures for which the presented
model is thought is such that the boundary effects can be neglected when considering a variable that
is approximately proportional to the total volume of material, as the amount of dissipated energy due
to internal friction is. These assumptions, as already observed in Scerrato et al. [61], allow to suit-
ably describe the dissipation through the introduction of a single scalar kinematic micro-descriptor
�, which can be interpreted as the average relative displacement of the overlying faces of a micro-
crack (for a somewhat similar approach, see [62, 63] and [64]). In the proposed model, the energy
is thus characterized by two variables: the ordinary (‘macro’) strain tensor E and the new (‘micro’)
scalar variable �:

‰ D
1

2
� Œ tr.E/�2 C � tr

�
E2
�
C
1

2
k1�

2 C
1

3
k2�

3 C
1

4
k3�

4 C ˛�

q
I2
.d/ (1)

where � and � are the Lamé parameters for linearly elastic isotropic materials, E is the linearized
Green–Lagrange strain tensor and the scalar I2.d/ is the second invariant of the deviatoric strain
tensor I2.d/ D 1

2
tr.devE devE/, which can be interpreted as a local shear deformation measure.

Some words have to be devoted to the particular form we have chosen for the stored strain energy,
especially regarding the polynomial part. If we replace it by a simple quadratic term 1=2k1�

2, the
resulting elastic force is linear, which is a reasonable assumption in the presence of small defor-
mations in a static regime. In our context, the assumption of small deformations is kept, but the
one relative to a static solicitation has to be relaxed, because we are interested in dynamic (cyclic)
solicitations. In this case, experimental evidence shows that the relation between stress and strain is
not linear even for small deformations [27]. The simpler form to be assumed, which implies a non-
linear behaviour with a well-posed (i.e. convex and positive-definite) energy, is the polynomial one
that we selected. As we will see, this form is able to account for the experimental evidence we will
provide in a reasonably good way.

The strain energy density for an isotropic material can also be expressed in terms of the bulk
modulusK and the shear modulus� [65], perhaps in a more convenient way than employing the pair
of Lamé’s parameters [66]. However, considering that the examples of our numerical applications
and experimental tests concern a Saint-Venant cylinder, we preferred, for the sake of simplicity, to
employ the usual Lamé’s pair. The resulting Lagrangian functional is then
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In the present paper, a dissipative behaviour is also considered. Indeed, an internal friction force
density � is introduced, which is a generalization of the Coulomb-type friction model chosen to
match experimental observations and predict the dynamic behaviour of concrete. In the Coulomb
model, the friction force is proportional to the normal contact force and its direction is always
opposite to that of the velocity. In our case, the normal force is the hydrostatic pressure �n (i.e. the
compressive stress), while the velocity to be considered is that of the sliding between the opposite
faces of the micro-cracks, that is, P�. Therefore, � can be written as � D 	 tr.E/ tanh

�

 P�
�
, where 	

and 
 are constitutive constants, and the amplitude of the internal friction is proportional to tr.E/.
Specifically, we can write 	 tr.E/ as $�k�n D $�kK tr.E/, which is the product of the specific
surface $ of the microcracks (i.e. the surface area of microcracks per unit volume of concrete), the
friction coefficient �k and the compressive stress �n. The compressive stress, in turn, is proportional
to the trace of the strain tensor, the constant of proportionality being the Bulk Modulus K. The
function tanh, instead of the usual sign function, is introduced not only to smoothen the term but also
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to be able to consider a viscous effect in the low velocity range (for a viscous approach for friction
in different contexts, see e.g. [31, 67–69]). The slope 
 can be used to modulate the extension of the
viscous range and can be interpreted as the inverse of a reference velocity (for further interesting
mathematical considerations about modelling of friction, see e.g. [70, 71]).

2.2. Reduction procedure for combined compression and bending

As already observed in [61], one can reduce the model using the Saint-Venant theory for simple com-
pression load on a cylindrical reference configuration. In the present work, we consider a slightly
more general context by introducing, besides the compression, a bending load. If one wants to fur-
ther generalize the results presented below to the case of non-vanishing shear deformations, some
non-trivial problem may arise, to address which a number of theoretical tools have been developed
(see e.g. [72]).

We consider isochronous motions and arbitrary variations for the generic component � of the
strain tensor and for the variable �. The principle of least powers [73, 74] leads then to the following
reduced procedure. We start with a cylindrical domain of heightH and radiusR. By suitably choos-
ing the reference frame, the strain tensor E and the displacement u considered in the Saint-Venant
theory can be explicitly expressed by

E D

0
B@
��

�
�b
R
x1 C �c

�
0 0

0 ��
�
�b
R
x1 C �c

�
0

0 0
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�b
R
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�
1
CA ; u D

0
B@
��

�
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�
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��
�
�b
R
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�b
R
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�
x3

1
CA ; (3)

where �b and �c are respectively the bending and compressive strain and � D �
2.�C�/

is the Poisson
coefficient. Given the form of the employed coupling term, our scalar microstructural variable � is
also linear in x1 and thus of the form � D

�
�b

x1
R
C �c

�
. Substituting expressions (3) in Equation (2),

the principle of least powers implies the following reduced form of the model:

8̂
ˆ̂<
ˆ̂̂:
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Mbb R�b CKbb�b C ˛b�b D fb0 C fb1 sin.!t/

m'c
R�c C k1c�c C k2ccc�

2
c C k2bbc�

2
b
C k3cccc�

3
c C k3bbcc�

2
b
�c C ˛c�c � �cHc. P�c ; P�b/ D 0

m'b
R�b C k1b�b C k2bcb�b�c C k3bccb�b�

2
c C k3bbbb�

3
b
C ˛b�b � �bHb. P�c ; P�b/ D 0

(4)

in which we set

Mcc D

Z
V

�
�
�2
�
x21 C x

2
2

�
C x23

�
dV; Mbb D

Z
V

�
�
�2
�
x21 C x

2
2

�
C x23

� �x1
R

	2
dV (5)

m�c D

Z
V

��dV; m�b D

Z
V

��

�x1
R

	2
dV

Kcc D

Z
V

Y dV; Kbb D

Z
V

Y
�x1
R

	2
dV (6)

k1c D

Z
V

k1 dV; k1b D

Z
V

k1

�x1
R

	2
dV (7)

k2ccc D

Z
V

k2dV; k2bbc D

Z
V

k2

�x1
R

	2
dV; k2bcb D

Z
V

2
�x1
R

	2
k2dV (8)

k3cccc D

Z
V

k3dV; k3bbcc D k3bccb D

Z
V

3
�x1
R

	2
k3dV; k3bbbb D

Z
V

�x1
R

	4
k3dV (9)



D. SCERRATO ET AL.

Hc D H

Z R

�R

	.1 � 2�/ tanh
h
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Y D �.3�C2�/
�C�

being the Young modulus and � and �� being respectively the mass density of bulk
material and an ‘apparent’ mass density linked to the kinetic energy related to the microstructural
variable �. Moreover

˛c D

Z
V

hp
3=3 .1C �/ ˛

i
dV; ˛b D

Z
V
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3=3 .1C �/ ˛

i �x1
R

	2
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Finally, the uniform force that produces a pure compression, expressed by the terms fc0 and
fc1 and the linear force, which produces a pure bending, expressed by fb0 and fb1, are given by

fc0 D Fc0
R
S
H dS , fc1 D Fc1

R
S
H dS and fb0 D Fb0

R
S
.x1/

2

R
H dS , fb1 D Fb1
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S
.x1/

2

R
H dS .

The previous reduction procedure also entails other terms, which, however, are vanishing for
simple symmetry arguments. For example, a term of the form

Mcb DMbc D

Z
V

�
�
�2
�
x21 C x

2
2

�
C x23

� x1
R

dV D 0; (13)

which derives from the substitution, vanishes as x1 is integrated over a domain that is symmetrical
with respect to the origin. In similar fashion, one can observe that a term Kbc D Kcb , and many
others concerning the microstructure, also vanish.

Some more words have to be devoted to the form of the volumetric friction force, � D
	 tr.E/ tanh.
 P�/. In it, indeed, the trace of E appears, and it can be thought, in the small deforma-
tions approximation, as proportional to the compression between two sliding faces in a microcrack.
Considering a pure compression, it is reasonable to assume that the dissipative internal friction force
is suitably described by a term of this kind. In case of a pure bending, however, one can observe
that, because the trace is positive in one of the two symmetric subsets in which the domain can be
divided, such a form would imply the presence of a (locally) negative dissipation. In our physical
interpretation, instead, a local dilatation would just entail that the dissipated energy vanishes, as
there would be no friction between the faces of the microcracks. In the present work, the problem
is simply solved by taking, in the considered eccentric compression, the bending coefficient �b as
suitably smaller than the compression coefficient �c , so as to have negative values everywhere for
tr.E/. In these hypotheses, which are of course very reasonable from an experimental point of view,
the previously given expression for the internal friction stress always holds.

The ODEs system (4) obtained through the reducing procedure allows us to have a qualitative
understanding of the dissipative behaviour of the considered model. In this regard, it should be
noted, first of all, the presence of the coupling terms k3bbcc�

2
b
�c and k3bccb�b�

2
c , respectively in

the third and fourth equation, which play a relevant role in the interaction between compression and
bending with regard to the microstructure. It is also evident the linearity of the dissipation terms
with respect to �c and �b , which ultimately derives from the term ˛�

p
I2
.d/ in the model (1).

The functions Hc

�
P�c ; P�b

�
and Hb

�
P�c ; P�b

�
, defined in Equations (1) and (2), are plotted in

Figures 1 and 2 considering both the sign (left) and hyperbolic tangent (right) for the description of
friction. In the first case, because the integrands depend on x1only through the sign function, Hc

and Hb have a constant value for those points
�
P�c ; P�b

�
for which

�
x1
R
P�b C P�c

�
does not change sign

when x1 runs over Œ�R;R�, that is, in the triangular planar region that lies (clockwise) between the
lines l1 W P�c D C P�b and l2 W P�c D � P�b – it can be noted that these lines do not depend on R
nor on x1. The constant value is positive (negative) when P�c < 0 (> 0). Because the integrands in
Equations (10) and (11) are not continuous when replacing the hyperbolic tangent with the sign
function, Hc and Hb are of course not differentiable (though continuous) along l1;2, while using
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Figure 1. Functions Hc
�
P�c ; P�b

�
considering the sign (left) and the tanh (right) functions.

Figure 2. Functions Hb
�
P�c ; P�b

�
considering the sign (left) and the tanh (right) functions.

the very form given in Equations (10) and (11), differentiability is recovered. Finally, note that
because of the presence of the term

�
x1
R

�2
, Hb presents, with respect to Hc , a more slowly increasing

behaviour along the level lines P�b D const in the neighbourhood of P�c D 0. These mathematical
considerations allow us to underline the physical meaning of the viscous-like behaviour connected
with the use of the hyperbolic tangent, which as seen makes smoother, and thus physically more
plausible, the description of the dissipation in our model, but does not change the general shape of
the dissipation in the . P�c ; P�b/ plane.

To conclude this section, we want to point out that our aim, in performing the reduction, was
mainly to provide the previous qualitative analysis, while all numerical simulations considered in
the next section will be computed considering the 3D model (1).

3. NUMERICAL SIMULATIONS

In this section, some numerical results concerning the model (1) in the case of pure compression and
combined compression and bending of the type considered earlier are presented. The considered
cylindric domain has a circular cross section of diameter d D 11:28 cm and a length L D 22 cm.
All the numerical simulations were performed using the commercial software COMSOL MULTI-
PHYSICS®. We used an FEM method with a mesh with a maximum element size of 0.022 m and a
time step of 0.005 s.

In the first group of simulations, the case of pure compression is considered. The employed
force has a sinusoidal compression component of amplitude� 19MPa, while a pre-stress of 1 MPa
was applied to ensure the contact action between the opposite faces of the microcracks (see the
experimental section 4 for more on this). Our aim is to numerically evaluate how the parameter 

influences the cycle as well as the general behaviour of friction forces, � and �. Concerning fric-
tion, the basic idea is to compare single cycles with different values for 
. In this regard, let us start
by observing that a natural condition to ask for when searching for a significant comparison is that
cycles dissipate the same amount of energy. This implies that, once 
 is chosen, the value of 	 is
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determined. Another specification is needed about the concept itself of ‘cycle’. As we are in a dis-
sipative regime, our physical variables are of course not exactly a periodic function of time. As it
is well-known, anyway, one can prove that there is an asymptotic convergence toward a periodic
regime [75]. In our simulations, we were indeed interested in these ‘limit’ cycles, which are inde-
pendent of effects because of the initial conditions. Because the system converges towards a limit
cycle in which the ‘macro’ elastic energy

R te
ti
�ij P�ij dt vanishes, this same variable can reasonably

be taken as a ‘distance’ from the asymptotic limit. In the simulations, it is actually observed that
already in the second cycle the value of the ‘macro’ elastic energy is very close to zero, while from
that value on, differences are within our numerical margin of error.

Concerning the physical meaning, a change in 
 affects of course the amplitude of the interval
of velocities for which the difference with the Coulomb-type case is significant. In Figure 3, the
internal frictional force versus time is plotted, and three values for 
 (2 � 102, 2 � 104and 8 � 104)
are considered. The chosen value for the dissipated energy is 0.687 J. In the first case, the involved
velocities are included in the aforementioned interval, and thus the simulation shows a viscous-type
friction. In the third (and to a slightly lesser extent the second), the Coulomb-type friction regime is
reached, as is observable from the marked slope of the decreasing part of the graph. Note that in the
increasing part of the same graph a less sharp behaviour is observed, which is of course because of
the dependence on tr.E/.

In Figure 4, we studied the shape of cycles (in stress-displacement plotting) for the three already
considered values for 
 and the same fixed dissipated energy. As one can see, the effect of the
increase in 
 is able to affect the shape of the cycle, determining a widening in the top part of the
graph while leaving more or less unchanged the bottom part.

Finally, variable �, which represents the relative displacement of two opposite faces of a microc-
rack, is plotted versus time in Figure 5. As one can observe, the relative displacement is of the same
order of magnitude of the reported length of the microcracks [1], which is reasonable because in our
assumptions in model (1) about the potential related to the microstructure, a cubic and quartic term
accounting for big deformations are considered. As one can observe, differences in the values of 


Figure 3. Time history of the volumetric frictional force. The arrow indicates higher values for 
 (
 = 2�102,
2 � 104 and 8 � 104).

Figure 4. Influence of the parameter 
 on the shape of cycles for 
 = 2 � 102, (left) 
 = 2 � 104, (middle)
and 
 = 8 � 104 (right).
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Figure 5. Time history of the relative microcrack displacement, �. As 
 increases, � gets sharper at the
velocity reversal times, which in turn move forward. The effect is more evident in the minima.

Figure 6. A ‘regime’ cycle in combined compressive and bending stress case. The different curves are
relative to different points of the upper surface of the sample cylinder.

Figure 7. The distribution of the dissipated energy density (E , [J/m2]) as a function of the spatial coordinates
for the upper surface of the cylinder.

only slightly affect �, which implies that the replacement of the sign function with the hyperbolic
tangent does not affect the behaviour of the considered microstructure but just changes the way in
which it influences friction, as one could reasonably ask for.
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In the last group of simulations, bending of the type used to derive the reduced form (4) is also
considered. To the previously introduced compressive force, it was added a sinusoidal bending force
of amplitude 2 MPa. In Figure 6, a ‘regime’ cycle is shown (in force density vs displacement plot-
ting). Different curves are relative to different points of the upper surface of the cylinder (starting
from the ‘longest’ cycle, x1 is respectively equal to R, R

2
, 0, �R

2
and �R). As one can see, there is

no dramatic change in the general shape of the dissipation cycle; the main difference with the pure
compression case being simply because of the fact that stress and strain are not uniform. The total
dissipated energy in this case is 0.698 J. This result shows that the difference between the two cases
is actually negligible.

Finally, in Figure 7, the dissipated energy density for the upper surface of the cylinder is plotted.
Specifically, the plotted variable is E D

R t0CT
t0

�ext.t/ � Pu.H/dt , where T is the cycle duration and
�ext is the external applied force per unit surface area. The linearity in x1 assumed for the micro-
structural variable � is of course preserved, which gives us a geometrically evident argument in
support of the previously mentioned negligibility of differences in the total dissipated energy.

Obviously, the considered numerical simulations can be very costly from a computational point
of view, and even the formulation of the finite element problem can be non-trivial. For a set of
numerical tools useful in this kind of context, the reader can refer to [76–80]. Moreover, the non-
linearities involved in Coulomb-type friction can easily entail instabilities, which can be treated with
methods well-established in literature (see e.g. [81–87]).

4. EXPERIMENTAL RESULTS

In the present section, some basic experimental results supporting our model and our numerical
simulations are provided.

The specimen is a simple cylinder having a ratio of length to diameter, L=d , equal to 2. Con-
sidering both the desirability of small L=d to avoid buckling and large L=d to avoid end effects,
the employed value represents a reasonable compromise for brittle materials, in which end effects
are small [88]. The test specimen, as that considered in numerical simulations, has a circular cross
section of diameter d D 11:28 cm and a length L D 22 cm; its ends are provided with suit-
able capping to ensure that the test cylinder has a smooth, parallel and uniform bearing surfaces
perpendicular to the applied axial load during compressive test.

In this regard, some words should be devoted to the possible influence of the capping/loading
apparatus on the measured dissipated energy. A very sensible question, indeed, concerns the 
possibil-ity that part of the measured dissipation comes from friction occurring at the interface
between the sample and the loading device. In our experiments, the sensors measuring � (strain
gauges) are posi-tioned at the center of the sample, far from the boundary effects, while the force
applied in the region equipped with strain gauges is evidently independent from any possible
dissipation occurring else-where. Therefore, even if a dissipation between the sample and the
capping occurs (which is very possible), it would be not appreciated by the experimental apparatus.
This point is confirmed con-sidering previous experiments performed without capping in which the
measured dissipated energy was comparable [27]. Had some ‘external’ dissipation been measured
in both cases, it should have affected, in principle, in different ways the measured total dissipation
in the two cases, because there would have been no reason to assume that the two friction
coefficients involved are equal. For these reasons, a direct measurement of the friction at the
interface between the sample and the capping is not relevant to our aims.

The experimental results refer to two different recipes for concrete, that is, a standard concrete and
a concrete modified by replacing a certain amount of cement (3%) with rhombohedrical micropar-
ticles with specific weight of 2.71 kg/dm3. In Tables I and II, the recipes for (respectively) standard
and modified concrete are provided. Dissipation data (Table IV) refer to an average over six samples.

Experiments are performed under cyclic uniaxial (parallel to the axis of the specimen) compres-
sive load. The test machine was controlled to impose a sinusoidal stress with a fixed frequency of
f D 1Hz for both tests. This low frequency is chosen to avoid inertial effects. More particularly,
the considered load is
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Table I. The employed standard concrete.

Composition Weight ratio, kg Ratio

Sand 21.25 35.1
Gravel 27.05 46.2
Cement 7.15 12.6
Water 4.8 6.14
Total 35.98 100

Table II. The employed enriched concrete (3% of
added filler).

Composition Weight ratio, kg Ratio

Sand 21.25 35.1
Gravel 27.05 46.2
Cement 6.94 11.51
Water 4.8 6.14
Filler 0.2145 0.356
Total 60.25 100

� .t/ D

�
�min C �max

2

�
C
��min � �max

2

	
cos .2f t/

where the values �min, �max are related to the minimum and maximum forces applied, our force
ranging from 19.62 to 176.58 kN. The peak load was chosen so as to avoid reaching a level of
stress too close to the compressive strength of the material. On the other hand, the minimum level
of compressive stress is large enough to ensure the interaction of opposite faces of the microcracks,
on which the dissipated energy, in our physical interpretation, depends. Similarly to the previously
considered numerical simulations, also for these experimental tests, the considered values are rela-
tive to cycles close enough to the asymptotic ‘limit’ cycle to avoid undesirable dependence on the
initial conditions.

Our idea was to compare the dissipation and other physically relevant parameters between the
two kinds of concrete to obtain a validation of our model as well as a proof of the meaningfulness
of our physical interpretation of the dissipation. We, thus, considered a standard concrete and a con-
crete enriched by the addition of micro-filler. Of course, the addition of a filler can have different
motivation and effects (see e.g. [89]). Roughly speaking, our reasoning is the following: one can rea-
sonably expect that, by adding micro-particles of suitable characteristics and size, a given average
relative displacement between the faces of a microcrack leads to an enhanced dissipation because
of the extra friction due to the contact action between the faces themselves and the micro-particles.
It can be remarked, moreover, that this kind of modification of concrete by means of suitable inert
admixtures proposed in [27] are indeed founded on some precise theoretical considerations [62],
which need to be further developed. Going in a little more detail, the idea can be described as
follows: the concrete recipe is enriched in order to increase the dissipation capability without favour-
ing the onset of plastic deformation or crack formation and growth. To fully develop this idea, an
important theoretical effort is required: one can usefully refer to the methods used in the theory of
structural modification (see e.g. [90–92] and references therein) or in the design of smart materials
and structures (see e.g. [93–95] and references therein).

As the data reported in Tables III and IV show, in our case, the expected results are indeed
observed, as both friction coefficients and the dissipated energy per cycle significantly increase in
case of enriched concrete, and the results of the numerical simulations fit reasonably well with
the provided experimental data. To make visually apparent the increase of the dissipated energy
per cycle as a consequence of the addition of a micro-filler, a comparison between the cycles
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Table III. Material parameters of standard and enriched concrete.

Parameters Standard concrete Enriched concrete Unit

Y 4:06 � 1010 3:82 � 1010 N/m2

k1 1:86 � 1012 1:86 � 1012 N/m4

k2 9:41 � 1013 9:41 � 1013 N/m5

k3 1:22 � 1020 9:01 � 1019 N/m6

˛ 2:89 � 1011 2:87 � 1011 N/m3

	 5:50 � 1011 4:17 � 1011 N/m3


 2:00 � 102 2:00 � 102 s/m

Table IV. Dissipated energy for standard and
enriched concrete.

Type Dissipated energy per cycle

Standard 0:891˙ 0:067 J
Enriched 1:31˙ 0:098 J

Figure 8. Dissipation loop for standard concrete (left) and for enriched concrete (right).

(in stress vs strain plotting) for standard and enriched concrete is provided in Figure 8. Of note,
in Figure 8, measured data are represented by circlets while the loading and unloading curves are
obtained by two second-order polynomial interpolations.

On the whole, both our theoretical model (1) and our physical interpretation, which links the
dissipation to the relative sliding of the faces of the microcracks, as well as the meaningfulness of
our numerical analysis, are fully justified by these experimental data.

5. CONCLUSIONS

The results presented in this work allow us to state that this (relatively) new line of investigation
about concrete entails rich prospects for the development of a new understanding of dissipation phe-
nomena and for useful – and not too remote – applications to Civil Engineering. The combination of
a reasonably solid theoretical model with convincing numerical and experimental results represents,
indeed, the better possible guarantee for the soundness and the future ambitions of a given research
line. The results here presented represent of course a first theoretical step in the given direction,
and further deepening, starting by possible refinements of the form of the Lagrangian, will have
to be considered.

The case of combined compression and bending considered in the paper extended the simple
compression case considered in [61], and the provided reduced model allowed us to qualita-
tively analyse the behaviour of the system. The numerical simulations showed the soundness and
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plausibility of our model, as the general behaviour of the considered variables was theoretically and
numerically predictable and explainable, being moreover in excellent agreement with the qualita-
tive considerations provided in the comments to the reduced model. In this connection, particularly
interesting from a practical point of view was the highlighted negligibility of the difference with the
case of pure compression with respect to the total dissipated energy per cycle.

The experimental results herein shown were intended as basic evidence in support of the pro-
posed model and a further simple proof of the meaningfulness of our physical explanation of the
dissipation, because the theoretical previsions concerning a comparison between a standard and an
enriched concrete of the type considered were soundly confirmed.

As for possible future lines of investigation, a special attention will have to be devoted, in our
opinion, to developments of the present model concerning a more accurate description of the dis-
sipation in extreme regimes. As it is well-known, the dissipation, unlike what happens in our
assumptions, is in general not exactly linear with the deformation but rather exhibits a threshold
value within which it is not observed. Our physical interpretation of the dissipation, relying on the
frictional sliding of the faces of the microcracks, is well-supported by this fact, because one can
reasonably assume that, below certain levels of deformation, a non-negligible fraction of microc-
racks is not compressed enough to allow contact between the opposite faces. For this very reason,
the applied cyclic force in the previously considered experimental tests had, as observed, a suitably
large minimum level. An extension of the model, in order to accurately describe even a very small
deformation regime, is of course of interest for the next future.

Moreover, a more detailed description of the character of the dissipation itself, capable to account
for some rather non-standard effects (like a friction depending on the frequency of the external
applied force) represents in our opinion a key step towards a successful application of the presented
results to the real world.
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