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Abstract This work intends to analyze the nonlinear

stochastic dynamics of drillstrings in horizontal config-

uration. For this purpose, it considers a beam theory,

with effects of rotatory inertia and shear deformation,

which is capable of reproducing the large displacements

that the beam undergoes. The friction and shock effects,

due to beam/borehole wall transversal impacts, as well

as the force and torque induced by bit-rock interaction,

are also considered in the model. Uncertainties of bit-

rock interaction model are taken into account using a

parametric probabilistic approach. Numerical simula-

tions have shown that the mechanical system of inter-

est has a very rich nonlinear stochastic dynamics, which

generate phenomena such as bit-bounce, stick-slip, and

transverse impacts. A study aiming to maximize the

drilling process efficiency, varying drillstring velocities
of translation and rotation is presented. Also, the work

presents the definition and solution of two optimizations

problems, one deterministic and one robust, where the

objective is to maximize drillstring rate of penetration

into the soil respecting its structural limits.
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Université Paris-Est, Laboratoire Modélisation et Simula-
tion Multi Echelle, MSME UMR 8208 CNRS, 5, Boulevard
Descartes 77454, Marne-la-Vallée, France
E-mail: christian.soize@univ-paris-est.fr

A. Cunha Jr, R. Sampaio
PUC–Rio, Departamento de Engenharia Mecânica, Rua M.
de São Vicente, 225 - Rio de Janeiro, 22451-900, Brasil
E-mail: rsampaio@puc-rio.br

Keywords nonlinear dynamics · horizontal drill-

string · uncertainty quantification · parametric

probabilistic approach · robust optimization

1 Introduction

High energy demands of 21st century make that fossil

fuels, like oil and shale gas, still have great importance

in the energy matrix of several countries. Prospection

of these fossil fuels demands the creation of exploratory

wells. Traditionally, an exploratory well configuration

is vertical, but directional or even horizontal configura-

tions, where the boreholes are drilled following a non-

vertical way, are also possible [62]. An illustration of the

different types of configurations which an exploratory
well can take is presented in Figure 1.

reservoir

vertical well

directional well

Fig. 1 Schematic representation of two exploratory wells.
The left well configuration is vertical while the right one is
directional.
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The equipment used to drill the soil until the reser-

voir level is called drillstring. This device is a long col-

umn, composed of a sequence of connected drill-pipes

and auxiliary equipment. Furthermore, within the col-

umn flows drilling mud, which is used to cool the drilling

system and to remove drilling cuttings from the bore-

hole. The bottom part of this column is called bottom

hole assembly (BHA) and consists of a pipe of greater

thickness, named drill-colar, and a tool used to stick

the rock, the drill-bit [20]. The BHA presents stabiliz-

ers throughout its length, whose function is to maintain

structural integrity of the borehole before cementation

process. A schematic representation of a typical vertical

drillstring and its components is presented in Figure 2,

but a column in horizontal configuration essentially has

the same structure.

drill pipe

drill colar

drill bit

stabilizer

BHA

Fig. 2 Schematic representation of a typical drillstring.

Since the axial dimension of a drillstring is orders

of magnitude larger than the characteristic dimension

of its cross section area, the column is a long flexible

structure with a very complex flexural dynamics. Fur-

thermore, during drilling process, the drillstring is also

subjected to other two mechanisms of vibration (longi-

tudinal and torsional), which interact nonlinearly with

the flexural mechanism, resulting in a further compli-

cated dynamics [60]. The coupling between these three

mechanisms of vibration, which imposes severe com-

plications on the drillstring dynamics modeling, comes

from the action of several agents, such as: structure self

weight (for a vertical column); tensile and compressive

loads due to the weight on bit (WOB) and soil reac-

tion force; dry friction and impacts with borehole wall;

bit-rock interaction forces; internal flow pressure; forces

induced by internal flow instabilities; etc [60].

The dynamics of a drillstring is not a new subject

in the technical/scientific literature. Works on this sub-

ject, covering experimental analysis, numerical and/or

analytical modeling, can be seen since the 1960s. Most

of the numerical works developed between 1960s and

1990s, have used lumped parameters approach to gain

insight about drillstrings dynamical behavior. On the

other hand, the analytical works focused on simple dis-

tributed parameters models. Little has been done us-

ing finite element-based approaches until the beginning

of 1990s. A comprehensive literature survey of the re-

search work produced until 2000 can be found in [10]

and [60].

In recent studies, lumped parameters approach have

been used, for example, to seek configurations which re-

duce stick-slip occurrence during drillstring operation

[52]; to identify suitable values for drilling system op-

erational parameters [32]; to analyze the coupling be-

tween axial and torsional vibrations and its stability

[19, 17, 34, 15]. On the other hand, approaches based

on distributed parameters models have been used to: in-

vestigate drillstring failure mechanisms [27]; better un-

derstand transversal impacts between the column and

borehole wall [61]; study the effects induced by the non-

linear coupling between longitudinal and torsional dy-

namics of the drillstring [47]; describe the column dy-

namic behavior taking into account the coupling be-

tween the three mechanisms of vibration [41, 39]; inves-

tigate the chaotic regime which drillstring transverse

vibration mechanism is subjected [9].

Despite the fact that directional drilling has been

used in practical engineering for a few decades, and

most of the exploratory wells drilled today be direc-

tional in configuration, all the works mentioned above

model vertical drillstrings only. To the best of authors’

knowledge, there are very few papers in open literature

which models drillstring in directional configurations

[46, 24, 44]. All of these works use a distributed pa-

rameters approach, but while [46, 44] only address the

drillstring longitudinal dynamics, [24] uses generalized

Euler-Bernoulli beam theory to describe the drillstring

three-dimensional dynamics in a sloped directional well.

In [46], the authors study a sloped configuration for the

borehole and uses a perturbation technique to discretize

the model equations. Conversely, model equations are

discretized by finite element in [44].

In addition to the difficulties inherent to the non-

linear dynamics, drillstrings are subjected to random-

ness on their geometrical dimensions, physical proper-

ties, external forcing, etc. The lack of knowledge on

these parameters, known as system-parameter uncer-

tainty, is a source of inaccuracies in drillstring modeling,

which may, in an extreme case, completely compromise

the model predictability [49, 50]. Furthermore, during

the modeling process, hypotheses about the drillstring

physical behavior are made. These considerations may
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be or not be in agreement with reality and should in-

troduce additional inaccuracies in the model, known as

model uncertainty induced by modeling errors [56, 57].

This source of uncertainty is essentially due to the use of

simplified computational model for describing the phe-

nomenon of interest and, usually, is the largest source of

inaccuracy in computational model responses [56, 57].

Therefore, for a better understanding of the drill-

string dynamics, these uncertainties must be modeled

and quantified. In terms of quantifying these uncer-

tainties for vertical drillstrings, the reader can see [59],

where external forces are modeled as random objects

and the method of statistical linearization is used along

with the Monte Carlo (MC) method to treat the stochas-

tic equations of the model. Other works in this line in-

clude: [41, 39], where system-parameter and model un-

certainties are considered using a nonparametric prob-

abilistic approach; and [43, 40], which use a standard

parametric probabilistic approach to take into account

the uncertainties of the system parameters. Regarding

the works that model directional configurations, only

[44] considers the uncertainties, which, in this case, are

related to the friction effects due to drillstring/borehole

wall contact.

From what is observed above, considering only the

theoretical point of view, the study of drillstring nonlin-

ear dynamics is already a rich subject. However, a good

understanding of its dynamics also has significant im-

portance in applications. For instance, it is fundamental

to predict the fatigue life of the structure [33] and the

drill-bit wear [68]; to analyze the structural integrity of

an exploratory well [14]; to optimize the drill-bit rate of

penetration (ROP) of into the soil [42], and the last is

essential to reduce cost of production of an exploratory

well.

In this sense, this study aims to analyze the three-

dimensional nonlinear dynamics of a drillstring in hor-

izontal configuration, taking into account the system-

parameter uncertainties. Through this study it is ex-

pected to gain a better understanding of drillstring physics

and, thus, to improve drilling process efficiency, and

maximize the column ROP accordingly. All results pre-

sented here were developed in the thesis of [12].

The rest of this work is organized as follows. Sec-

tion 2 presents the mechanical system of interest in

this work, its parametrization and modeling from the

physical point of view. Mathematical formulation of

initial/boundary value problem that describes the me-

chanical system behavior, as well as the conservative

dynamics associated, is shown in section 3. The compu-

tational modeling of the problem, which involves model

equations discretization, reduction of the discretized dy-

namics, the algorithms for numerical integration and

solution of nonlinear system of algebraic equations, can

be seen in section 4. The probabilistic modeling of un-

certainties is presented in section 5. Results of numeri-

cal simulations are presented and discussed in section 6.

Finally, in section 7, the main conclusions are empha-

sized, and some paths to future works are pointed out.

2 Physical model for the problem

2.1 Definition of the mechanical system

The mechanical system of interest in this work, which is

schematically represented in Figure 3, consists of a hor-

izontal rigid pipe, perpendicular to gravity, which con-

tains in its interior a deformable tube under rotation.

This deformable tube is subjected to three-dimensional

displacements, which induces longitudinal, lateral, and

torsional vibrations of the structure. These mechanisms

of vibration are able to generate slips and shocks in ran-

dom areas of the rigid tube. Also, the contact between

drill-bit, at the right extreme of the tube, with soil gen-

erates nonlinear forces and torques on drillstring right

extreme, which may completely block the structure ad-

vance over the well.

Fig. 3 Schematic representation of the mechanical system
under analysis.

2.2 Nonlinear dynamical system parameterization

For purposes of modeling, the only part of column con-

sidered is the BHA. So, any variation of diameter along

the column is ignored. In this way, the bottom part of

the deformable tube described, in section 2.1, is mod-

eled as a rotating beam in horizontal configuration,

whose transverse displacement (y and z) at both ends

is blocked, as well as transverse rotations on the left

extreme. It looks like the left end of the system is a sta-

bilizer and the right one a support. This beam is free

to rotate around the x axis, and to move longitudinally.

The rigid pipe is treated as a stationary cylindrical rigid

wall in horizontal configuration.

As the beam is confined within the borehole, it is

reasonable to assume that it undergoes small rotations
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in transverse directions. On the other hand, large dis-

placements are observed in x, y, and z, as well as large

rotations around the x-axis. Therefore, the analysis that

follows uses a beam theory which assumes large rotation

in x, large displacements in the three spatial directions,

and small deformations [5].

Seeking not to make the mathematical model exces-

sively complex, this work will not model the fluid flow

inside the beam, nor the dissipation effects induced by

the flow on the system dynamics.

Due to the horizontal configuration, the beam is un-

der action of the gravitational field, which induces an

acceleration g. The beam is made of an isotropic mate-

rial with mass density ρ, elastic modulus E, and Pois-

son’s ratio ν. It has length L and annular cross section,

with internal radius Rint and external radius Rext.

An illustration of beam geometric model is presented

in Figure 4. It is important to note that this model also

ignores the mass of drill-bit and its geometric shape.

x

L

y

z

Rext

Rint

Fig. 4 Schematic representation of the beam geometry used
to model the deformable tube under rotation, and the inertial
system of coordinates used.

Using the cartesian coordinate system (x, y, z), de-

fined by orthonormal basis {ex, ey, ez}, fixed in the in-

ertial frame of reference R, and shown in Figure 4, one

can describe the beam undeformed configuration by

Bb =
{

(x, y, z) ∈ R3
∣∣ 0 ≤ x ≤ L, (y, z) ∈ Sb

}
, (1)

where the beam cross section undeformed configuration

is described by

Sb =
{

(y, z) ∈ R2
∣∣ R2

int ≤ y2 + z2 ≤ R2
ext

}
. (2)

With the undeformed cross section configuration char-

acterized, one can define and compute the cross-sectional

area,

A =

∫∫
Sb
dy dz = π

(
R2
ext −R2

int

)
, (3)

the second moment of area around the y axis

Iyy =

∫∫
Sb
z2 dy dz = I4, (4)

the second moment of area around the z axis

Izz =

∫∫
Sb
y2 dy dz = I4, (5)

the polar moment of area

Ixx =

∫∫
Sb

(
y2 + z2

)
dy dz = 2 I4, (6)

the fourth moment of area around the z axis

Izzzz =

∫∫
Sb
y4 dy dz = 3 I6, (7)

and the fourth product of area

Iyyzz =

∫∫
Sb
y2z2 dy dz = I6, (8)

where

I4 =
π

4

(
R4
ext −R4

int

)
, (9)

and

I6 =
π

24

(
R6
ext −R6

int

)
. (10)

In this work other three coordinate systems (all of

then with the same origin as the (x, y, z) coordinate sys-

tem) are also used, each one fixed in a non-inertial frame

of reference Rn, where n = 1, 2, 3, and defined by an

orthonormal basis of vectors of the form {exn , eyn , ezn}.
These systems of coordinates are related by a se-

quence of elementary rotations, such as follows

R θx−−−→ R1

θy−−−→ R2
θz−−−→ R3,

(x, y, z) (x1, y1, z1) (x2, y2, z2) (x3, y3, z3)
(11)

where θx is the rotation around the x axis, θy is the

rotation around the y axis, and θz is the rotation around

the z axis. These rotations follow the right hand rule.

Thus, with respect to the non-inertial frame of ref-

erence, the instantaneous angular velocity of rotating

beam is written as

ω = θ̇xex + θ̇yey1 + θ̇zez2 , (12)
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where θ̇x, θ̇y, and θ̇z denote the rate of rotation around

the x, y, and z directions, respectively. From now on,

upper dot will be used as an abbreviation for time

derivative, i.e., �̇ ≡ ∂�
∂t .

Referencing vector ω to the inertial frame of refer-

ence, and using the assumption of small rotations in

transversal directions, one obtains

ω =

 θ̇x + θ̇zθy
θ̇y cos θx − θ̇z sin θx
θ̇y sin θx + θ̇z cos θx

 . (13)

Regarding the kinematic hypothesis adopted for beam

theory, it is assumed that the three-dimensional dis-

placement of a beam point, occupying position (x, y, z)

at instant of time t, can be written as

ux(x, y, z, t) = u− yθz + zθy, (14)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where ux, uy, and uz respectively denote the displace-

ment of a beam point in x, y, and z directions. More-

over, u, v, and w are the displacements of a beam neu-

tral fiber point in x, y, and z directions, respectively.

Finally, it is possible to define the vectors

r =

x

y

z

 , v =

 u̇

v̇

ẇ

 , and θ̇ =

 θ̇x
θ̇y
θ̇z

 , (15)

which, respectively, represent the position of a beam

point, the velocity of a neutral fiber point, and the rate

of rotation of a neutral fiber point.

Note that the kinematic hypothesis of Eq.(14) is ex-

pressed in terms of three spatial coordinates (x, y, and

z) and six field variables (u, v, w, θx, θy, and θz).

It is important to mention that, as the analysis as-

sumed small rotations in y and z, this kinematic hy-

pothesis presents nonlinearities, expressed by trigono-

metric functions, only in θx. Besides that, since a beam

theory is employed, the field variables in Eq.(14) depend

only on the spatial coordinate x and time t. Therefore,

although the kinematic hypothesis of Eq.(14) is three-

dimensional, the mathematical model used to describe

the beam nonlinear dynamics is one-dimensional.

2.3 Modeling of friction and shock effects

When a drillstring deforms laterally, there may occur

a mechanical contact between the rotating beam and

the borehole wall, such as illustrated in Figure 5. This

mechanical contact, which generally take place via a

strong impact, gives rise to friction and shock effects

[21, 63, 31].

AAAA

Fig. 5 Schematic representation of the situation where there
is a mechanical contact between a drillstring and the borehole
wall.

The modeling of friction and shock phenomena is

made in terms of a geometric parameter dubbed inden-

tation, which is defined as

δFS = r − gap, (16)

where r =
√
v2 + w2 is the neutral fiber lateral dis-

placement, and gap denotes the spacing between the

undeformed beam and the borehole wall. One has that

δFS > 0 in case of an impact, or δFS ≤ 0 otherwise, as

can be seen in Figure 6. Note that the indentation cor-

responds to a measure of penetration in the wall of a

beam cross section [21].

gap

r
gap

r

δFS = r − gap ≤ 0 δFS = r − gap > 0

Fig. 6 Illustration of the indentation parameter in a situa-
tion without impact (left) or with impact (right).

When an impact occurs, a normal force of the form

FnFS = −kFS1 δFS − kFS2 δ
3
FS − cFS |δ|3δ̇FS, (17)

where kFS1
, kFS2

and cFS are constants of the shock

model, begins to act on the beam cross section. In this

nonlinear shock model, proposed by Hunt and Crossley

[26], the first (linear spring) and the second (nonlinear

spring) terms describe the elastic deformation during an

impact, while the third term (nonlinear damper) takes

into account the loss of energy during an impact.



6 A. Cunha Jr et al.

Once the column is rotating and moving axially, an

impact also induces a frictional force in axial direction,

F aFS, and a torsional friction torque, TFS. Both are mod-

eled by Coulomb friction law [11], so that the force is

given by

F aFS = −µFS F
n
FS sgn (u̇) , (18)

where the torque is described by

TFS = −µFS F
n
FSRbh sgn

(
θ̇x

)
, (19)

being µFS the friction coefficient, sgn (·) the sign func-

tion, and the radius of the borehole is Rbh = Rext+gap.

In order to find all points of contact between the

beam and the borehole wall, it is necessary to discover

all values of x where δFS > 0. This is usually done by

solving an optimization problem with constraints [65,

64].

Although the strategy of detection based on the op-

timization problem is robust in terms of accuracy, it

is extremely complex in terms of implementation and

computational cost. For this reason, this work uses an

approach that introduces the forces of Eqs.(17) and

(18), and the torque of Eq.(19), as efforts concentrated

on the nodes of finite element mesh, defined in the sec-

tion 4.1. This procedure sacrifices accuracy, but simpli-

fies the friction and shock model implementation.

2.4 Modeling of bit-rock interaction effects

During the drilling process, in response to drillstring

rotational advance, a force and a torque of reaction be-

gin to act on the drill-bit, giving rise to the so-called

bit-rock interaction effects [16, 18].

In this work, the model proposed by [44] is consid-

ered to describe the bit-rock interaction force

FBR =

 ΓBR

(
e−αBR u̇bit − 1

)
for u̇bit > 0, (20)

0 for u̇bit ≤ 0,

where ΓBR is the bit-rock limit force, αBR is the rate of

change of bit-rock force, and u̇bit = u̇(L, ·). The graph

of FBR is illustrated in Figure 7.

Also, for the bit-rock interaction torque, it is adopted

the regularized Coulomb model used by [28], which is

expressed as

TBR = −µBR FBRRbh ξBR (ωbit) , (21)

u̇bit

FBR

−ΓBR

Fig. 7 Illustration of the function used to describe the reac-
tion force on drill-bit, due to bit-rock interaction effects.

where ωbit = θ̇x(L, ·), the bit-rock friction coefficient is

µBR, and

ξBR (ωbit) = tanh (ωbit) +
2ωbit

1 + ω2
bit

, (22)

is a regularization function. The graph of ξBR is illus-

trated in Figure 8.

ωbit

ξBR

Fig. 8 Illustration of the smooth function used to regularize
the reaction torque on drill-bit, due to bit-rock interaction
effects.

2.5 Kinetic energy

The kinetic energy of rotating beam is given by

T =
1

2

∫∫∫
Bb

ρv · v dx dy dz + (23)

1

2

∫∫∫
Bb

ρω · (r · r I− r ⊗ r)ω dx dy dz,

where first triple integral corresponds to beam transla-

tional kinetic energy, and the second one is associated

to beam rotational kinetic energy. In this equation, I

denotes the identity tensor, the symbol · represents the

standard inner product between two Euclidean vectors,
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and the symbol ⊗ is used to designate the tensor prod-

uct.

Developing the vector operations indicated in Eq.(23),

using (1) and (2) to define the limits of integration, us-

ing the definitions of A, Iyy, Izz, and Ixx, and mak-

ing the other calculations one can show that Eq.(23) is

equivalent to

T =
1

2

∫ L

x=0

ρA
(
u̇2 + v̇2 + ẇ2

)
dx + (24)

1

2

∫ L

x=0

2 ρ I4

(
θ̇x + θ̇zθy

)2
dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y cos θx − θ̇z sin θx

)2
dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y sin θx + θ̇z cos θx

)2
dx.

2.6 Strain energy

The analysis of the beam assumes that it is subjected

to large displacements, and small deformations. In this

way, its strain energy is given by

V =
1

2

∫∫∫
Bb

ε :σ dx dy dz, (25)

where ε denotes the Green-Lagrangian strain tensor,

σ is the second Piola-Kirchhoff stress tensor, and the

symbol : represents the double inner product between

two tensors.

It is further considered that the beam is made of

an isotropic material, such that stress and strain are
related by the following constitutive equation (Hooke’s

law)

σ = 2G ε+ λ tr (ε) I, (26)

where tr (·) represents the trace operator, G is material

shear modulus, and λ is used to designate the material

first Lamé parameter. In terms of the elastic modulus

E and the Poisson’s ratio ν, these elastic parameters

can be written as

G =
E

2 (1 + ν)
, and λ =

E ν

(1 + ν)(1− 2 ν)
. (27)

According to the beam theory used in this work,

there is no tension in any cross section of the beam

that is perpendicular to x axis, i.e., σyy = 0, σzz = 0,

σyz = 0, and σzy = 0. When this hypothesis is com-

bined with the three-dimensional Hooke’s law, repre-

sented by Eq.(26), one can conclude that σxx = E εxx,

σxy = 2Gεxy, and σxz = 2Gεxz, which is an one-

dimensional version of Hooke’s law.

Combining this one-dimensional Hooke’s law with

the stress tensor symmetry, one can express the double

contraction between strain and stress tensors, within

the integral in Eq.(25), as a quadratic form

ε :σ = E ε2xx + 4Gε2xy + 4Gε2xz, (28)

which is modified, by the introduction of shearing factor

κs, as

ε :σ = E ε2xx + 4κsGε
2
xy + 4κsGε

2
xz. (29)

This modification aims to take into account the effect

of shear deformation in the beam cross section area,

which is neglected when one uses the one-dimensional

Hooke’s law.

Hence, after replace Eq.(29) in Eq.(25), one finally

obtains

V =
1

2

∫∫∫
Bb

(
E ε2xx + 4κsGε

2
xy + 4κsGε

2
xz

)
dx dy dz.

(30)

As the analysis is using large displacements, one has

εxx =
1

2

(
∂ux
∂x

+
∂ux
∂x

)
+ (31)

1

2

(
∂ux
∂x

∂ux
∂x

+
∂uy
∂x

∂uy
∂x

+
∂uz
∂x

∂uz
∂x

)
,

εxy =
1

2

(
∂uy
∂x

+
∂ux
∂y

)
+ (32)

1

2

(
∂ux
∂x

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uz
∂x

∂uz
∂y

)
,

and

εxz =
1

2

(
∂uz
∂x

+
∂ux
∂z

)
+ (33)

1

2

(
∂ux
∂x

∂ux
∂z

+
∂uy
∂x

∂uy
∂z

+
∂uz
∂x

∂uz
∂z

)
,

where the quadratic terms on the right hand side of the

above equations are associated to beam model geomet-

ric nonlinearity.

Substituting the kinematic hypothesis of Eq.(14) in

Eqs.(31) to (33), and then calculating the partial deriva-

tives, one concludes that the deformations are respec-

tively given by
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εxx = u′ − y θ′z + z θ′y + u′
(
z θ′y − y θ′z

)
− y z θ′y θ′z +

θ′x

((
y w′ − z v′

)
cos θx −

(
y v′ + z w′

)
sin θx

)
+

1

2

(
u′ 2 + v′ 2 + w′ 2 + y2 θ′ 2z + z2 θ′ 2y +

(
y2 + z2

)
θ′ 2x

)
,

(34)

εxy =
1

2

(
v′ cos θx + w′ sin θx − z θ′x

)
+ (35)

1

2
θz

(
y θ′z − zθ′y − u′ − 1

)
,

and

εxz =
1

2

(
w′ cos θx − v′ sin θx + y θ′x

)
+ (36)

1

2
θy

(
−y θ′z + zθ′y + u′ + 1

)
,

where prime is used as an abbreviation for space deriva-

tive, i.e., �′ ≡ ∂�
∂x .

2.7 Energy dissipation function

It is assumed that the beam loses energy through a

mechanism of viscous dissipation, with a (dimension-

less) damping constant c. In this way, there is an energy

dissipation function (per unit of length) associated to

the system, which is given by

D =
1

2

∫∫
Sb
c ρv · v dy dz + (37)

1

2

∫∫
Sb
c ρ θ̇ · (r · r I− r ⊗ r) θ̇ dy dz,

where the first term is a dissipation potential due to the

translational movement, and the second term represents

a dissipation potential due to the movement of rotation.

Making a development almost similar to the one per-

formed to obtain Eq.(24), it can be shown that

D =
1

2
c ρA

(
u̇2 + v̇2 + ẇ2

)
+ (38)

1

2
c ρ I4

(
2 θ̇2x + θ̇2y + θ̇2z

)
.

2.8 External forces work

The work done by the external forces acting on the

beam is given by

W = −
∫ L

x=0

ρAg w dx+WFS +WBR, (39)

where the first term is due to gravity, the second one

is associated to friction and shock effects, and the last

term accounts the work done by the force/torque that

comes from bit-rock interaction.

Note that, due to non-holonomic nature of the forces

and torques that comes from the effects of friction/shock,

and bit-rock interaction, it is not possible to write ex-

plicit formulas for WFS and WFS [30].

However, it is known that the virtual work of WFS,

denoted by δWFS, is written as

δWFS =

Nnodes∑
m=1

(
F aFS δu+ FnFS (v δv + w δw) /r + TFS δθx

) ∣∣∣
x=xm

(40)

where xm are the global coordinates of finite element

nodes, Nnodes is the number of nodes in finite element

mesh, and δu, δv, δw, and δθx respectively denote the

variations of u, v, w, and θx.

On the other hand, the virtual work ofWBR, denoted

by δWBR, reads as

δWBR = FBR δu
∣∣∣
x=L

+ TBR δθx

∣∣∣
x=L

. (41)

3 Mathematical model for the problem

3.1 Equation of motion of the nonlinear dynamics

A modified version of Hamilton’s extended principle

[30] is employed to derive the equations which describe

the mechanical system nonlinear dynamics, so that the

first variation is expressed as

∫ tf

t=t0

(δT − δV + δW) dt −
∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt = 0, (42)

where the first term corresponds to dynamics conser-

vative part, and the second one is associated to energy

dissipation. Also, U is a vector field which lumps the

field variables, the initial and final instants of obser-

vation are respectively denoted by t0 and tf , and the

symbol δ represents the variation operator [45].

The development of Eq.(42) results in the following

weak equation of motion

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U) = F

(
ψ,U , U̇ , Ü

)
, (43)

valid for any ψ chosen in a “suitable” space of weight

functions, where the field variables and their correspond-

ing weight functions are represented by the vector fields

U =
(
u, v, w, θx, θy, θz

)
, andψ =

(
ψu, ψv, ψw, ψθx , ψθy , ψθz

)
.
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Furthermore,

M
(
ψ, Ü

)
=

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx + (44)∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx,

represents the mass operator,

C
(
ψ, U̇

)
=

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx + (45)∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx,

is the damping operator,

K (ψ,U) =

∫ L

x=0

E Aψ′u u
′ dx + (46)∫ L

x=0

E I4

(
ψ′θy θ

′
y + ψ′θz θ

′
z

)
dx +∫ L

x=0

2κsGI4 ψ
′
θx θ
′
x dx +∫ L

x=0

κsGA
(
ψθy + ψ′w

) (
θy + w′

)
dx +∫ L

x=0

κsGA
(
ψθz − ψ′v

) (
θz − v′

)
dx,

is the stiffness operator, and

F
(
ψ,U , U̇ , Ü

)
= FKE

(
ψ,U , U̇ , Ü

)
+ (47)

FSE (ψ,U) + FFS (ψ,U) +

FBR

(
ψ, U̇

)
+ FG (ψ) ,

is the force operator, which is divided into five parts. A

nonlinear force due to inertial effects

FKE = −
∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx (48)

+

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx,

a nonlinear force due to geometric nonlinearity

FSE =

∫ L

x=0

(
ψθx Γ1 + ψθy Γ2 + ψθz Γ3

)
dx + (49)∫ L

x=0

(
ψ′u Γ4 + ψ′v Γ5 + ψ′w Γ6

)
dx +∫ L

x=0

(
ψ′θxΓ7 + ψ′θy Γ8 + ψ′θz Γ9

)
dx,

a nonlinear force due to friction and shock effects

FFS =

Nnodes∑
m=1

(
F aFS ψu + FnFS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

(50)

a nonlinear force due to bit-rock interaction

FBR = FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

, (51)

and a linear force due to gravity

FG = −
∫ L

x=0

ρAg ψw dx. (52)

The nonlinear functions Γn, with n = 1, · · · , 9, in

Eq.(49) are very complex and, for sake of space limita-

tion, are not presented in this section. But they can be

seen in Appendix A.

The model presented above is an adaptation, for

horizontal drillstrings, of the model proposed by [41,

39] to describe the nonlinear dynamics of vertical drill-

strings. To be more precise, in the reference problem

gravity is parallel to drillstring main axis, while in this

work, it is perpendicular to the structure primal direc-

tion. Therefore, the former problem primarily addresses

the dynamics of a column, while the new problem deals

with the dynamics of a beam. Also, the original problem

treated the nonlinear dynamics around a pre-stressed

equilibrium configuration, while the new problem does

not consider the dynamics around any particular con-

figuration. It is worth mentioning that changes made in

the modeling of friction and shock effects are significant.

For instance, a nonlinear shock model that also takes

into account the dissipation of energy during an impact

is introduced, in contrast to the reference work, that

only consider the linear elastic deformation effects. In

addition, the boundary conditions are different, as well

as the bit-rock interaction model. On the other hand,

for the sake of simplicity, the fluid structure interac-

tion effects, considered in reference work are neglected

in this study.
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3.2 Initial conditions

With regard to mechanical system initial state, it is

assumed that the beam presents neither displacement

nor rotations, i.e., u(x, 0) = 0, v(x, 0) = 0, w(x, 0) = 0,

θx(x, 0) = 0, θy(x, 0) = 0, and θz(x, 0) = 0. These field

variables, except for u and θx, also have initial velocities

and rate of rotations equal to zero, i.e. v̇(x, 0) = 0,

ẇ(x, 0) = 0, θ̇y(x, 0) = 0, and θ̇z(x, 0) = 0.

It is also assumed that, initially, the beam moves

horizontally with a constant axial velocity V0, and ro-

tates around the x axis with a constant angular velocity

Ω. Thereby, one has that u̇(x, 0) = V0, and θ̇x(x, 0) = Ω.

Projecting the initial conditions in a“suitable”space

of weight functions, weak forms for them are obtained,

respectively, given by

M
(
ψ,U(0)

)
=M (ψ,U0) , (53)

and

M
(
ψ, U̇(0)

)
=M

(
ψ, U̇0

)
, (54)

where U0 = (0, 0, 0, 0, 0, 0) and U̇0 = (V0, 0, 0, Ω, 0, 0).

In formal terms, the weak formulation of the initial–

boundary value problem that describes the mechanical

system nonlinear dynamics consists in find a vector field

U , “sufficiently regular”, which satisfies the weak equa-

tion of motion given by Eq.(43) for all “suitable” ψ,

as well as the weak form of initial conditions, given by

Eqs.(53), and (54) [25].

3.3 Associated linear conservative dynamics

Consider the linear homogeneous equation given by

M
(
ψ, Ü

)
+K (ψ,U) = 0, (55)

obtained from Eq.(43) when one discards the damping,

and force operators, and which is valid for all ψ in the

space of weight functions.

Suppose that Eq.(55) has a solution of the form

U = eiωtφ, where ω is a natural frequency (in rad/s),

φ is the associated normal mode, and i =
√
−1 is

the imaginary unit. Replacing this expression of U in

Eq.(55) and using the linearity of operatorsM, and K,

one gets

(
−ω2M (ψ,φ) +K (ψ,φ)

)
eiωt = 0, (56)

which is equivalent to

−ω2M (ψ,φ) +K (ψ,φ) = 0, (57)

a generalized eigenvalue problem.

Since operator M is positive-definite, and operator

K is positive semi-definite, the generalized eigenvalue

problem above has a denumerable number of solutions.

The solutions of this eigenvalue problem have the form

(ω2
n,φn), where ωn is the n-th natural frequency and

φn is the n-th normal mode [23].

Also, the symmetry of operators M, and K implies

the following orthogonality relations

M (φn,φm) = δnm, and K (φn,φm) = ω2
n δnm, (58)

where δnm represents the Kronecker delta symbol. See

[23] for more details.

The generalized eigenvalue problem of Eq.(57), as

well as the properties of (58), will be useful to construct

a reduced order model for discretized dynamical system

which approximates the solution of the weak initial–

boundary value problem of Eqs.(43), (53), and (54).

4 Computational model for the problem

4.1 Discretization of the nonlinear dynamics

To proceed with the discretization of the weak initial–

boundary value problem of Eqs.(43), (53), and (54),

which describes the rotating beam nonlinear dynamics,

it is used the standard finite element method (FEM)

[25], where the spaces of basis and weight functions are

constructed by the same (finite dimensional) class of

functions.

In this procedure, the beam geometry is discretized

by a FEM mesh with Nelem finite elements. Each one of

these elements is composed by two nodes, and each one

of these nodes has six degrees of freedom associated,

one for each field variable in the beam model described

in section 3.1. Thus, the number of degrees of freedom

associated with FEM model is Ndofs = 6(Nelem + 1).

An illustration of FEM mesh/element can be seen in

Figure 9.

Concerning the shape functions, it is adopted an in-

terdependent interpolation scheme which avoids shear-

locking effect [38]. This scheme uses, for transverse dis-

placements/rotations, Hermite cubic polynomials, and,

for the fields of axial displacement/torsional rotation,

affine functions [2].

Thus, each field variable of the physical model is ap-

proximated by a linear combination of basis functions,

in such way that
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u1

v1
w1

θx1

θy1

θz1

u2

v2
w2

θx2

θy2

θz2

Fig. 9 Illustration of FEM mesh/element used to discretize
the beam geometry.

u(x, t) ≈
Ndofs∑
m=1

Qm(t)Nm(x), (59)

θx(x, t) ≈
Ndofs∑
m=1

Qm(t)Nm(x),

v(x, t) ≈
Ndofs∑
m=1

Qm(t)H(1)
m (x),

w(x, t) ≈
Ndofs∑
m=1

Qm(t)H(1)
m (x),

θy(x, t) ≈
Ndofs∑
m=1

Qm(t)H(2)
m (x),

θz(x, t) ≈
Ndofs∑
m=1

Qm(t)H(2)
m (x),

where Nm(x), H(1)
m (x), and H(2)

m (x) are the (position

dependent) shape functions, and Qm(t) are the (time

dependent) coefficients of the linear combination. In

physical terms, each one of these temporal coefficients

represents a degree of freedom of the FEM model.

The discretization results is the Ndofs×Ndofs non-

linear system of ordinary differential equations given by

[M] Q̈(t) + [C] Q̇(t) + [K]Q(t) = F
(
Q, Q̇, Q̈

)
, (60)

where Q(t) is the nodal displacement vector (transla-

tions and rotations), Q̇(t) is the nodal velocity vector,

and Q̈(t) is the nodal acceleration vector. The other ob-

jects in Eq.(60) are the mass matrix [M], the damping

matrix [C], the stiffness matrix [K], and the force vector

F .

A discretization procedure similar to one presented

above is applied to the initial conditions of Eqs.(53)

and (54), which results in linear systems of algebraic

equations given by

[M]Q(0) = Q0, and [M] Q̇(0) = Q̇0. (61)

4.2 Reduction of finite element model

In order to reduce the dimension of finite element model

developed in section 4.1, it is considered a finite dimen-

sional version of the generalized eigenvalue problem pre-

sented in section 3.3, which is defined by

[K]φn = ω2
n [M]φn. (62)

Due to the properties of M, and K operators, dis-

cussed in section 3.3, and inherited by finite dimensional

operators [M] and [K], the above eigenvalue problem

has Ndofs solutions. But Eq.(62) is solved only for n =

1, 2, · · · , Nred, where the reduced model dimensionNred
is an integer chosen such that Nred � Ndofs.

The procedure that follows consists in project the

nonlinear dynamics, defined by the initial value problem

of Eqs.(60) and (61), into the vector space spanned by

{φ1,φ2, · · · ,φNred
}.

For this purpose, define the Ndofs×Nred projection

matrix by

[Φ] =

 | | |
φ1 φ2 · · · φNred

| | |

 , (63)

make in Eqs.(60) and (61) the change of basis defined

by

Q(t) = [Φ] q(t), (64)

and then pre-multiply the resulting equations by matrix

[Φ]
T
, where superscript T represents the transposition

operation.

This development results in the reduced initial value

problem given by

[M ] q̈(t)+[C] q̇(t)+[K] q(t) = f
(
q(t), q̇(t), q̈(t)

)
, (65)

and

q(0) = q0, and q̇(0) = q̇0, (66)

where q(t) is the reduced displacement vector, q̇(t) is

the reduced velocity vector, q̈(t) is the reduced acceler-

ation vector. The reduced matrices of mass, damping,
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and stiffness, as well as the reduced vectors of force, ini-

tial displacement, and initial velocity are, respectively,

defined by [M ] = [Φ]
T

[M] [Φ], [C] = [Φ]
T

[C] [Φ], [K] =

[Φ]
T

[K] [Φ], f = [Φ]
T F

(
[Φ] q(t), [Φ] q̇(t), [Φ] q̈(t)

)
, q0 =

[Φ]
T
Q0, q̇0 = [Φ]

T
Q̇0. These matrices are Nred×Nred,

while these vectors are Nred × 1. Furthermore, due to

the orthogonality properties defined by Eq.(58), that

are inherited by the operators in finite dimension, these

matrices are diagonal.

Thus, although the initial value problem of Eqs.(65)

and (66) is apparently similar to the one defined by

Eqs.(60) and (61), the former has a structure that makes

it much more efficient in terms of computational cost,

and so, it will be used to analyze the nonlinear dynam-

ics under study.

4.3 Integration of discretized nonlinear dynamics

In order to solve the initial value problem of Eqs.(65)

and (66), it is employed the Newmark method [35],

which defines the following implicit integration scheme

q̇n+1 = q̇n + (1− γ)∆t q̈n + γ∆t q̈n+1, (67)

qn+1 = qn+∆t q̇n+

(
1

2
− β

)
∆t2 q̈n+β ∆t2 q̈n+1, (68)

where qn, q̇n and q̈n are approximations to q(tn), q̇(tn)

and q̈(tn), respectively, and tn = n∆t is an instant

in a temporal mesh defined over the interval [t0, tf ],

with an uniform time step ∆t. The parameters γ and

β are associated with accuracy and stability of the nu-

merical scheme [25], and for the simulations reported

in this work they are assumed as γ = 1/2 + α, and

β = 1/4
(
1/2 + γ

)2
, with α = 15/1000.

Handling up properly Eqs.(67) and (68), and the dis-

crete version of Eq.(65), one arrives in a nonlinear sys-

tem of algebraic equations, with unknown vector qn+1,

which is represented by

ˆ[K]qn+1 = f̂n+1 (qn+1) , (69)

where ˆ[K] is the effective stiffness matrix, and f̂n+1 is

the (nonlinear) effective force vector.

4.4 Incorporation of boundary conditions

As can be seen in Figure 4, the mechanical system has

the following boundary conditions: (i) left extreme with

no transversal displacement, nor transversal rotation;

(ii) right extreme with no transversal displacement. It

is also assumed that the left end has: (iii) constant axial

and rotational velocities in x, respectively equal to V0
and Ω.

Hence, for x = 0, it is true that u(0, t) = V0 t,

v(0, t) = 0, w(0, t) = 0, θx(0, t) = Ω t, θy(0, t) = 0,

and θz(0, t) = 0. On the other hand, for x = L, one has

v(L, t) = 0, and w(L, t) = 0.

The variational formulation presented in section 3.1,

was made for a free-free beam, i.e. the above geometric

boundary conditions were not considered. For this rea-

son, they are included in the formulation as constraints,

using the Lagrange multipliers method [25]. The details

of this procedure are presented below.

Observe that the boundary conditions can be rewrit-

ten in matrix form as

[B]Q(t) = h(t), (70)

where the constraint matrix [B] is 8 × Ndofs and has

almost all entries equal to zero. The exceptions are

[B]ii = 1 for i = {1, · · · , 6}, [B]7(Ndofs−5) = 1, and

[B]8(Ndofs−4) = 1. The constraint vector is given by

h(t) =



u(0, t)

v(0, t)

w(0, t)

θx(0, t)

θy(0, t)

θz(0, t)

v(L, t)

w(L, t)


. (71)

Making the change of basis defined by Eq.(64), one

can rewrite Eq.(70) as

[B] q(t) = h(t), (72)

where the 8×Nred reduced constraint matrix is defined

by [B] = [B] [Φ].

The discretization of Eq.(72) results in

[B] qn+1 = hn+1, (73)

where hn+1 is an approximation to h(tn+1). This equa-

tion defines the constraint that must be satisfied by the

variational problem “approximate solution”.

In what follows it is helpful to think that Eq.(69)

comes from the minimization of an energy functional

qn+1 7→ F (qn+1), which is the weak form of this non-

linear system of algebraic equations.

Then, one defines the Lagrangian as
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L (qn+1,λn+1) = F (qn+1) + λT

n+1

(
[B] qn+1 − hn+1

)
, (74)

being the (time-dependent) Lagrange multipliers vector

of the form

λn+1 =



λ1(tn+1)

λ2(tn+1)

λ3(tn+1)

λ4(tn+1)

λ5(tn+1)

λ6(tn+1)

λ7(tn+1)

λ8(tn+1)


. (75)

Invoking the Lagrangian stationarity condition one

arrives in the following (Nred + 8)× (Nred + 8) system

of nonlinear algebraic equations

[
ˆ[K] [B]

T

[B] [0]

](
qn+1

λn+1

)
=

(
f̂n+1

hn+1

)
, (76)

where [0] is a 8 × 8 null matrix. The unknowns are

qn+1 and λn+1, and must be solved for each instant

of time in the temporal mesh, in order to construct

an approximation to the mechanical system dynamic

response.

The solution of the nonlinear system of algebraic

equations, defined by Eq.(76), is carried out first ob-

taining and solving a discrete Poisson equation for λn+1

[22], and then using the first line of (76) to obtain qn+1.

To solve these equations, a procedure of fixed point iter-

ation is used in combination with a process of successive

over relaxation [66].

5 Probabilistic modeling of system-parameter

uncertainties

The mathematical model used to describe the physical

behavior of the mechanical system is an abstraction of

reality, and its use does not consider some aspects of

the problem physics. Regarding the system modeling,

either the beam theory used to describe the structure

dynamics [41], as the friction and shock model used

[26] are fairly established physical models, who have

gone through several experimental tests to prove their

validity, and have been used for many years in similar

situations. On the other hand, the bit-rock interaction

model adopted in this work, until now was used only

in a purely numeric context [44], without any experi-

mental validation. Thus, it is natural to conclude that

bit-rock interaction law is the weakness of the model

proposed in this work.

In this sense, this work will focus on modeling and

quantifying the uncertainties that are introduced in the

mechanical system by bit-rock interaction model. For

convenience, it was chosen to use a parametric proba-

bilistic approach [56], where only the uncertainties of

system parameters are considered, and the maximum

entropy principle is employed to construct the proba-

bility distributions.

5.1 Probabilistic framework

Let X be a real-valued random variable, defined on a

probability space (Θ,�,P), for which the probability

distribution PX(dx) on R admits a density x 7→ pX(x)

with respect to dx. The support of the probability den-

sity function (PDF) pX will be denoted by SuppX ⊂ R.

The mathematical expectation of X is defined by

E [X] =

∫
SuppX

x pX(x) dx , (77)

and any realization of random variable X will be de-

noted by X(θ) for θ ∈ Θ. Let mX = E [X] be the mean

value, σ2
X = E

[
(X−mX)

2
]

be the variance, and σX =√
σ2
X be the standard deviation of X. The Shannon en-

tropy of pX is defined by S (pX) = −E
[
ln pX(X)

]
.

5.2 Probabilistic model for bit-rock interface law

Recalling that bit-rock interaction force and torque are,

respectively, given by Eqs.(20) and (21), the reader can

see that this bit-rock interface law is characterized by

three parameters, namely, αBR, ΓBR, and µBR. The con-

struction of the probabilistic model for each one param-

eter of these parameters, which are respectively mod-

eled by random variables �BR, �BR, and �BR, is pre-

sented below.

5.3 Distribution of force rate of change

As the rate of change αBR is positive, it is reasonable to

assume Supp�BR =]0,∞[. Therefore, the PDF of �BR is

a nonnegative function p�BR , such that

∫ +∞

α=0

p�BR
(α) dα = 1. (78)
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It is also convenient to assume that the mean value

of �BR is a known positive number, denoted by m�BR
,

i.e.,

E [�BR] = m�BR
> 0. (79)

One also need to require that

E
[
ln (�BR)

]
= q�BR , |q�BR | < +∞, (80)

which ensures, as can be seen in [53, 54, 55], that the

inverse of �BR is second order random variable. This

condition is necessary to guarantee that the stochastic

dynamical system associated to this random variable is

of second order, i.e., it has finite variance. Employing

the principle of maximum entropy one need to maxi-

mize the entropy function S (p�BR), respecting the con-

straints imposed by (78), (79) and (80).

The desired PDF corresponds to the gamma distri-

bution and is given by

p�BR(α) = 1]0,∞[(α)
1

m�BR

(
1

δ2�BR

)1/δ2�BR

× 1

Γ (1/δ2�BR
)

(
α

m�BR

)1/δ2�BR
−1

exp

(
−α

δ2�BR
m�BR

)
,

(81)

where the symbol 1]0,∞[(α) denotes the indicator func-

tion of the interval ]0,∞[, 0 ≤ δ�BR
= σ�BR

/m�BR
<

1/
√

2 is a type of dispersion parameter, and

Γ (z) =

∫ +∞

y=0

yz−1 e−y dy, (82)

is the gamma function.

5.4 Distribution of limit force

The parameter ΓBR is also positive, in a way that

Supp�BR =]0,∞[, and consequently

∫ +∞

γ=0

p�BR
(γ) dγ = 1. (83)

The hypothesis that the mean is a known positive

number m�BR is also done, i.e.,

E [�BR] = m�BR
> 0, (84)

as well as that the technical condition, required for the

stochastic dynamical system associated be of second or-

der, is fulfilled, i.e.

E
[
ln (�BR)

]
= q�BR , |q�BR | < +∞. (85)

In a similar way to the procedure presented in sec-

tion 5.3, it can be shown that PDF of maximum entropy

is also gamma distributed, and given by

p�BR
(γ) = 1]0,∞[(γ)

1

m�BR

(
1

δ2�BR

)1/δ2�BR

× 1

Γ (1/δ2�BR
)

(
γ

m�BR

)1/δ2�BR
−1

exp

(
−γ

δ2�BR
m�BR

)
.

(86)

5.5 Distribution of friction coefficient

With respect to the parameter µBR, one know it is non-

negative and bounded above by the unity. Thus, one

can safely assume that Supp�BR = [0, 1], so that the

normalization condition read as

∫ 1

µ=0

p�BR(µ) dµ = 1. (87)

The following two conditions are also imposed

E
[
ln (�BR)

]
= q1�BR

, |q1�BR
| < +∞, (88)

E
[
ln (1− �BR)

]
= q2�BR

, |q2�BR
| < +∞, (89)

representing a weak decay of the PDF of �BR in 0+ and

1− respectively [53, 54, 55]. Evoking again the principle

of maximum entropy considering now as known infor-

mation the constraints defined by (87), (88), and (89)

one has that the desired PDF is given by

p�BR
(µ) = 1[0,1](µ)

Γ (a+ b)

Γ (a)Γ (b)
µa−1 (1− µ)

b−1
, (90)

which corresponds to the beta distribution

The parameters a and b are associated with the

shape of the probability distribution, and can be re-

lated with m�BR and δ�BR by

a =
m�BR

δ2�BR

(
1

m�BR

− δ2�BR
− 1

)
, (91)
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and

b =
m�BR

δ2�BR

(
1

m�BR

− δ2�BR
− 1

)(
1

m�BR

− 1

)
. (92)

5.6 Stochastic nonlinear dynamical system

Due to the randomness of parameters �BR, �BR, and

�BR, the mechanical system physical behavior is now

described, for all θ in Θ, by the stochastic nonlinear

dynamical system defined by

[M ] q̈(t, θ) + [C] q̇(t, θ) + [K] q(t, θ) = f (q, q̇, q̈) , (93)

q(0, θ) = q0, and q̇(0, θ) = q̇0, a.s. (94)

where q(t) is the random reduced displacement vector,

q̇(t) is the random reduced velocity vector, and q̈(t) is

the random reduced acceleration vector, and f is the

random reduced nonlinear force vector.

The methodology used to calculate the propagation

of uncertainties through this stochastic dynamical sys-

tem is Monte Carlo (MC) method [29], employing a

strategy of parallelization described in [13].

6 Numerical experiments and discussions

In order to simulate the mechanical system nonlinear

dynamics, the physical parameters presented in Table 1

are adopted, as well as L = 100 m, the rotational

and axial velocities in x, respectively given by Ω =

2π rad/s, and V0 = 1/180 m/s. The values of these

parameters do not correspond exactly to actual values

used in a real drillstring, but are of the same order of

magnitude. For this configuration, the beam geometry

is discretized by 500 finite elements, and the interval of

integration [t0, tf ] = [0, 10] s is considered.

For the friction and shock model constants, are con-

sidered the values shown in Table 2, which have order

of magnitude typical of a borehole wall made of steel

[67].The low value for µFS is justified by the fact that, in

a real system, there is a fluid between the column and

borehole wall, which carries a substantial reduction in

the torsional friction.

The bit-rock interaction model constants can be seen

in Table 3, and were estimated following a similar strat-

egy as that shown in [44].

Table 1 Physical parameters of the mechanical system that
are used in the simulation.

parameter value unit

ρ 7900 kg/m3

g 9.81 m/s2

ν 0.3 —
κs 6/7 —
c 0.01 —
E 203× 109 Pa

Rbh 95× 10−3 m

Rint 50× 10−3 m

Rext 80× 10−3 m

Table 2 Parameters of the friction and shock model that are
used in the simulation.

parameter value unit

kFS1 1× 1010 N/m

kFS2 1× 1016 N/m3

cFS 1× 106 (N/m3)/(m/s)
µFS 0.25 —

Table 3 Parameters of the bit-rock interaction model that
are used in the simulation.

parameter value unit

ΓBR 30× 103 N

αBR 400 1/(m/s)
µBR 0.4 —

6.1 “Validation” of the computational model

In order to validate to computational model developed

in this work, the most widely accepted approach would

be through comparison with experimental data [36].

Unfortunately, it is very difficult to obtain such experi-

mental measurements for the type of mechanical system

analyzed in this work. Accordingly, as in many ana-

lyzes of dynamic systems with complex behavior (e.g.

aerospace, automotive, etc), this work used numerical

simulation without experimental analysis. However, it is

clear that such numerical simulations do have meaning,

and are only useful, if prior validation of models, for-

mulations, and numerical simulation software were ob-

tained. In the cases treated, “validations” of the model,

formulation, and software were obtained, step by step,

by comparing the results obtained with the software

with the following reference results: (i) linear static;

(ii) nonlinear static with contact; (iii) linear dynamic

nonrotating without contact; (iv) linear dynamic rotat-

ing without contact; (v) nonlinear nonrotating dynamic

with contacts (shocks); and (vi) nonlinear rotating dy-

namic with contacts (shocks). All tests were performed

and the analyzes were used to “validate” the model, the

formulation, and the results of numerical simulations.
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6.2 Modal analysis of the mechanical system

In this section, the modal content of the mechanical sys-

tem is investigated. This investigation aims to identify

the natural frequencies of the system, and, especially,

to check the influence of slenderness ratio, defined as

the ratio between beam length and external diameter,

in the natural frequencies distribution.

Therefore, the dimensionless frequency band for the

problem is assumed as being B = [0, 4], with the dimen-

sionless frequency defined by

f∗ =
f L

cL
, (95)

where f is the dimensional frequency (Hz), and cL =√
E/ρ is the longitudinal wave velocity. Once it was

defined in terms of a dimensionless frequency, the band

of analysis does not change when the beam length is

varied. Also, the reader can check that this band is rep-

resentative for the mechanical system dynamics, once

the beam rotates at 2π rad/s, which means that it is

excited at 1 Hz.

In Figure 10 one can see the distribution of the flex-

ural modes as a function of dimensionless frequency, for

several values of slenderness ratio. Clearly it is observed

that the flexural modes are denser in the low frequency

range. Further, when the slenderness ratio increases,

the modal density in the low frequencies range tend to

increase.

A completely different behavior is observed for the

torsional and longitudinal (traction-compression) modes

of vibration, as can be seen in Figures 11 and 12, re-

spectively. One can note that, with respect to these two

modes of vibration, the modal distribution is almost

uniform with respect to dimensionless frequency, and

invariant to changes in the slenderness ratio.

It may also be noted from Figures 10 to 12 that

lowest natural frequencies are associated with flexural

mechanism. This is because beam flexural stiffness is

much smaller than torsional stiffness, which, in turn, is

less than axial stiffness. In other words, it is much easier

to bend the beam than twisting it. However, twists the

beam is easier than buckling it.

The dimensionless frequency band adopted in the

analysis corresponds to a maximum dimensional fre-

quency of fmax = 4 cL/L. In this way, a nominal time

step of ∆t = (2 fmax)−1 is adopted for time integration.

This time step is automatically refined by the algorithm

of integration, whenever necessary, to capture the shock

effects.

6.3 Construction of the reduced model

In the reduced model construction, are taken into ac-

count the mechanical system rigid body modes, as well

as the modes of bending, torsion and traction-compression.

The construction strategy consists of including: (i) the

two rigid body modes (translation and rotation); (ii) all

flexural modes such that 0 < f∗ ≤ 5L/cL; (iii) all tor-

sional modes such that 0 < f∗ ≤ 4; (iv) all longitudinal

modes such that 0 < f∗ ≤ 4.

In this way, the total number of modes used in FEM

model is a function of beam length. In Table 4 the

reader can see a comparison, for different values of L,

of the full FEM model dimension and the correspond-

ing reduced order model dimension. Note that using the

above strategy, the reduced model dimension is always

much smaller than the full model dimension.

Table 4 Dimension of the FEM model as a function of beam
length.

beam length full model reduced model
(m) DoFs DoFs

50 306 37
100 3006 49
150 4506 60

6.4 Calculation of static equilibrium configuration

Before the beginning of drilling operation, the drill-

string is inserted into the borehole, without axial veloc-

ity and rotation imposed. Due to gravitational effects,

the column deflects until it reaches a static equilibrium

configuration. This configuration can be calculated by

temporal integration of the dynamical system defined

by Eqs.(65) and (66), assuming zero initial conditions,

i.e., Ω = 0 rad/s, and V0 = 0 m/s. In this way, after

a short transient, the system reaches static equilibrium

and remains in this configuration indefinitely.

An illustration of this equilibrium configuration, for

a 100 m long column is presented in Figure 13. In

this illustration, one can see the mechanical system sec-

tioned by the plane y = 0 m, as well as by the planes

x = {0, 50, 100} m. A visual inspection clearly indi-

cates that this equilibrium is stable. Moreover, as this

equilibrium configuration is the initial state of a real

system, it will be used as initial condition in all other

simulations reported bellow.

An animation which illustrates the beam static equi-

librium calculation can be seen in Online Resource 1.
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Fig. 10 Distribution of the flexural modes as function of dimensionless frequency, for several values of slenderness ratio.
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Fig. 11 Distribution of the torsional modes as function of dimensionless frequency, for several values of slenderness ratio.
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Fig. 12 Distribution of the longitudinal modes as function of dimensionless frequency, for several values of slenderness ratio.

6.5 Drill-bit nonlinear dynamic behavior

The drill-bit longitudinal displacement and velocity, can

be seen in Figure 14. For practical reasons, some scal-

ing factors were introduced in the units of measure of

these quantities. They allow one to read the displace-

ment in “millimeter”, and the velocity in “meters per

hour”. Accordingly, it is noted that, during the interval

of analysis, the column presents an advance in forward

direction with very small axial oscillations for displace-

ment. The axial oscillations for velocity curve are more

pronounced, and correspond to the vibration mecha-

nism known as bit-bounce, where the drill-bit loses con-

tact with the soil and then hits the rock abruptly. This

phenomenon, which is widely observed in real systems

[60], presents itself discreetly in the case analyzed. Note

that the velocity exhibits a mean value of 19.36 “me-

ters per hour”, close to the velocity V0 = 20 “meters

per hour”, which is imposed on the beam left end. Also,

throughout the “temporal window” analyzed, one can

observe packages where the drill-bit velocity presents
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Fig. 13 Illustration of static equilibrium configuration of a horizontal drillstring with 100 m length.

large fluctuations, which can reach up to 40 times the

mean value.

The drill-bit rotation and angular velocity, can be

seen in Figure 15. Now the scale factors allow one to

read rotation in “revolution”, and angular velocity in

“revolution per minute”. Thus, what is observed is a

almost monotonic rotation. However, when one looks

to the angular velocity, it is possible to see packages of

fluctuations with amplitude variations that can reach

up to an order of magnitude. This indicates that drill-

bit undergoes a blockage due to torsional friction, and

then it is released subtly, so that its velocity is sharply

increased, in a stick-slip phenomenon type. This is also

seen experimentally [60] in real drilling systems, and a
serious consequence of this blockage is the reduction of

drilling process efficiency.

6.6 Transverse nonlinear dynamics of the beam

Observing the beam cross section at x = 50 m, for

which transversal displacement (top) and velocity (bot-

tom) are shown in Figure 16, one can see an asymmetry

of the displacement, with respect to the plane z = 0 m.

This is due to gravity, which favors the beam to move

below this plane. Furthermore, one can note that this

signal is composed of “packages”, which has a recurring

oscillatory pattern. As will be seen in section 6.7, these

packages present a strong correlation with the number

of impacts which the mechanical system is subjected.

The evolution of the beam cross-section radial dis-

placement, for x = 50 m, can be seen in Figure 17,

which shows that several transverse impacts occur be-

tween drillstring and borehole wall during the drilling
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Fig. 14 Illustration of drill-bit displacement (top) and drill-
bit velocity (bottom).
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Fig. 15 Illustration of drill-bit rotation (top) and drill-bit
angular velocity (bottom).

process. This fact is also reported experimentally [60],

and is an important cause of damage for both, well and

drillstring.

Note that, after an impact, the oscillations ampli-

tudes decreases until subtly increase sharply, giving rise

to a new impact, and then the entire process repeats

again.

6.7 Influence of transverse impacts on the nonlinear

dynamics

In Figure 18 it is shown the map t ∈ R 7→ number of shocks ∈
N, which associates for any instant t the number of im-

pacts suffered by the mechanical system.

The“packages of fluctuation”observed in Figures 14

to 16 correspond to transitory periods of the dynamical

system, and are highly correlated with the process of

collision between beam and borehole wall. This asser-

tion can be verified if the reader compares the graphs

of Figures 14 to 16 with the graph of Figure 18, which
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Fig. 16 Illustration of transversal displacement (top) and
velocity in z (bottom) when x = 50 m.

shows the existence of “shock packages”. The existence

of a correlation is clearly evident.

Whenever there is a shock, the system“loses it mem-

ory” about previous dynamic behavior, and undergoes

a new transient period until reach a steady state again.

This behavior is repeated 11 times in the “temporal

window” analyzed.

Regarding the distribution of impacts along the beam,

the map x ∈ [0, L] 7→ number of shocks ∈ N, which

associates for any position x the number of impacts suf-

fered by the mechanical system, is shown in Figure 19.

It is clear that impacts do not occur near the beam

ends. This is natural due to the restrictions of move-

ment imposed by the boundary conditions.

The impacts between drillstring and borehole wall

generate nonlinear elastic deformations in the beam,

but without residual deformation effects. In this contact

also occurs energy dissipation, due to the normal shock,

and the torsional friction induced by beam rotation.

These mechanical contacts also activate flexural modes
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Fig. 17 Illustration of beam radial displacement for x =
50 m.
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Fig. 19 Illustration of the number of impacts suffered by the
mechanical system as function of position.

of vibration associated to high natural frequencies, so

that the mechanical system assumes complex spatial

configurations, as can be seen, for several instants, in

Figure 20.

It is also very clear from Figure 20 that, the me-

chanical contacts between beam and borehole wall, do

not occur all the time among discrete points, they can

also be seen along continuous line segments.

For a qualitative illustration of the nonlinear dy-

namics, the reader can see Online Resource 2.

6.8 Spectral analysis of the nonlinear dynamics

All signals presented above, that are associated with

the mechanical system response, have stochastic char-

acteristics. Thereby, for a good understanding of them,

it is necessary to analyze their spectral content through

the power spectral density (PSD) function [37].

The PSDs that are presented in this section (ma-

genta line) were estimated using the periodogram method

[37], and the smooth curves (blue line) appearing were

obtained by a filtering process, using a Savitzky-Golay

filter [48]. The PSDs are measured in dB/Hz, where the

intensity of reference is adopted as being equal to one.

An illustration of PSD functions of drill-bit velocity

and angular velocity is show in Figure 21. One can note

that, for velocity, the two peaks of highest amplitude

correspond to the frequencies 84.55 Hz, and 115.20 Hz,

respectively. These frequencies are very close to the

flexural frequencies 83.65 Hz, and 114.27 Hz, so that

drill-bit axial dynamics is controlled by the transversal

mechanisms of vibration. Furthermore, with respect to

angular velocity, it is noted a peak standing out in rela-

tion to the others. This peak is associated with 7.92 Hz

frequency, which is very close to the flexural frequency

7.63 Hz.

In Figure 22 the reader can see an illustration of

PSD functions of beam transversal velocity in z and

angular velocity around x when x = 50 m. The two

peaks of highest amplitude, for velocity in z, correspond

to the frequencies 143.20 Hz, and 172.50 Hz, respec-

tively. These frequencies are close to the flexural fre-

quencies 144.94 Hz, and 174.07 Hz, which indicates

that lateral vibrations in z, when x = 50 m, are in-

duced by the transversal vibration mechanism. In ad-

dition, in what concerns angular velocity around x, the

two peaks of largest amplitude are associated to the fre-

quencies 6.93 Hz, and 107.10 Hz, respectively close to

the flexural frequencies 6.59 Hz, and 106.18 Hz.

According to Figure 23, flexion is the primary mech-

anism of vibration that causes beam and borehole wall

impacts, since the highest peak of the PSD shown in this
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Fig. 20 Illustration of the mechanical system, for several instants, sectioned by the planes y = 0 m, and x = {0, 50, 100} m.
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Fig. 21 Illustration of power spectral density functions of
drill-bit velocity (top) and angular velocity (bottom).

figure is associated with frequency 57.42 Hz, which is

close to the flexural frequency 57.77 Hz. This result is

consistent with the intuition and with what is reported

in the literature of drillstrings in vertical configuration

[60].

6.9 Analysis of drilling process efficiency

The drilling process efficiency is defined as

E =

∫ tf
t0
Pout dt∫ tf

t0
Pin dt

, (96)

where Pout is the useful (output) power used in the

drilling process, and Pin is the total (input) power in-

jected in the system. The output power is due to drill-

bit movements of translation and rotation so that

Pout = u̇+bit (−FBR)
+

+ ω+
bit (−TBR)

+
, (97)
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Fig. 22 Illustration of power spectral density functions of
beam transversal velocity in z (top) and angular velocity
around x (bottom) when x = 50 m.
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Fig. 24 Illustration of efficiency function contour plot, for an
“operating window” defined by 1/360 m/s ≤ V0 ≤ 1/120 m/s

and 3π/2 rad/s ≤ Ω ≤ 2π rad/s. The maximum is indicated
with a blue cross.

where the upper script + means the function positive

part. The input power is defined as

Pin = u̇(0, t)+ (−λ1)+ + θ̇x(0, t)+ (−λ4)+, (98)

where the first and the fourth Lagrange multipliers, re-

spectively, represent the drilling force and torque on the

beam origin. The reason for considering, in the above

definitions, only functions positive part is that negative

powers do not contribute to the drilling process.

One can observe the contour map of E , for an “oper-

ating window”defined by 1/360 m/s ≤ V0 ≤ 1/120 m/s

and 3π/2 rad/s ≤ Ω ≤ 2π rad/s, in Figure 24. Note

that, by operating window of a drillstring, one means
the subset of R2 that provides acceptable values for the

pair (Ω, V0). In order to facilitate the results interpre-

tation, some scaling factors were introduced in the units

of measure. They allow one to read velocity in “meters

per hour” and rotation in “rotation per minute”.

Accordingly, it can be noted in Figure 24 that the

optimum operating condition is obtained at the point

(V0, Ω) = (1/144 m/s, 5π/3 rad/s), which is indicated

with a blue cross in the graph. This point corresponds

to an efficiency of approximately 16%. Suboptimal op-

eration conditions occur in the vicinity of this point,

and some points near the “operating window” bound-

ary show lower efficiency.

6.10 Optimization of drillstring rate of penetration

In order to optimize the drilling process of an oil well

in horizontal configuration, it is necessary to maximize

the drillstring ROP into the soil.

The instantaneous rate of penetration is given by

the function u̇bit(t), defined for all instants of analy-

sis. Meanwhile, only contributes to the column advance,

the positive part of this function u̇+bit(t). In addition, as

objective function, it is more convenient to consider a

scalar function. Thus, the temporal mean of u̇+bit(t) is

adopted as rate of penetration, and, consequently, ob-

jective function of the optimization problem

rop(Ω, V0) =
1

tf − t0

∫ tf

t=t0

u̇+bit(t) dt. (99)

Furthermore, respect the material structural limits

is indispensable to avoid failures in drillstring during

the drilling process. For this reason, von Mises criterion

of failure is considered, where it is established that, for

all pairs (Ω, V0) in the “operating window”, one has

UTS− max
0≤x≤L
t0≤t≤tf

{
σVM (V0, Ω, x, t)

}
≥ 0, (100)

where UTS is the material ultimate tensile strength, and

σVM is the von Mises equivalent stress.

Regarding the rate of penetration analysis, “operat-

ing window” is defined by the inequations 1/360 m/s ≤
V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s,

and UTS = 650× 106 Pa.

The contour map of constraint (100), is shown in

Figure 25. From the way (100) is written, the Mises

criterion is not satisfied when the function is negative,

which occurs in a “small neighborhood” of the upper

left corner of the rectangle that defines the “operating

window”. It is noted that all other points respect the

material structural limits. In this way, then, the “oper-

ating window” admissible region consists of all points

that satisfy the constraint.

In Figure 26 the reader can see the contour map

of rop function. Taking into account only points in

the admissible region, the maximum of rop occurs at

(V0, Ω) = (7/720 m/s, 2π rad/s), which is indicated

on the graph with a blue cross. This point corresponds

to a mean rate of penetration, during the time interval

analyzed, approximately equal to 90 “meters per hour”.

It is worth remembering that the definition of rop

uses temporal mean of u̇bit(t) positive part. In such a

way, it is not surprising to find the maximum value of

rop much higher than the corresponding velocity, V0
imposed on the column left end. This occurs because,

by taking only the function positive part, the rate of

penetration value increases.

To see how significant is the inclusion of u̇bit(t) pos-

itive part in the definition of rop, the reader can see

Figure 27. This figure shows the same information as
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Fig. 25 Illustration of maximum von Mises stress contour
plot, for an “operating window” defined by 1/360 m/s ≤ V0 ≤
1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.
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Fig. 26 Illustration of rate of penetration function contour
plot, for an “operating window” defined by 1/360 m/s ≤ V0 ≤
1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum
is indicated with a blue cross.

Figure 26, i.e., the contour map of rop function, but

now considering u̇bit(t) instead of u̇+bit(t) in the defini-

tion of rop. Note that, in comparison with the contour

map of Figure 26, lower values for the function levels

are observed, and these values now are closer to V0.

Furthermore, the topology of contour lines change, so

that no local extreme point can be seen isolated. This

example shows the importance of considering u̇+bit(t) in

the definition of rop.

6.11 Probabilistic analysis of the dynamics

For the probabilistic analysis of the dynamic system

a parametric approach is used, where the random pa-

rameters distributions are constructed according to the
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Fig. 27 Illustration of the contour plot of the rate of pene-
tration function, with an alternative definition, for an “oper-
ating window” defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and
3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.

procedure presented in section 5. In this case, the ran-

dom variables of interest are characterized by the mean

values m�BR
= 400 1/m/s, m�BR

= 30 × 103 N , and

m�BR
= 0.4, and the dispersion factors δ�BR

= 0.5%,

δ�BR = 1%, and δ�BR = 0.5%.

To compute the parameters uncertainties propaga-

tion through the model, MC method is employed. To

analyze the convergence of MC simulations, it is taken

into consideration the map ns ∈ N 7→ convMC(ns) ∈ R,

being

convMC(ns) =

 1

ns

ns∑
n=1

∫ tf

t=t0

∥∥q(t, θn)
∥∥2 dt

1/2

, (101)

where ns is the number of MC realizations, and ‖·‖ de-

notes the standard Euclidean norm. This metric allows

one to evaluate the approximation q(t, θn) convergence

in mean-square sense. For further details the reader is

encouraged to see [55].

The evolution of conv(ns) as function of ns can be

seen in Figure 28. Note that for ns = 1024 the metric

value has reached a steady value. In this sense, if some-

thing is not stated otherwise, all the stochastic simula-

tions that follows in this work use ns = 1024.

An illustration of the mean value (blue line), and a

confidence band (grey shadow), wherein a realization of

the stochastic dynamic system has 95% of probability

of being contained, for drill-bit longitudinal displace-

ment and velocity is shown in Figure 29. For sake of

reference, the deterministic model, which the numer-

ical results were presented earlier, is also shown and

called nominal model (red line). It is observed that for
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Fig. 28 This figure illustrates the convergence metric of MC
simulation as function of the number of realizations.

the displacement, mean value and nominal model are

very similar. Meanwhile, for the velocity, mean value

presents oscillations that are correlated with the nomi-

nal model, but with very different amplitudes. Regard-

ing the confidence band, there are significant ampli-

tudes in the instants that corresponds to the fluctua-

tion packages, and negligible amplitudes in the other

moments.

Fixing time in t = 10 s, it is possible to analyze

the behavior of drill-bit longitudinal velocity through

its normalized PDF, which is presented in Figure 30. In

this context normalized means a distribution of proba-

bility with zero mean and unit standard deviation. It is

observed an unimodal behavior, with maximum value

occurring in a neighborhood of the mean value, with

small dispersion around this position.

In Figure 31, the reader can see the nominal model,

the mean value, and the 95% probability envelope of

drill-bit rotation and angular velocity. A good agree-

ment between rotation nominal model and mean value

is observed, and the confidence band around it is neg-

ligible. On the other hand, with respect to the angular

velocity, it is possible to see discrepancies in the nominal

model and mean value amplitudes. These differences oc-

cur in the instants when the system is subject to shocks,

as in the case of drill-bit longitudinal velocity. The band

of uncertainty shows that the dispersion around mean

value increases with time, due to accumulation of un-

certainties, but also in reason of the impacts, once its

amplitude increases a lot near the instants where the

mean value presents large fluctuations, i.e., the instants

which are correlated with the beam and borehole wall

impacts.

For t = 10 s, the reader can see the normalized PDF

of drill-bit angular velocity in Figure 32. It is noted
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Fig. 29 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the drill-bit longitudinal displacement (top)
and velocity (bottom).
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Fig. 30 Illustration of the normalized probability density
function of drill-bit longitudinal velocity.
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Fig. 31 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the drill-bit rotation (top) and angular ve-
locity (bottom).

again an unimodal behavior, with maximum again near

the mean value. But now a large dispersion around the

mean can be seen.

Moreover, in Figure 33 it is shown the nominal model,

the mean value, and the 95% probability envelope of

beam transversal displacement and velocity in z at x =

50 m. Here the mean values of both, velocity and dis-

placement, present correlation with the nominal mod-

els. Indeed, both present discrepancies in the oscillation

amplitudes, especially the velocity, that are more pro-

nounced, as before, in the instants wherein the system is

subject to impacts. The confidence bands present mean-

ingful amplitudes, what evidentiates a certain level of

dispersion around the means, which are more signifi-

cant, as expected, at the instants of impact.

The PDF of drilling process efficiency function is

shown in Figure 34. One can observe a unimodal distri-

bution with the maximum around 16% and wide disper-
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Fig. 32 Illustration of the normalized probability density
function of drill-bit angular velocity.

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

 time (s)

 d
is

pl
ac

em
en

t (
× 

10
−

3  m
)

 transversal displacement in z at x = 50.0 m

 

 

 nominal
 mean value
 95% prob.

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

 time (s)

 v
el

oc
ity

 (
m

/s
)

 transversal velocity in z at x = 50.0 m

 

 

 nominal
 mean value
 95% prob.

Fig. 33 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the beam transversal displacement (top)
and velocity in z (bottom) at x = 50 m.
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Fig. 34 Illustration of the probability density function of the
drilling process efficiency.

0 100 200 300 400
0

100

200

300

400

500

600

 rate of penetration (× 1/3600 m/s)

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

 rate of penetration PDF

Fig. 35 Illustration of the probability density function of the
rate of penetration function.

sion between 0 and 40%, declining rapidly to negligible

values outside this range.

Finally, in Figure 35 one can see the PDF of drill-

string rate of penetration function. One notes an uni-

modal behavior in a narrow range between 20 and 50

“meters per hour”, with the maximum around 30 “me-

ters per hour”.

6.12 Robust optimization of drillstring rate of

penetration

To improve the level of confidence of drilling process op-

timization, uncertainties intrinsic to the problem should

be taken into account. This leads to a robust optimiza-

tion problem, i.e, optimization under uncertainty where

the range of random parameters are known, but not

necessarily their distribution [4, 51, 7, 6, 8, 58, 3].

Taking into account the uncertainties, through the

parametric approach presented in section 5, drill-bit ve-

locity becomes the stochastic process Ubit(t, θ), so that

the random rate of penetration is defined by

ROP(V0, Ω, θ) =
1

tf − t0

∫ tf

t=t0

U̇+
bit(t, θ) dt. (102)

In the robust optimization problem, who plays the

role of objective function is the expected value of the

random variable ROP(V0, Ω, θ), i.e., E
[
ROP(V0, Ω, θ)

]
.

Regarding the restriction imposed by the von Mises

criteria, now the equivalent stress is the random field

�VM (V0, Ω, x, t, θ), so that the inequality is written as

UTS− max
0≤x≤L
t0≤t≤tf

{
�VM (V0, Ω, x, t, θ)

}
≥ 0. (103)

However, the robust optimization problem consid-

ers as restriction a probability of the event defined by

inequality (103),

P

UTS− max
0≤x≤L
t0≤t≤tf

{
�VM (V0, Ω, x, t, θ)

}
≥ 0

 ≥ 1− Prisk,

(104)

where 0 < Prisk < 1 is the risk percentage acceptable

to the problem.

A robust optimization problem very similar to this

one, in the context of a vertical drillstring dynamics, is

considered in [42].

To solve this robust optimization problem it is em-

ployed a trial strategy which discretizes the “operating

window” in a structured grid of points and then eval-

uates the objective function E
[
ROP(V0, Ω, θ)

]
and the

probabilistic constraint (104) in these points.

Accordingly, it is considered the same “operating

window” used in the deterministic optimization prob-

lem solved above, i.e., 1/360 m/s ≤ V0 ≤ 1/90 m/s

and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, in addition to

UTS = 650× 106 Pa and Prisk = 10%. Each MC simu-

lation in this case used 128 realizations to compute the

propagation of uncertainties.

Concerning the simulation results, the probabilis-

tic constraint (104) is respected in all grid points that

discretize the “operating window”. Thus, the admissi-

ble region of robust optimization problem is equal to

the “operating window”. In what follows, the contour

map of function E
[
ROP(V0, Ω, θ)

]
can be see in Fig-

ure 36. Note that the maximum, which is indicated

on the graph with a blue cross, occurs at the point
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(V0, Ω) = (1/90 m/s, 7π/3 rad/s). This point is located

in the boundary of the admissible region, in the upper

right corner, and corresponds to a expected value of

the mean rate of penetration, during the time interval

analyzed, approximately equal to 58 “meters per hour”.

velocity (× 1/3600 m/s)

ro
ta

tio
n 

(×
 2
//

60
 ra

d/
s)

mean ROP (× 1/3600 m/s)

 

 

10 15 20 25 30 35 40
45

50

55

60

65

70

20

25

30

35

40

45

50

55

Fig. 36 Illustration of the contour plot of the mean rate
of penetration function, for an “operating window” defined
by 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤
7π/3 rad/s. The maximum is indicated with a blue cross in
the upper right corner.

This result says that, in the“operating window”con-

sidered here, increasing drillstring rotational and trans-

lational velocities provides the most robust strategy to

maximize its ROP into the soil. This is in some ways

an intuitive result, but is at odds with the result of the

deterministic optimization problem, which provides an-

other strategy to achieve optimum operating condition.

7 Concluding remarks

A model was developed in this work to describe the non-

linear dynamics of horizontal drillstrings. The model

uses a beam theory, with effects of rotatory inertia and

shear deformation, which is capable of reproducing large

displacements that the beam undergoes. This model

also considers the friction and shock effects due to transver-

sal impacts, as well as, the force and torque induced by

bit-rock interaction.

It should be emphasized that the paper not only

proposes a mechanical analysis of this complex dynamic

system, but, through this analysis, also provides a for-

mulation for this type of system, and a methodology,

that can be reused to other rotating slender mechanical

systems subjected to friction and shock effects.

Numerical simulations showed that the mechanical

system of interest has a very rich nonlinear dynam-

ics, which reproduces complex phenomena such as bit-

bounce, stick-slip, and transverse impacts. The study

also indicated that large velocity fluctuations observed

in the phenomena of bit-bounce and stick-slip are corre-

lated with the transverse impacts, i.e., with the number

of shocks per unit time which the system is subjected.

Also, the mechanical impacts cause the beam to as-

sume complex spatial configurations, which are formed

by flexural modes associated to high natural frequen-

cies.

A study aiming to maximize drilling process effi-

ciency, varying drillstring velocities of translation and

rotation was presented. The optimization strategy used

a trial approach to seek for a local maximum, which was

located within “operating window” and corresponds to

an efficiency of approximately 16%.

The probabilistic analysis of the nonlinear dynam-

ics showed that, with respect to the velocities, nominal

model and mean value of the stochastic model differ sig-

nificantly. Furthermore, at the instants which the sys-

tem was subjected to mechanical impacts, it was pos-

sible to see a more pronounced dispersion around the

mean value. Regarding the velocities probability distri-

butions, it was noticed a unimodal behavior essentially.

Two optimizations problems, one deterministic and

one robust, where the objective was to maximize drill-

string rate of penetration into the soil, respecting its

structural limits, were formulated and solved. The solu-

tions of these problems provided two different strategies

to optimize the ROP.

Finally, it sounds stressing that the mathematical

model used in this work has not gone through any pro-

cess of experimental validation. This is because exper-

imental data for this type of system is difficult to be

obtained, and to construct an experimental apparatus

in real scale is virtually impossible. An interesting pro-

posal for future work would be the construction of an

experimental test rig, in reduced scale, that emulates

the main aspects of a real drillstring. The model used

in this study could be validated, following, for instance,

the methodology presented in [1], with the aid of ex-

perimental measurements taken from this reduced ap-

paratus.

A Geometric nonlinearly force coefficients

This appendix presents the coefficients which appears in ge-
ometric nonlinearity force of Eq.(49). For the sake of sav-
ing space, in the following lines it is used the abbreviations:
Sθx = sin θx, and Cθx = cos θx.
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Γ1 = E I4
(
1 + u′

) (
v′ θ′y + w′ θ′z

)
Sθx θ

′
x + (105)

E I4
(
1 + u′

) (
v′ θ′z − w′ θ′y

)
Cθx θ

′
x +

ksGA
(
1 + u′

) (
θz v
′ − θy w′

)
Sθx −

ksGA
(
1 + u′

) (
θy v
′ + θz w

′)Cθx ,
Γ2 = ksGI4

(
θy

(
θ′ 2y + θ′ 2z

)
− θ′x θ′z

)
+ (106)

ksGA
(
−w′ + u′ θy

(
2 + u′

))
−

ksGA
(
1 + u′

) (
v′ Sθx − w

′ Cθx
)
,

Γ3 = ksGI4

(
θz

(
θ′ 2y + θ′ 2z

)
+ θ′x θ

′
y

)
+ (107)

ksGA
(
v′ + u′ θz

(
2 + u′

))
−

ksGA
(
1 + u′

) (
w′ Sθx + v′ Cθx

)
,

Γ4 = EA

(
1

2

(
1 + u′

) (
v′ 2 + w′ 2

)
+

1

2
u′ 2

(
3 + u′

))
+ (108)

E I4

(
Sθx

(
v′ θ′z − w′ θ′y

)
− Cθx

(
v′ θ′y + w′ θ′z

))
θ′x +

E I4
(
1 + u′

)(
θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
+

ksGA
(
Cθx

(
θy w

′ − θz v′
)
− Sθx

(
θy v
′ + θz w

′)) +

ksGA
(
1 + u′

) (
θ2y + θ2z

)
,

Γ5 = EA

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
v′ + (109)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
v′ +

E I4
(
1 + u′

) (
θ′zSθx − θ

′
yCθx

)
θ′x +

ksGA
(
1 + u′

) (
θz − θy Sθx − θz Cθx

)
,

Γ6 = EA

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
w′ + (110)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
w′ +

E I4
(
1 + u′

) (
−θ′y Sθx − θ

′
z Cθx

)
θ′x +

ksGA
(
1 + u′

) (
−θy + θy Cθx − θz Sθx

)
,

Γ7 = E I4

(
u′ 2 + 2

(
u′ + v′ 2 + w′ 2

))
θ′x + (111)

E I4
(
1 + u′

) (
v′ θ′z − w′ θ′y

)
Sθx −

E I4
(
1 + u′

) (
v′ θ′y + w′ θ′z

)
Cθx +

E I6

(
4 θ′ 2x + 2

(
θ′ 2y + θ′ 2z

))
θ′x +

ksGA
(
θz θ
′
y − θy θ′z

)
,

Γ8 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′y + (112)

E I4
(
1 + u′

) (
−w′ Sθx − v

′ Cθx
)
θ′x +

E I6

(
2 θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′y +

ksGI4

(
θz θ
′
x + θ′y

(
θ2y + θ2z

))
,

and

Γ9 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′z + (113)

E I4
(
1 + u′

) (
v′ Sθx − w

′ Cθx
)
θ′x +

E I6

(
2θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′z +

ksGI4

(
−θy θ′x + θ′z

(
θ2y + θ2z

))
.
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