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Introduction

High energy demands of 21st century make that fossil fuels, like oil and shale gas, still have great importance in the energy matrix of several countries. Prospection of these fossil fuels demands the creation of exploratory wells. Traditionally, an exploratory well configuration is vertical, but directional or even horizontal configurations, where the boreholes are drilled following a nonvertical way, are also possible [START_REF] Willoughby | Horizontal Directional Drilling (HDD): Utility and Pipeline Applications[END_REF]. An illustration of the different types of configurations which an exploratory well can take is presented in Figure 1. The equipment used to drill the soil until the reservoir level is called drillstring. This device is a long column, composed of a sequence of connected drill-pipes and auxiliary equipment. Furthermore, within the column flows drilling mud, which is used to cool the drilling system and to remove drilling cuttings from the borehole. The bottom part of this column is called bottom hole assembly (BHA) and consists of a pipe of greater thickness, named drill-colar, and a tool used to stick the rock, the drill-bit [START_REF] Freudenrich | How Oil Drilling Works[END_REF]. The BHA presents stabilizers throughout its length, whose function is to maintain structural integrity of the borehole before cementation process. A schematic representation of a typical vertical drillstring and its components is presented in Figure 2, but a column in horizontal configuration essentially has the same structure. Since the axial dimension of a drillstring is orders of magnitude larger than the characteristic dimension of its cross section area, the column is a long flexible structure with a very complex flexural dynamics. Furthermore, during drilling process, the drillstring is also subjected to other two mechanisms of vibration (longitudinal and torsional), which interact nonlinearly with the flexural mechanism, resulting in a further complicated dynamics [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF]. The coupling between these three mechanisms of vibration, which imposes severe complications on the drillstring dynamics modeling, comes from the action of several agents, such as: structure self weight (for a vertical column); tensile and compressive loads due to the weight on bit (WOB) and soil reaction force; dry friction and impacts with borehole wall; bit-rock interaction forces; internal flow pressure; forces induced by internal flow instabilities; etc [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF].

The dynamics of a drillstring is not a new subject in the technical/scientific literature. Works on this subject, covering experimental analysis, numerical and/or analytical modeling, can be seen since the 1960s. Most of the numerical works developed between 1960s and 1990s, have used lumped parameters approach to gain insight about drillstrings dynamical behavior. On the other hand, the analytical works focused on simple distributed parameters models. Little has been done using finite element-based approaches until the beginning of 1990s. A comprehensive literature survey of the research work produced until 2000 can be found in [START_REF] Chevallier | Nonlinear Stochastic Drilling Vibrations[END_REF] and [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF].

In recent studies, lumped parameters approach have been used, for example, to seek configurations which reduce stick-slip occurrence during drillstring operation [START_REF] Silveira | Low dimensional models for stick-slip vibration of drill-strings[END_REF]; to identify suitable values for drilling system operational parameters [START_REF] Liu | Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects[END_REF]; to analyze the coupling between axial and torsional vibrations and its stability [START_REF] Franca | Experimental and numerical study of a new resonance hammer drilling model with drift[END_REF][START_REF] Divenyi | Drill-string vibration analysis using non-smooth dynamics approach[END_REF][START_REF] Nandakumar | Stability analysis of a state dependent delayed, coupled two DOF model of drill-stringvibration[END_REF][START_REF] Depouhon | Instability regimes and self-excited vibrations in deep drilling systems[END_REF]. On the other hand, approaches based on distributed parameters models have been used to: investigate drillstring failure mechanisms [START_REF] Jansen | Nonlinear Dynamics of Oilwell Drillstrings[END_REF]; better understand transversal impacts between the column and borehole wall [START_REF] Trindade | Karhunen-Loève decomposition of coupled axial/bending vibrations of beams subject to impacts[END_REF]; study the effects induced by the nonlinear coupling between longitudinal and torsional dynamics of the drillstring [START_REF] Sampaio | Coupled axial/torsional vibrations of drill-strings by means of non-linear model[END_REF]; describe the column dynamic behavior taking into account the coupling between the three mechanisms of vibration [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Numerical Analysis of the Nonlinear Dynamics of a Drill-string with Uncertainty Modeling[END_REF]; investigate the chaotic regime which drillstring transverse vibration mechanism is subjected [START_REF] Chatjigeorgiou | Numerical simulation of the chaotic lateral vibrations of long rotating beams[END_REF].

Despite the fact that directional drilling has been used in practical engineering for a few decades, and most of the exploratory wells drilled today be directional in configuration, all the works mentioned above model vertical drillstrings only. To the best of authors' knowledge, there are very few papers in open literature which models drillstring in directional configurations [START_REF] Sahebkar | Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well[END_REF]24,[START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF]. All of these works use a distributed parameters approach, but while [START_REF] Sahebkar | Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well[END_REF][START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF] only address the drillstring longitudinal dynamics, [24] uses generalized Euler-Bernoulli beam theory to describe the drillstring three-dimensional dynamics in a sloped directional well. In [START_REF] Sahebkar | Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well[END_REF], the authors study a sloped configuration for the borehole and uses a perturbation technique to discretize the model equations. Conversely, model equations are discretized by finite element in [START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF].

In addition to the difficulties inherent to the nonlinear dynamics, drillstrings are subjected to randomness on their geometrical dimensions, physical properties, external forcing, etc. The lack of knowledge on these parameters, known as system-parameter uncertainty, is a source of inaccuracies in drillstring modeling, which may, in an extreme case, completely compromise the model predictability [START_REF] Schuëller | A state-of-the-art report on computational stochastic mechanics[END_REF][START_REF] Schuëller | On the treatment of uncertainties in structural mechanics and analysis[END_REF]. Furthermore, during the modeling process, hypotheses about the drillstring physical behavior are made. These considerations may be or not be in agreement with reality and should introduce additional inaccuracies in the model, known as model uncertainty induced by modeling errors [START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF][START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -recent theoretical advances[END_REF]. This source of uncertainty is essentially due to the use of simplified computational model for describing the phenomenon of interest and, usually, is the largest source of inaccuracy in computational model responses [START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF][START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -recent theoretical advances[END_REF].

Therefore, for a better understanding of the drillstring dynamics, these uncertainties must be modeled and quantified. In terms of quantifying these uncertainties for vertical drillstrings, the reader can see [START_REF] Spanos | Nonlinear stochastic drill-string vibrations[END_REF], where external forces are modeled as random objects and the method of statistical linearization is used along with the Monte Carlo (MC) method to treat the stochastic equations of the model. Other works in this line include: [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Numerical Analysis of the Nonlinear Dynamics of a Drill-string with Uncertainty Modeling[END_REF], where system-parameter and model uncertainties are considered using a nonparametric probabilistic approach; and [START_REF] Ritto | Stochastic dynamics of a drill-string with uncertain weight-on-hook[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock parameters[END_REF], which use a standard parametric probabilistic approach to take into account the uncertainties of the system parameters. Regarding the works that model directional configurations, only [START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF] considers the uncertainties, which, in this case, are related to the friction effects due to drillstring/borehole wall contact.

From what is observed above, considering only the theoretical point of view, the study of drillstring nonlinear dynamics is already a rich subject. However, a good understanding of its dynamics also has significant importance in applications. For instance, it is fundamental to predict the fatigue life of the structure [START_REF] Macdonald | Failure analysis of drillstrings[END_REF] and the drill-bit wear [START_REF] Zhu | Analysis of reamer failure based on vibration analysis of the rock breaking in horizontal directional drilling[END_REF]; to analyze the structural integrity of an exploratory well [START_REF] Davies | in press) Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation[END_REF]; to optimize the drill-bit rate of penetration (ROP) of into the soil [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF], and the last is essential to reduce cost of production of an exploratory well.

In this sense, this study aims to analyze the threedimensional nonlinear dynamics of a drillstring in horizontal configuration, taking into account the systemparameter uncertainties. Through this study it is expected to gain a better understanding of drillstring physics and, thus, to improve drilling process efficiency, and maximize the column ROP accordingly. All results presented here were developed in the thesis of [START_REF] Cunha | Modeling and Uncertainty Quantification in the Nonlinear Stochastic Dynamics of a Horizontal Dsrillstrings[END_REF].

The rest of this work is organized as follows. Section 2 presents the mechanical system of interest in this work, its parametrization and modeling from the physical point of view. Mathematical formulation of initial/boundary value problem that describes the mechanical system behavior, as well as the conservative dynamics associated, is shown in section 3. The computational modeling of the problem, which involves model equations discretization, reduction of the discretized dynamics, the algorithms for numerical integration and solution of nonlinear system of algebraic equations, can be seen in section 4. The probabilistic modeling of uncertainties is presented in section 5. Results of numerical simulations are presented and discussed in section 6. Finally, in section 7, the main conclusions are emphasized, and some paths to future works are pointed out.

2 Physical model for the problem

Definition of the mechanical system

The mechanical system of interest in this work, which is schematically represented in Figure 3, consists of a horizontal rigid pipe, perpendicular to gravity, which contains in its interior a deformable tube under rotation. This deformable tube is subjected to three-dimensional displacements, which induces longitudinal, lateral, and torsional vibrations of the structure. These mechanisms of vibration are able to generate slips and shocks in random areas of the rigid tube. Also, the contact between drill-bit, at the right extreme of the tube, with soil generates nonlinear forces and torques on drillstring right extreme, which may completely block the structure advance over the well. 

Nonlinear dynamical system parameterization

For purposes of modeling, the only part of column considered is the BHA. So, any variation of diameter along the column is ignored. In this way, the bottom part of the deformable tube described, in section 2.1, is modeled as a rotating beam in horizontal configuration, whose transverse displacement (y and z) at both ends is blocked, as well as transverse rotations on the left extreme. It looks like the left end of the system is a stabilizer and the right one a support. This beam is free to rotate around the x axis, and to move longitudinally. The rigid pipe is treated as a stationary cylindrical rigid wall in horizontal configuration.

As the beam is confined within the borehole, it is reasonable to assume that it undergoes small rotations in transverse directions. On the other hand, large displacements are observed in x, y, and z, as well as large rotations around the x-axis. Therefore, the analysis that follows uses a beam theory which assumes large rotation in x, large displacements in the three spatial directions, and small deformations [START_REF] Bonet | Nonlinear Continuum Mechanics for Finite Element Analysis[END_REF].

Seeking not to make the mathematical model excessively complex, this work will not model the fluid flow inside the beam, nor the dissipation effects induced by the flow on the system dynamics.

Due to the horizontal configuration, the beam is under action of the gravitational field, which induces an acceleration g. The beam is made of an isotropic material with mass density ρ, elastic modulus E, and Poisson's ratio ν. It has length L and annular cross section, with internal radius R int and external radius R ext .

An illustration of beam geometric model is presented in Figure 4. It is important to note that this model also ignores the mass of drill-bit and its geometric shape. Using the cartesian coordinate system (x, y, z), defined by orthonormal basis {e x , e y , e z }, fixed in the inertial frame of reference R, and shown in Figure 4, one can describe the beam undeformed configuration by

B b = (x, y, z) ∈ R 3 0 ≤ x ≤ L, (y, z) ∈ S b , (1) 
where the beam cross section undeformed configuration is described by

S b = (y, z) ∈ R 2 R 2 int ≤ y 2 + z 2 ≤ R 2 ext . (2) 
With the undeformed cross section configuration characterized, one can define and compute the cross-sectional area,

A = S b dy dz = π R 2 ext -R 2 int , (3) 
the second moment of area around the y axis

I yy = S b z 2 dy dz = I 4 , (4) 
the second moment of area around the z axis

I zz = S b y 2 dy dz = I 4 , (5) 
the polar moment of area

I xx = S b y 2 + z 2 dy dz = 2 I 4 , (6) 
the fourth moment of area around the z axis

I zzzz = S b y 4 dy dz = 3 I 6 , (7) 
and the fourth product of area

I yyzz = S b y 2 z 2 dy dz = I 6 , (8) 
where

I 4 = π 4 R 4 ext -R 4 int , (9) 
and

I 6 = π 24 R 6 ext -R 6 int . (10) 
In this work other three coordinate systems (all of then with the same origin as the (x, y, z) coordinate system) are also used, each one fixed in a non-inertial frame of reference R n , where n = 1, 2, 3, and defined by an orthonormal basis of vectors of the form {e xn , e yn , e zn }.

These systems of coordinates are related by a sequence of elementary rotations, such as follows

R θ x ---→ R 1 θ y ---→ R 2 θ z ---→ R 3 , (x, y, z) (x 1 , y 1 , z 1 ) (x 2 , y 2 , z 2 ) (x 3 , y 3 , z 3 ) ( 11 
)
where θ x is the rotation around the x axis, θ y is the rotation around the y axis, and θ z is the rotation around the z axis. These rotations follow the right hand rule. Thus, with respect to the non-inertial frame of reference, the instantaneous angular velocity of rotating beam is written as

ω = θx e x + θy e y1 + θz e z2 , (12) 
where θx , θy , and θz denote the rate of rotation around the x, y, and z directions, respectively. From now on, upper dot will be used as an abbreviation for time derivative, i.e., ˙ ≡ ∂ ∂t . Referencing vector ω to the inertial frame of reference, and using the assumption of small rotations in transversal directions, one obtains

ω =    θx + θz θ y θy cos θ x -θz sin θ x θy sin θ x + θz cos θ x    . ( 13 
)
Regarding the kinematic hypothesis adopted for beam theory, it is assumed that the three-dimensional displacement of a beam point, occupying position (x, y, z) at instant of time t, can be written as

u x (x, y, z, t) = u -yθ z + zθ y , (14) 
u y (x, y, z, t) = v + y (cos θ x -1) -z sin θ x , u z (x, y, z, t) = w + z (cos θ x -1) + y sin θ x ,
where u x , u y , and u z respectively denote the displacement of a beam point in x, y, and z directions. Moreover, u, v, and w are the displacements of a beam neutral fiber point in x, y, and z directions, respectively. Finally, it is possible to define the vectors

r =    x y z    , v =    u v ẇ    , and θ =    θx θy θz    , (15) 
which, respectively, represent the position of a beam point, the velocity of a neutral fiber point, and the rate of rotation of a neutral fiber point. Note that the kinematic hypothesis of Eq.( 14) is expressed in terms of three spatial coordinates (x, y, and z) and six field variables (u, v, w, θ x , θ y , and θ z ).

It is important to mention that, as the analysis assumed small rotations in y and z, this kinematic hypothesis presents nonlinearities, expressed by trigonometric functions, only in θ x . Besides that, since a beam theory is employed, the field variables in Eq.( 14) depend only on the spatial coordinate x and time t. Therefore, although the kinematic hypothesis of Eq.( 14) is threedimensional, the mathematical model used to describe the beam nonlinear dynamics is one-dimensional.

Modeling of friction and shock effects

When a drillstring deforms laterally, there may occur a mechanical contact between the rotating beam and the borehole wall, such as illustrated in Figure 5. This mechanical contact, which generally take place via a strong impact, gives rise to friction and shock effects [21,[START_REF] Wriggers | Computational Contact Mechanics[END_REF][START_REF] Litewka | Frictional contact between 3D beams[END_REF].

AA AA Fig. 5 Schematic representation of the situation where there is a mechanical contact between a drillstring and the borehole wall.

The modeling of friction and shock phenomena is made in terms of a geometric parameter dubbed indentation, which is defined as

δ FS = r -gap, (16) 
where r = v 2 + w 2 is the neutral fiber lateral displacement, and gap denotes the spacing between the undeformed beam and the borehole wall. One has that δ FS > 0 in case of an impact, or δ FS ≤ 0 otherwise, as can be seen in Figure 6. Note that the indentation corresponds to a measure of penetration in the wall of a beam cross section [21]. When an impact occurs, a normal force of the form

F n FS = -k FS1 δ FS -k FS2 δ 3 FS -c FS |δ| 3 δFS , (17) 
where k FS1 , k FS2 and c FS are constants of the shock model, begins to act on the beam cross section. In this nonlinear shock model, proposed by Hunt and Crossley [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF], the first (linear spring) and the second (nonlinear spring) terms describe the elastic deformation during an impact, while the third term (nonlinear damper) takes into account the loss of energy during an impact.

Once the column is rotating and moving axially, an impact also induces a frictional force in axial direction, F a FS , and a torsional friction torque, T FS . Both are modeled by Coulomb friction law [START_REF] Cull | On the modelling of Coulomb friction[END_REF], so that the force is given by

F a FS = -µ FS F n FS sgn ( u) , (18) 
where the torque is described by

T FS = -µ FS F n FS R bh sgn θx , (19) 
being µ FS the friction coefficient, sgn (•) the sign function, and the radius of the borehole is R bh = R ext +gap.

In order to find all points of contact between the beam and the borehole wall, it is necessary to discover all values of x where δ FS > 0. This is usually done by solving an optimization problem with constraints [START_REF] Wriggers | Algorithms for non-linear contact constraints with application to stability problems of rods and shells[END_REF][START_REF] Wriggers | Computational Contact Mechanics[END_REF].

Although the strategy of detection based on the optimization problem is robust in terms of accuracy, it is extremely complex in terms of implementation and computational cost. For this reason, this work uses an approach that introduces the forces of Eqs.( 17) and [START_REF] Franca | Drilling action of roller-cone bits: modeling and experimental validation[END_REF], and the torque of Eq.( 19), as efforts concentrated on the nodes of finite element mesh, defined in the section 4.1. This procedure sacrifices accuracy, but simplifies the friction and shock model implementation.

Modeling of bit-rock interaction effects

During the drilling process, in response to drillstring rotational advance, a force and a torque of reaction begin to act on the drill-bit, giving rise to the so-called bit-rock interaction effects [START_REF] Detournay | Drilling response of drag bits: Theory and experiment[END_REF][START_REF] Franca | Drilling action of roller-cone bits: modeling and experimental validation[END_REF].

In this work, the model proposed by [START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF] is considered to describe the bit-rock interaction force

F BR =    Γ BR e -αBR ubit -1 for ubit > 0, ( 20 
) 0 for ubit ≤ 0,
where Γ BR is the bit-rock limit force, α BR is the rate of change of bit-rock force, and ubit = u(L, •). The graph of F BR is illustrated in Figure 7. Also, for the bit-rock interaction torque, it is adopted the regularized Coulomb model used by [START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF], which is expressed as where ω bit = θx (L, •), the bit-rock friction coefficient is µ BR , and

T BR = -µ BR F BR R bh ξ BR (ω bit ) , (21) 
ξ BR (ω bit ) = tanh (ω bit ) + 2 ω bit 1 + ω 2 bit , (22) 
is a regularization function. The graph of ξ BR is illustrated in Figure 8.

ω bit ξ BR
Fig. 8 Illustration of the smooth function used to regularize the reaction torque on drill-bit, due to bit-rock interaction effects.

Kinetic energy

The kinetic energy of rotating beam is given by

T = 1 2 B b ρ v • v dx dy dz + (23) 1 2 B b ρ ω • (r • r I -r ⊗ r) ω dx dy dz,
where first triple integral corresponds to beam translational kinetic energy, and the second one is associated to beam rotational kinetic energy. In this equation, I denotes the identity tensor, the symbol • represents the standard inner product between two Euclidean vectors, and the symbol ⊗ is used to designate the tensor product.

Developing the vector operations indicated in Eq.( 23), using (1) and (2) to define the limits of integration, using the definitions of A, I yy , I zz , and I xx , and making the other calculations one can show that Eq.( 23) is equivalent to 

T = 1 2 L x=0 ρ A u2 + v2 + ẇ2 dx + (24)

Strain energy

The analysis of the beam assumes that it is subjected to large displacements, and small deformations. In this way, its strain energy is given by

V = 1 2 B b : σ dx dy dz, (25) 
where denotes the Green-Lagrangian strain tensor, σ is the second Piola-Kirchhoff stress tensor, and the symbol : represents the double inner product between two tensors. It is further considered that the beam is made of an isotropic material, such that stress and strain are related by the following constitutive equation (Hooke's law)

σ = 2 G + λ tr ( ) I, (26) 
where tr (•) represents the trace operator, G is material shear modulus, and λ is used to designate the material first Lamé parameter. In terms of the elastic modulus E and the Poisson's ratio ν, these elastic parameters can be written as

G = E 2 (1 + ν) , and λ = E ν (1 + ν)(1 -2 ν) . (27) 
According to the beam theory used in this work, there is no tension in any cross section of the beam that is perpendicular to x axis, i.e., σ yy = 0, σ zz = 0, σ yz = 0, and σ zy = 0. When this hypothesis is combined with the three-dimensional Hooke's law, represented by Eq.( 26), one can conclude that σ xx = E xx , σ xy = 2 G xy , and σ xz = 2 G xz , which is an onedimensional version of Hooke's law.

Combining this one-dimensional Hooke's law with the stress tensor symmetry, one can express the double contraction between strain and stress tensors, within the integral in Eq.( 25), as a quadratic form

: σ = E 2 xx + 4 G 2 xy + 4 G 2 xz , (28) 
which is modified, by the introduction of shearing factor κ s , as

: σ = E 2 xx + 4 κ s G 2 xy + 4 κ s G 2 xz . (29) 
This modification aims to take into account the effect of shear deformation in the beam cross section area, which is neglected when one uses the one-dimensional Hooke's law. Hence, after replace Eq.( 29) in Eq.( 25), one finally obtains

V = 1 2 B b E 2 xx + 4 κ s G 2 xy + 4 κ s G 2 xz dx dy dz. (30) 
As the analysis is using large displacements, one has

xx = 1 2 ∂ u x ∂x + ∂ u x ∂x + (31) 1 2 ∂ u x ∂x ∂ u x ∂x + ∂ u y ∂x ∂ u y ∂x + ∂ u z ∂x ∂ u z ∂x , xy = 1 2 ∂ u y ∂x + ∂ u x ∂y + (32) 1 2 ∂ u x ∂x ∂ u x ∂y + ∂ u y ∂x ∂ u y ∂y + ∂ u z ∂x ∂ u z ∂y ,
and xz = 1 2 ∂ u z ∂x + ∂ u x ∂z + (33) 1 2 ∂ u x ∂x ∂ u x ∂z + ∂ u y ∂x ∂ u y ∂z + ∂ u z ∂x ∂ u z ∂z ,
where the quadratic terms on the right hand side of the above equations are associated to beam model geometric nonlinearity.

Substituting the kinematic hypothesis of Eq.( 14) in Eqs. [START_REF] Litewka | Frictional contact between 3D beams[END_REF] to [START_REF] Macdonald | Failure analysis of drillstrings[END_REF], and then calculating the partial derivatives, one concludes that the deformations are respectively given by

xx = u -y θ z + z θ y + u z θ y -y θ z -y z θ y θ z + θ x y w -z v cos θ x -y v + z w sin θ x + 1 2 u 2 + v 2 + w 2 + y 2 θ 2 z + z 2 θ 2 y + y 2 + z 2 θ 2 x , (34) xy 
= 1 2 v cos θ x + w sin θ x -z θ x + (35) 1 2 θ z y θ z -zθ y -u -1 ,
and xz = 1 2 w cos θ x -v sin θ x + y θ x + (36) 1 2 θ y -y θ z + zθ y + u + 1 ,
where prime is used as an abbreviation for space derivative, i.e., ≡ ∂ ∂x .

Energy dissipation function

It is assumed that the beam loses energy through a mechanism of viscous dissipation, with a (dimensionless) damping constant c. In this way, there is an energy dissipation function (per unit of length) associated to the system, which is given by

D = 1 2 S b c ρ v • v dy dz + (37) 1 2 S b c ρ θ • (r • r I -r ⊗ r) θ dy dz,
where the first term is a dissipation potential due to the translational movement, and the second term represents a dissipation potential due to the movement of rotation. Making a development almost similar to the one performed to obtain Eq.( 24), it can be shown that

D = 1 2 c ρ A u2 + v2 + ẇ2 + (38) 1 2 c ρ I 4 2 θ2 x + θ2 y + θ2 z .

External forces work

The work done by the external forces acting on the beam is given by

W = - L x=0 ρ A g w dx + W FS + W BR , (39) 
where the first term is due to gravity, the second one is associated to friction and shock effects, and the last term accounts the work done by the force/torque that comes from bit-rock interaction. Note that, due to non-holonomic nature of the forces and torques that comes from the effects of friction/shock, and bit-rock interaction, it is not possible to write explicit formulas for W FS and W FS [30].

However, it is known that the virtual work of W FS , denoted by δW FS , is written as

δW FS = Nnodes m=1 F a FS δu + F n FS (v δv + w δw) /r + T FS δθ x x=xm (40) 
where x m are the global coordinates of finite element nodes, N nodes is the number of nodes in finite element mesh, and δu, δv, δw, and δθ x respectively denote the variations of u, v, w, and θ x .

On the other hand, the virtual work of W BR , denoted by δW BR , reads as

δW BR = F BR δu x=L + T BR δθ x x=L . ( 41 
)
3 Mathematical model for the problem

Equation of motion of the nonlinear dynamics

A modified version of Hamilton's extended principle [30] is employed to derive the equations which describe the mechanical system nonlinear dynamics, so that the first variation is expressed as

tf t=t0 (δT -δV + δW) dt - tf t=t0 L x=0 δU • ∂ D ∂ U dx dt = 0, ( 42 
)
where the first term corresponds to dynamics conservative part, and the second one is associated to energy dissipation. Also, U is a vector field which lumps the field variables, the initial and final instants of observation are respectively denoted by t 0 and t f , and the symbol δ represents the variation operator [START_REF] Sagan | Introduction to the Calculus of Variations[END_REF].

The development of Eq.( 42) results in the following weak equation of motion [START_REF] Ritto | Stochastic dynamics of a drill-string with uncertain weight-on-hook[END_REF] valid for any ψ chosen in a "suitable" space of weight functions, where the field variables and their corresponding weight functions are represented by the vector fields U = u, v, w, θ x , θ y , θ z , and

M ψ, Ü + C ψ, U + K (ψ, U ) = F ψ, U , U , Ü ,
ψ = ψ u , ψ v , ψ w , ψ θx , ψ θy , ψ θz . Furthermore, M ψ, Ü = L x=0 ρ A (ψ u ü + ψ v v + ψ w ẅ) dx + (44) L x=0 ρ I 4 2 ψ θx θx + ψ θy θy + ψ θz θz dx, represents the mass operator, C ψ, U = L x=0 c ρ A (ψ u u + ψ v v + ψ w ẇ) dx + (45) L x=0 c ρ I 4 2 ψ θx θx + ψ θy θy + ψ θz θz dx, is the damping operator, K (ψ, U ) = L x=0 E A ψ u u dx + ( 46 
) L x=0 E I 4 ψ θy θ y + ψ θz θ z dx + L x=0 2 κ s G I 4 ψ θx θ x dx + L x=0 κ s G A ψ θy + ψ w θ y + w dx + L x=0 κ s G A ψ θz -ψ v θ z -v dx,
is the stiffness operator, and

F ψ, U , U , Ü = F KE ψ, U , U , Ü + (47) 
F SE (ψ, U ) + F FS (ψ, U ) + F BR ψ, U + F G (ψ) ,
is the force operator, which is divided into five parts. A nonlinear force due to inertial effects

F KE = - L x=0 2 ρ I 4 ψ θx θ y θz + θy θz dx (48) 
+ L x=0 2 ρ I 4 ψ θy θ y θ2 z + θx θz dx - L x=0 2 ρ I 4 ψ θz θ y θx + θ 2 y θz dx - L x=0
2 ρ I 4 ψ θz θx θy + 2 θ y θy θz dx, a nonlinear force due to geometric nonlinearity

F SE = L x=0 ψ θx Γ 1 + ψ θy Γ 2 + ψ θz Γ 3 dx + (49) L x=0 ψ u Γ 4 + ψ v Γ 5 + ψ w Γ 6 dx + L x=0 ψ θx Γ 7 + ψ θy Γ 8 + ψ θz Γ 9 dx,
a nonlinear force due to friction and shock effects

F FS = Nnodes m=1 F a FS ψ u + F n FS (v ψ v + w ψ w ) /r + T FS ψ θx x=xm (50) 
a nonlinear force due to bit-rock interaction

F BR = F BR ψ u x=L + T BR ψ θx x=L , (51) 
and a linear force due to gravity

F G = - L x=0 ρ A g ψ w dx. (52) 
The nonlinear functions Γ n , with n = 1, • • • , 9, in Eq.( 49) are very complex and, for sake of space limitation, are not presented in this section. But they can be seen in Appendix A.

The model presented above is an adaptation, for horizontal drillstrings, of the model proposed by [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Numerical Analysis of the Nonlinear Dynamics of a Drill-string with Uncertainty Modeling[END_REF] to describe the nonlinear dynamics of vertical drillstrings. To be more precise, in the reference problem gravity is parallel to drillstring main axis, while in this work, it is perpendicular to the structure primal direction. Therefore, the former problem primarily addresses the dynamics of a column, while the new problem deals with the dynamics of a beam. Also, the original problem treated the nonlinear dynamics around a pre-stressed equilibrium configuration, while the new problem does not consider the dynamics around any particular configuration. It is worth mentioning that changes made in the modeling of friction and shock effects are significant. For instance, a nonlinear shock model that also takes into account the dissipation of energy during an impact is introduced, in contrast to the reference work, that only consider the linear elastic deformation effects. In addition, the boundary conditions are different, as well as the bit-rock interaction model. On the other hand, for the sake of simplicity, the fluid structure interaction effects, considered in reference work are neglected in this study.

Initial conditions

With regard to mechanical system initial state, it is assumed that the beam presents neither displacement nor rotations, i.e., u(x, 0) = 0, v(x, 0) = 0, w(x, 0) = 0, θ x (x, 0) = 0, θ y (x, 0) = 0, and θ z (x, 0) = 0. These field variables, except for u and θ x , also have initial velocities and rate of rotations equal to zero, i.e. v(x, 0) = 0, ẇ(x, 0) = 0, θy (x, 0) = 0, and θz (x, 0) = 0.

It is also assumed that, initially, the beam moves horizontally with a constant axial velocity V 0 , and rotates around the x axis with a constant angular velocity Ω. Thereby, one has that u(x, 0) = V 0 , and θx (x, 0) = Ω.

Projecting the initial conditions in a "suitable" space of weight functions, weak forms for them are obtained, respectively, given by

M ψ, U (0) = M (ψ, U 0 ) , (53) 
and

M ψ, U (0) = M ψ, U0 , (54) 
where U 0 = (0, 0, 0, 0, 0, 0) and U0 = (V 0 , 0, 0, Ω, 0, 0). In formal terms, the weak formulation of the initialboundary value problem that describes the mechanical system nonlinear dynamics consists in find a vector field U , "sufficiently regular", which satisfies the weak equation of motion given by Eq.( 43) for all "suitable" ψ, as well as the weak form of initial conditions, given by Eqs. [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], and (54) [START_REF] Hughes | The Finite Element Method[END_REF].

Associated linear conservative dynamics

Consider the linear homogeneous equation given by

M ψ, Ü + K (ψ, U ) = 0, (55) 
obtained from Eq.( 43) when one discards the damping, and force operators, and which is valid for all ψ in the space of weight functions. Suppose that Eq.( 55) has a solution of the form U = e iωt φ, where ω is a natural frequency (in rad/s), φ is the associated normal mode, and i = √ -1 is the imaginary unit. Replacing this expression of U in Eq.( 55) and using the linearity of operators M, and K, one gets

-ω 2 M (ψ, φ) + K (ψ, φ) e iωt = 0, (56) 
which is equivalent to

-ω 2 M (ψ, φ) + K (ψ, φ) = 0, (57) 
a generalized eigenvalue problem. Since operator M is positive-definite, and operator K is positive semi-definite, the generalized eigenvalue problem above has a denumerable number of solutions. The solutions of this eigenvalue problem have the form (ω 2 n , φ n ), where ω n is the n-th natural frequency and φ n is the n-th normal mode [START_REF] Hagedorn | Dynamic characteristics analysis of drillstring in the ultra-deep well with spatial curved beam finite element[END_REF].

Also, the symmetry of operators M, and K implies the following orthogonality relations

M (φ n , φ m ) = δ nm , and K (φ n , φ m ) = ω 2 n δ nm , (58) 
where δ nm represents the Kronecker delta symbol. See [START_REF] Hagedorn | Dynamic characteristics analysis of drillstring in the ultra-deep well with spatial curved beam finite element[END_REF] for more details.

The generalized eigenvalue problem of Eq.( 57), as well as the properties of (58), will be useful to construct a reduced order model for discretized dynamical system which approximates the solution of the weak initialboundary value problem of Eqs.( 43), [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], and ( 54).

Computational model for the problem

Discretization of the nonlinear dynamics

To proceed with the discretization of the weak initialboundary value problem of Eqs.( 43), [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], and [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF], which describes the rotating beam nonlinear dynamics, it is used the standard finite element method (FEM) [START_REF] Hughes | The Finite Element Method[END_REF], where the spaces of basis and weight functions are constructed by the same (finite dimensional) class of functions.

In this procedure, the beam geometry is discretized by a FEM mesh with N elem finite elements. Each one of these elements is composed by two nodes, and each one of these nodes has six degrees of freedom associated, one for each field variable in the beam model described in section 3.1. Thus, the number of degrees of freedom associated with FEM model is N dof s = 6(N elem + 1). An illustration of FEM mesh/element can be seen in Figure 9.

Concerning the shape functions, it is adopted an interdependent interpolation scheme which avoids shearlocking effect [START_REF] Reddy | On locking-free shear deformable beam finite elements[END_REF]. This scheme uses, for transverse displacements/rotations, Hermite cubic polynomials, and, for the fields of axial displacement/torsional rotation, affine functions [START_REF] Bazoune | Shape functions of three-dimensional Timoshenko beam element[END_REF].

Thus, each field variable of the physical model is approximated by a linear combination of basis functions, in such way that

u 1 v 1 w 1 θ x1 θ y1 θ z1 u 2 v 2 w 2 θ x2 θ y2 θ z2
Fig. 9 Illustration of FEM mesh/element used to discretize the beam geometry.

u(x, t) ≈ N dof s m=1 Q m (t) N m (x), (59) 
θ x (x, t) ≈ N dof s m=1 Q m (t) N m (x), v(x, t) ≈ N dof s m=1 Q m (t) H (1) m (x), w(x, t) ≈ N dof s m=1 Q m (t) H (1) m (x), θ y (x, t) ≈ N dof s m=1 Q m (t) H (2) m (x), θ z (x, t) ≈ N dof s m=1 Q m (t) H (2) m (x),
where N m (x), H (1) m (x), and H (2) m (x) are the (position dependent) shape functions, and Q m (t) are the (time dependent) coefficients of the linear combination. In physical terms, each one of these temporal coefficients represents a degree of freedom of the FEM model.

The discretization results is the N dof s × N dof s nonlinear system of ordinary differential equations given by

[M] Q(t) + [C] Q(t) + [K] Q(t) = F Q, Q, Q , ( 60 
)
where Q(t) is the nodal displacement vector (translations and rotations), Q(t) is the nodal velocity vector, and Q(t) is the nodal acceleration vector. The other objects in Eq.( 60) are the mass matrix [M], the damping matrix [C], the stiffness matrix [K], and the force vector F .

A discretization procedure similar to one presented above is applied to the initial conditions of Eqs.( 53) and [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF], which results in linear systems of algebraic equations given by

[M] Q(0) = Q 0 , and [M] Q(0) = Q0 . (61) 

Reduction of finite element model

In order to reduce the dimension of finite element model developed in section 4.1, it is considered a finite dimensional version of the generalized eigenvalue problem presented in section 3.3, which is defined by

[K] φ n = ω 2 n [M] φ n . (62) 
Due to the properties of M, and K operators, discussed in section 3.3, and inherited by finite dimensional operators [M] and [K], the above eigenvalue problem has N dof s solutions. But Eq.( 62) is solved only for n = 1, 2, • • • , N red , where the reduced model dimension N red is an integer chosen such that N red N dof s . The procedure that follows consists in project the nonlinear dynamics, defined by the initial value problem of Eqs.( 60) and ( 61), into the vector space spanned by

{φ 1 , φ 2 , • • • , φ N red }.
For this purpose, define the N dof s × N red projection matrix by

[Φ] =    | | | φ 1 φ 2 • • • φ N red | | |    , (63) 
make in Eqs.( 60) and ( 61) the change of basis defined by

Q(t) = [Φ] q(t), (64) 
and then pre-multiply the resulting equations by matrix [Φ] T , where superscript T represents the transposition operation.

This development results in the reduced initial value problem given by [M ] q(t)+[C] q(t)+[K] q(t) = f q(t), q(t), q(t) , [START_REF] Wriggers | Algorithms for non-linear contact constraints with application to stability problems of rods and shells[END_REF] and q(0) = q 0 , and

q(0) = q0 , (66) 
where q(t) is the reduced displacement vector, q(t) is the reduced velocity vector, q(t) is the reduced acceleration vector. The reduced matrices of mass, damping, and stiffness, as well as the reduced vectors of force, initial displacement, and initial velocity are, respectively, defined by

[M ] = [Φ] T [M] [Φ], [C] = [Φ] T [C] [Φ], [K] = [Φ] T [K] [Φ], f = [Φ] T F [Φ] q(t), [Φ] q(t), [Φ] q(t) , q 0 = [Φ] T Q 0 , q0 = [Φ]
T Q0 . These matrices are N red × N red , while these vectors are N red × 1. Furthermore, due to the orthogonality properties defined by Eq.( 58), that are inherited by the operators in finite dimension, these matrices are diagonal.

Thus, although the initial value problem of Eqs.( 65) and ( 66) is apparently similar to the one defined by Eqs.( 60) and ( 61), the former has a structure that makes it much more efficient in terms of computational cost, and so, it will be used to analyze the nonlinear dynamics under study.

Integration of discretized nonlinear dynamics

In order to solve the initial value problem of Eqs.( 65) and ( 66), it is employed the Newmark method [START_REF] Newmark | A method of computation for structural dynamics[END_REF], which defines the following implicit integration scheme

qn+1 = qn + (1 -γ)∆t qn + γ∆t qn+1 , (67) 
q n+1 = q n +∆t qn + 1 2 -β ∆t 2 qn +β ∆t 2 qn+1 , ( 68 
)
where q n , qn and qn are approximations to q(t n ), q(t n ) and q(t n ), respectively, and t n = n∆t is an instant in a temporal mesh defined over the interval [t 0 , t f ], with an uniform time step ∆t. The parameters γ and β are associated with accuracy and stability of the numerical scheme [START_REF] Hughes | The Finite Element Method[END_REF], and for the simulations reported in this work they are assumed as γ = 1/2 + α, and β = 1/4 1/2 + γ 2 , with α = 15/1000.

Handling up properly Eqs.( 67) and ( 68), and the discrete version of Eq.( 65), one arrives in a nonlinear system of algebraic equations, with unknown vector q n+1 , which is represented by

[K]q n+1 = fn+1 (q n+1 ) , (69) 
where [K] is the effective stiffness matrix, and fn+1 is the (nonlinear) effective force vector.

Incorporation of boundary conditions

As can be seen in Figure 4, the mechanical system has the following boundary conditions: (i) left extreme with no transversal displacement, nor transversal rotation;

(ii) right extreme with no transversal displacement. It is also assumed that the left end has: (iii) constant axial and rotational velocities in x, respectively equal to V 0 and Ω. Hence, for x = 0, it is true that u(0, t) = V 0 t, v(0, t) = 0, w(0, t) = 0, θ x (0, t) = Ω t, θ y (0, t) = 0, and θ z (0, t) = 0. On the other hand, for x = L, one has v(L, t) = 0, and w(L, t) = 0.

The variational formulation presented in section 3.1, was made for a free-free beam, i.e. the above geometric boundary conditions were not considered. For this reason, they are included in the formulation as constraints, using the Lagrange multipliers method [START_REF] Hughes | The Finite Element Method[END_REF]. The details of this procedure are presented below.

Observe that the boundary conditions can be rewritten in matrix form as

[B] Q(t) = h(t), (70) 
where the constraint matrix [B] is 8 × N dof s and has almost all entries equal to zero. The exceptions are

[B] ii = 1 for i = {1, • • • , 6}, [B] 7(N dof s -5) = 1, and [B] 8(N dof s -4) = 1.
The constraint vector is given by

h(t) =              u(0, t) v(0, t) w(0, t) θ x (0, t) θ y (0, t) θ z (0, t) v(L, t) w(L, t)              . ( 71 
)
Making the change of basis defined by Eq.( 64), one can rewrite Eq.(70) as

[B] q(t) = h(t), (72) 
where the 8 × N red reduced constraint matrix is defined by

[B] = [B] [Φ].
The discretization of Eq.(72) results in

[B] q n+1 = h n+1 , (73) 
where h n+1 is an approximation to h(t n+1 ). This equation defines the constraint that must be satisfied by the variational problem "approximate solution".

In what follows it is helpful to think that Eq.(69) comes from the minimization of an energy functional q n+1 → F (q n+1 ), which is the weak form of this nonlinear system of algebraic equations.

Then, one defines the Lagrangian as

L (q n+1 , λ n+1 ) = F (q n+1 ) + λ T n+1 [B] q n+1 -h n+1 , (74) 
being the (time-dependent) Lagrange multipliers vector of the form

λ n+1 =              λ 1 (t n+1 ) λ 2 (t n+1 ) λ 3 (t n+1 ) λ 4 (t n+1 ) λ 5 (t n+1 ) λ 6 (t n+1 ) λ 7 (t n+1 ) λ 8 (t n+1 )              . ( 75 
)
Invoking the Lagrangian stationarity condition one arrives in the following (N red + 8) × (N red + 8) system of nonlinear algebraic equations

[K] [B] T [B] [0] q n+1 λ n+1 = fn+1 h n+1 , (76) 
where [0] is a 8 × 8 null matrix. The unknowns are q n+1 and λ n+1 , and must be solved for each instant of time in the temporal mesh, in order to construct an approximation to the mechanical system dynamic response.

The solution of the nonlinear system of algebraic equations, defined by Eq.( 76), is carried out first obtaining and solving a discrete Poisson equation for λ n+1 [START_REF] Golub | Matrix Computations, 4th edn[END_REF], and then using the first line of (76) to obtain q n+1 . To solve these equations, a procedure of fixed point iteration is used in combination with a process of successive over relaxation [START_REF] Young | Iterative Solution of Large Linear Systems[END_REF].

Probabilistic modeling of system-parameter uncertainties

The mathematical model used to describe the physical behavior of the mechanical system is an abstraction of reality, and its use does not consider some aspects of the problem physics. Regarding the system modeling, either the beam theory used to describe the structure dynamics [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF], as the friction and shock model used [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF] are fairly established physical models, who have gone through several experimental tests to prove their validity, and have been used for many years in similar situations. On the other hand, the bit-rock interaction model adopted in this work, until now was used only in a purely numeric context [START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF], without any experimental validation. Thus, it is natural to conclude that bit-rock interaction law is the weakness of the model proposed in this work.

In this sense, this work will focus on modeling and quantifying the uncertainties that are introduced in the mechanical system by bit-rock interaction model. For convenience, it was chosen to use a parametric probabilistic approach [START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF], where only the uncertainties of system parameters are considered, and the maximum entropy principle is employed to construct the probability distributions.

Probabilistic framework

Let X be a real-valued random variable, defined on a probability space (Θ, Σ, P), for which the probability distribution P X (dx) on R admits a density x → p X (x) with respect to dx. The support of the probability density function (PDF) p X will be denoted by Supp X ⊂ R. The mathematical expectation of X is defined by

E [X] = Supp X x p X (x) dx , (77) 
and any realization of random variable X will be denoted by

X(θ) for θ ∈ Θ. Let m X = E [X] be the mean value, σ 2 X = E (X -m X )
2 be the variance, and σ X = σ 2 X be the standard deviation of X. The Shannon entropy of p X is defined by S (p X ) = -E ln p X (X) .

Probabilistic model for bit-rock interface law

Recalling that bit-rock interaction force and torque are, respectively, given by Eqs.( 20) and (21), the reader can see that this bit-rock interface law is characterized by three parameters, namely, α BR , Γ BR , and µ BR . The construction of the probabilistic model for each one parameter of these parameters, which are respectively modeled by random variables α BR , Γ BR , and µ BR , is presented below.

Distribution of force rate of change

As the rate of change α BR is positive, it is reasonable to assume Supp α BR =]0, ∞[. Therefore, the PDF of α BR is a nonnegative function p αBR , such that

+∞ α=0 p αBR (α) dα = 1. ( 78 
)
It is also convenient to assume that the mean value of α BR is a known positive number, denoted by m αBR , i.e.,

E [α BR ] = m αBR > 0. ( 79 
)
One also need to require that

E ln (α BR ) = q αBR , |q αBR | < +∞, (80) 
which ensures, as can be seen in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | A comprehensive overview of a nonparametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF], that the inverse of α BR is second order random variable. This condition is necessary to guarantee that the stochastic dynamical system associated to this random variable is of second order, i.e., it has finite variance. Employing the principle of maximum entropy one need to maximize the entropy function S (p αBR ), respecting the constraints imposed by ( 78), ( 79) and (80).

The desired PDF corresponds to the gamma distribution and is given by

p αBR (α) = 1 ]0,∞[ (α) 1 m αBR 1 δ 2 αBR 1/δ 2 α BR × 1 Γ (1/δ 2 αBR ) α m αBR 1/δ 2 α BR -1 exp -α δ 2 αBR m αBR , (81) 
where the symbol 1 ]0,∞[ (α) denotes the indicator function of the interval ]0, ∞[, 0 ≤ δ αBR = σ αBR /m αBR < 1/ √ 2 is a type of dispersion parameter, and

Γ (z) = +∞ y=0 y z-1 e -y dy, (82) 
is the gamma function.

Distribution of limit force

The parameter Γ BR is also positive, in a way that Supp Γ BR =]0, ∞[, and consequently

+∞ γ=0 p ΓBR (γ) dγ = 1. ( 83 
)
The hypothesis that the mean is a known positive number m ΓBR is also done, i.e.,

E [Γ BR ] = m ΓBR > 0, (84) 
as well as that the technical condition, required for the stochastic dynamical system associated be of second order, is fulfilled, i.e.

E ln (Γ

BR ) = q ΓBR , |q ΓBR | < +∞. ( 85 
)
In a similar way to the procedure presented in section 5.3, it can be shown that PDF of maximum entropy is also gamma distributed, and given by

p ΓBR (γ) = 1 ]0,∞[ (γ) 1 m ΓBR 1 δ 2 ΓBR 1/δ 2 Γ BR × 1 Γ (1/δ 2 ΓBR ) γ m ΓBR 1/δ 2 Γ BR -1 exp -γ δ 2 ΓBR m ΓBR . (86)

Distribution of friction coefficient

With respect to the parameter µ BR , one know it is nonnegative and bounded above by the unity. Thus, one can safely assume that Supp µ BR = [0, 1], so that the normalization condition read as

1 µ=0 p µBR (µ) dµ = 1. ( 87 
)
The following two conditions are also imposed

E ln (µ BR ) = q 1 µBR , |q 1 µBR | < +∞, ( 88 
) E ln (1 -µ BR ) = q 2 µBR , |q 2 µBR | < +∞, (89) 
representing a weak decay of the PDF of µ BR in 0 + and 1 -respectively [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | A comprehensive overview of a nonparametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF]. Evoking again the principle of maximum entropy considering now as known information the constraints defined by (87), (88), and (89) one has that the desired PDF is given by

p µBR (µ) = 1 [0,1] (µ) Γ (a + b) Γ (a) Γ (b) µ a-1 (1 -µ) b-1 , (90) 
which corresponds to the beta distribution The parameters a and b are associated with the shape of the probability distribution, and can be related with m µBR and δ µBR by

a = m µBR δ 2 µBR 1 m µBR -δ 2 µBR -1 , (91) and b 
= m µBR δ 2 µBR 1 m µBR -δ 2 µBR -1 1 m µBR -1 . (92) 

Stochastic nonlinear dynamical system

Due to the randomness of parameters α BR , Γ BR , and µ BR , the mechanical system physical behavior is now described, for all θ in Θ, by the stochastic nonlinear dynamical system defined by

[M ] q(t, θ) + [C] q(t, θ) + [K] q(t, θ) = f (q, q, q) , (93) q(0, θ) = q 0 , and q(0, θ) = q0 , a.s.

where q(t) is the random reduced displacement vector, q(t) is the random reduced velocity vector, and q(t) is the random reduced acceleration vector, and f is the random reduced nonlinear force vector.

The methodology used to calculate the propagation of uncertainties through this stochastic dynamical system is Monte Carlo (MC) method [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF], employing a strategy of parallelization described in [START_REF] Cunha | Uncertainty quantification through Monte Carlo method in a cloud computing setting[END_REF].

Numerical experiments and discussions

In order to simulate the mechanical system nonlinear dynamics, the physical parameters presented in Table 1 are adopted, as well as L = 100 m, the rotational and axial velocities in x, respectively given by Ω = 2π rad/s, and V 0 = 1/180 m/s. The values of these parameters do not correspond exactly to actual values used in a real drillstring, but are of the same order of magnitude. For this configuration, the beam geometry is discretized by 500 finite elements, and the interval of integration [t 0 , t f ] = [0, 10] s is considered.

For the friction and shock model constants, are considered the values shown in Table 2, which have order of magnitude typical of a borehole wall made of steel [START_REF] Zhang | Validation of nonlinear viscoelastic contact force models for low speed impact[END_REF].The low value for µ FS is justified by the fact that, in a real system, there is a fluid between the column and borehole wall, which carries a substantial reduction in the torsional friction.

The bit-rock interaction model constants can be seen in Table 3, and were estimated following a similar strategy as that shown in [START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF]. 

"Validation" of the computational model

In order to validate to computational model developed in this work, the most widely accepted approach would be through comparison with experimental data [START_REF] Oberkampf | Verification and Validation in Scientific Computing[END_REF]. Unfortunately, it is very difficult to obtain such experimental measurements for the type of mechanical system analyzed in this work. Accordingly, as in many analyzes of dynamic systems with complex behavior (e.g. aerospace, automotive, etc), this work used numerical simulation without experimental analysis. However, it is clear that such numerical simulations do have meaning, and are only useful, if prior validation of models, formulations, and numerical simulation software were obtained. In the cases treated, "validations" of the model, formulation, and software were obtained, step by step, by comparing the results obtained with the software with the following reference results: (i) linear static;

(ii) nonlinear static with contact; (iii) linear dynamic nonrotating without contact; (iv) linear dynamic rotating without contact; (v) nonlinear nonrotating dynamic with contacts (shocks); and (vi) nonlinear rotating dynamic with contacts (shocks). All tests were performed and the analyzes were used to "validate" the model, the formulation, and the results of numerical simulations.

Modal analysis of the mechanical system

In this section, the modal content of the mechanical system is investigated. This investigation aims to identify the natural frequencies of the system, and, especially, to check the influence of slenderness ratio, defined as the ratio between beam length and external diameter, in the natural frequencies distribution. Therefore, the dimensionless frequency band for the problem is assumed as being B = [0, 4], with the dimensionless frequency defined by

f * = f L c L , ( 95 
)
where f is the dimensional frequency (Hz), and c L = E/ρ is the longitudinal wave velocity. Once it was defined in terms of a dimensionless frequency, the band of analysis does not change when the beam length is varied. Also, the reader can check that this band is representative for the mechanical system dynamics, once the beam rotates at 2π rad/s, which means that it is excited at 1 Hz.

In Figure 10 one can see the distribution of the flexural modes as a function of dimensionless frequency, for several values of slenderness ratio. Clearly it is observed that the flexural modes are denser in the low frequency range. Further, when the slenderness ratio increases, the modal density in the low frequencies range tend to increase.

A completely different behavior is observed for the torsional and longitudinal (traction-compression) modes of vibration, as can be seen in Figures 11 and12, respectively. One can note that, with respect to these two modes of vibration, the modal distribution is almost uniform with respect to dimensionless frequency, and invariant to changes in the slenderness ratio.

It may also be noted from Figures 10 to 12 that lowest natural frequencies are associated with flexural mechanism. This is because beam flexural stiffness is much smaller than torsional stiffness, which, in turn, is less than axial stiffness. In other words, it is much easier to bend the beam than twisting it. However, twists the beam is easier than buckling it.

The dimensionless frequency band adopted in the analysis corresponds to a maximum dimensional frequency of f max = 4 c L /L. In this way, a nominal time step of ∆t = (2 f max ) -1 is adopted for time integration. This time step is automatically refined by the algorithm of integration, whenever necessary, to capture the shock effects.

Construction of the reduced model

In the reduced model construction, are taken into account the mechanical system rigid body modes, as well as the modes of bending, torsion and traction-compression. The construction strategy consists of including: (i) the two rigid body modes (translation and rotation); (ii) all flexural modes such that 0 < f * ≤ 5 L/c L ; (iii) all torsional modes such that 0 < f * ≤ 4; (iv) all longitudinal modes such that 0 < f * ≤ 4.

In this way, the total number of modes used in FEM model is a function of beam length. In Table 4 the reader can see a comparison, for different values of L, of the full FEM model dimension and the corresponding reduced order model dimension. Note that using the above strategy, the reduced model dimension is always much smaller than the full model dimension. 

Calculation of static equilibrium configuration

Before the beginning of drilling operation, the drillstring is inserted into the borehole, without axial velocity and rotation imposed. Due to gravitational effects, the column deflects until it reaches a static equilibrium configuration. This configuration can be calculated by temporal integration of the dynamical system defined by Eqs.( 65) and ( 66), assuming zero initial conditions, i.e., Ω = 0 rad/s, and V 0 = 0 m/s. In this way, after a short transient, the system reaches static equilibrium and remains in this configuration indefinitely. An illustration of this equilibrium configuration, for a 100 m long column is presented in Figure 13. In this illustration, one can see the mechanical system sectioned by the plane y = 0 m, as well as by the planes x = {0, 50, 100} m. A visual inspection clearly indicates that this equilibrium is stable. Moreover, as this equilibrium configuration is the initial state of a real system, it will be used as initial condition in all other simulations reported bellow.

An animation which illustrates the beam static equilibrium calculation can be seen in Online Resource 1. 

Drill-bit nonlinear dynamic behavior

The drill-bit longitudinal displacement and velocity, can be seen in Figure 14. For practical reasons, some scaling factors were introduced in the units of measure of these quantities. They allow one to read the displacement in "millimeter", and the velocity in "meters per hour". Accordingly, it is noted that, during the interval of analysis, the column presents an advance in forward direction with very small axial oscillations for displacement. The axial oscillations for velocity curve are more pronounced, and correspond to the vibration mechanism known as bit-bounce, where the drill-bit loses contact with the soil and then hits the rock abruptly. This phenomenon, which is widely observed in real systems [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF], presents itself discreetly in the case analyzed. Note that the velocity exhibits a mean value of 19.36 "meters per hour", close to the velocity V 0 = 20 "meters per hour", which is imposed on the beam left end. Also, throughout the "temporal window" analyzed, one can observe packages where the drill-bit velocity presents The drill-bit rotation and angular velocity, can be seen in Figure 15. Now the scale factors allow one to read rotation in "revolution", and angular velocity in "revolution per minute". Thus, what is observed is a almost monotonic rotation. However, when one looks to the angular velocity, it is possible to see packages of fluctuations with amplitude variations that can reach up to an order of magnitude. This indicates that drillbit undergoes a blockage due to torsional friction, and then it is released subtly, so that its velocity is sharply increased, in a stick-slip phenomenon type. This is also seen experimentally [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF] in real drilling systems, and a serious consequence of this blockage is the reduction of drilling process efficiency.

Transverse nonlinear dynamics of the beam

Observing the beam cross section at x = 50 m, for which transversal displacement (top) and velocity (bottom) are shown in Figure 16, one can see an asymmetry of the displacement, with respect to the plane z = 0 m. This is due to gravity, which favors the beam to move below this plane. Furthermore, one can note that this signal is composed of "packages", which has a recurring oscillatory pattern. As will be seen in section 6.7, these packages present a strong correlation with the number of impacts which the mechanical system is subjected.

The evolution of the beam cross-section radial displacement, for x = 50 m, can be seen in Figure 17, which shows that several transverse impacts occur between drillstring and borehole wall during the drilling process. This fact is also reported experimentally [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF], and is an important cause of damage for both, well and drillstring.

Note that, after an impact, the oscillations amplitudes decreases until subtly increase sharply, giving rise to a new impact, and then the entire process repeats again.

Influence of transverse impacts on the nonlinear dynamics

In Figure 18 it is shown the map t ∈ R → number of shocks ∈ N, which associates for any instant t the number of impacts suffered by the mechanical system.

The "packages of fluctuation" observed in Figures 14 to 16 correspond to transitory periods of the dynamical system, and are highly correlated with the process of collision between beam and borehole wall. This assertion can be verified if the reader compares the graphs of Figures 14 to 16 with the graph of Figure 18, which
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transversal displacement in z at x = 50.0 m shows the existence of "shock packages". The existence of a correlation is clearly evident. Whenever there is a shock, the system "loses it memory" about previous dynamic behavior, and undergoes a new transient period until reach a steady state again. This behavior is repeated 11 times in the "temporal window" analyzed.
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Regarding the distribution of impacts along the beam, the map x ∈ [0, L] → number of shocks ∈ N, which associates for any position x the number of impacts suffered by the mechanical system, is shown in Figure 19. It is clear that impacts do not occur near the beam ends. This is natural due to the restrictions of movement imposed by the boundary conditions.

The impacts between drillstring and borehole wall generate nonlinear elastic deformations in the beam, but without residual deformation effects. In this contact also occurs energy dissipation, due to the normal shock, and the torsional friction induced by beam rotation. These mechanical contacts also activate flexural modes of vibration associated to high natural frequencies, so that the mechanical system assumes complex spatial configurations, as can be seen, for several instants, in Figure 20.

It is also very clear from Figure 20 that, the mechanical contacts between beam and borehole wall, do not occur all the time among discrete points, they can also be seen along continuous line segments.

For a qualitative illustration of the nonlinear dynamics, the reader can see Online Resource 2.

Spectral analysis of the nonlinear dynamics

All signals presented above, that are associated with the mechanical system response, have stochastic characteristics. Thereby, for a good understanding of them, it is necessary to analyze their spectral content through the power spectral density (PSD) function [START_REF] Oppenheim | Discrete-Time Signal Processing[END_REF].

The PSDs that are presented in this section (magenta line) were estimated using the periodogram method [START_REF] Oppenheim | Discrete-Time Signal Processing[END_REF], and the smooth curves (blue line) appearing were obtained by a filtering process, using a Savitzky-Golay filter [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF]. The PSDs are measured in dB/Hz, where the intensity of reference is adopted as being equal to one.

An illustration of PSD functions of drill-bit velocity and angular velocity is show in Figure 21. One can note that, for velocity, the two peaks of highest amplitude correspond to the frequencies 84.55 Hz, and 115.20 Hz, respectively. These frequencies are very close to the flexural frequencies 83.65 Hz, and 114.27 Hz, so that drill-bit axial dynamics is controlled by the transversal mechanisms of vibration. Furthermore, with respect to angular velocity, it is noted a peak standing out in relation to the others. This peak is associated with 7.92 Hz frequency, which is very close to the flexural frequency 7.63 Hz.

In Figure 22 the reader can see an illustration of PSD functions of beam transversal velocity in z and angular velocity around x when x = 50 m. The two peaks of highest amplitude, for velocity in z, correspond to the frequencies 143.20 Hz, and 172.50 Hz, respectively. These frequencies are close to the flexural frequencies 144.94 Hz, and 174.07 Hz, which indicates that lateral vibrations in z, when x = 50 m, are induced by the transversal vibration mechanism. In addition, in what concerns angular velocity around x, the two peaks of largest amplitude are associated to the frequencies 6.93 Hz, and 107.10 Hz, respectively close to the flexural frequencies 6.59 Hz, and 106.18 Hz.

According to Figure 23, flexion is the primary mechanism of vibration that causes beam and borehole wall impacts, since the highest peak of the PSD shown in this figure is associated with frequency 57.42 Hz, which is close to the flexural frequency 57.77 Hz. This result is consistent with the intuition and with what is reported in the literature of drillstrings in vertical configuration [START_REF] Spanos | Oil and gas well drilling: a vibrations perspective[END_REF].

Analysis of drilling process efficiency

The drilling process efficiency is defined as

E = t f t0 P out dt t f t0 P in dt , (96) 
where P out is the useful (output) power used in the drilling process, and P in is the total (input) power injected in the system. The output power is due to drillbit movements of translation and rotation so that where the upper script + means the function positive part. The input power is defined as

P out = u+ bit (-F BR ) + + ω + bit (-T BR ) + , (97) 
P in = u(0, t) + (-λ 1 ) + + θx (0, t) + (-λ 4 ) + , (98) 
where the first and the fourth Lagrange multipliers, respectively, represent the drilling force and torque on the beam origin. The reason for considering, in the above definitions, only functions positive part is that negative powers do not contribute to the drilling process. One can observe the contour map of E, for an "operating window" defined by 1/360 m/s ≤ V 0 ≤ 1/120 m/s and 3π/2 rad/s ≤ Ω ≤ 2π rad/s, in Figure 24. Note that, by operating window of a drillstring, one means the subset of R 2 that provides acceptable values for the pair (Ω, V 0 ). In order to facilitate the results interpretation, some scaling factors were introduced in the units of measure. They allow one to read velocity in "meters per hour" and rotation in "rotation per minute".

Accordingly, it can be noted in Figure 24 that the optimum operating condition is obtained at the point (V 0 , Ω) = (1/144 m/s, 5π/3 rad/s), which is indicated with a blue cross in the graph. This point corresponds to an efficiency of approximately 16%. Suboptimal operation conditions occur in the vicinity of this point, and some points near the "operating window" boundary show lower efficiency.

Optimization of drillstring rate of penetration

In order to optimize the drilling process of an oil well in horizontal configuration, it is necessary to maximize the drillstring ROP into the soil.

The instantaneous rate of penetration is given by the function ubit (t), defined for all instants of analysis. Meanwhile, only contributes to the column advance, the positive part of this function u+ bit (t). In addition, as objective function, it is more convenient to consider a scalar function. Thus, the temporal mean of u+ bit (t) is adopted as rate of penetration, and, consequently, objective function of the optimization problem

rop(Ω, V 0 ) = 1 t f -t 0 t f t=t0 u+ bit (t) dt. (99) 
Furthermore, respect the material structural limits is indispensable to avoid failures in drillstring during the drilling process. For this reason, von Mises criterion of failure is considered, where it is established that, for all pairs (Ω, V 0 ) in the "operating window", one has

UTS -max 0≤x≤L t0≤t≤t f σ V M (V 0 , Ω, x, t) ≥ 0, ( 100 
)
where UTS is the material ultimate tensile strength, and σ V M is the von Mises equivalent stress.

Regarding the rate of penetration analysis, "operating window" is defined by the inequations 1/360 m/s ≤ V 0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, and UTS = 650 × 10 6 P a.

The contour map of constraint (100), is shown in Figure 25. From the way (100) is written, the Mises criterion is not satisfied when the function is negative, which occurs in a "small neighborhood" of the upper left corner of the rectangle that defines the "operating window". It is noted that all other points respect the material structural limits. In this way, then, the "operating window" admissible region consists of all points that satisfy the constraint.

In Figure 26 the reader can see the contour map of rop function. Taking into account only points in the admissible region, the maximum of rop occurs at (V 0 , Ω) = (7/720 m/s, 2π rad/s), which is indicated on the graph with a blue cross. This point corresponds to a mean rate of penetration, during the time interval analyzed, approximately equal to 90 "meters per hour".

It is worth remembering that the definition of rop uses temporal mean of ubit (t) positive part. In such a way, it is not surprising to find the maximum value of rop much higher than the corresponding velocity, V 0 imposed on the column left end. This occurs because, by taking only the function positive part, the rate of penetration value increases.

To see how significant is the inclusion of ubit (t) positive part in the definition of rop, the reader can see Figure 27. This figure shows the same information as Figure 26, i.e., the contour map of rop function, but now considering ubit (t) instead of u+ bit (t) in the definition of rop. Note that, in comparison with the contour map of Figure 26, lower values for the function levels are observed, and these values now are closer to V 0 . Furthermore, the topology of contour lines change, so that no local extreme point can be seen isolated. This example shows the importance of considering u+ bit (t) in the definition of rop.

Probabilistic analysis of the dynamics

For the probabilistic analysis of the dynamic system a parametric approach is used, where the random parameters distributions are constructed according to the 

conv MC (n s ) =   1 n s ns n=1 t f t=t0 q(t, θ n ) 2 dt   1/2 , (101) 
where n s is the number of MC realizations, and • denotes the standard Euclidean norm. This metric allows one to evaluate the approximation q(t, θ n ) convergence in mean-square sense. For further details the reader is encouraged to see [START_REF] Soize | A comprehensive overview of a nonparametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF]. The evolution of conv(n s ) as function of n s can be seen in Figure 28. Note that for n s = 1024 the metric value has reached a steady value. In this sense, if something is not stated otherwise, all the stochastic simulations that follows in this work use n s = 1024.

An illustration of the mean value (blue line), and a confidence band (grey shadow), wherein a realization of the stochastic dynamic system has 95% of probability of being contained, for drill-bit longitudinal displacement and velocity is shown in Figure 29. For sake of reference, the deterministic model, which the numerical results were presented earlier, is also shown and called nominal model (red line). It is observed that for the displacement, mean value and nominal model are very similar. Meanwhile, for the velocity, mean value presents oscillations that are correlated with the nominal model, but with very different amplitudes. Regarding the confidence band, there are significant amplitudes in the instants that corresponds to the fluctuation packages, and negligible amplitudes in the other moments.

Fixing time in t = 10 s, it is possible to analyze the behavior of drill-bit longitudinal velocity through its normalized PDF, which is presented in Figure 30. In this context normalized means a distribution of probability with zero mean and unit standard deviation. It is observed an unimodal behavior, with maximum value occurring in a neighborhood of the mean value, with small dispersion around this position.

In Figure 31, the reader can see the nominal model, the mean value, and the 95% probability envelope of drill-bit rotation and angular velocity. A good agreement between rotation nominal model and mean value is observed, and the confidence band around it is negligible. On the other hand, with respect to the angular velocity, it is possible to see discrepancies in the nominal model and mean value amplitudes. These differences occur in the instants when the system is subject to shocks, as in the case of drill-bit longitudinal velocity. The band of uncertainty shows that the dispersion around mean value increases with time, due to accumulation of uncertainties, but also in reason of the impacts, once its amplitude increases a lot near the instants where the mean value presents large fluctuations, i.e., the instants which are correlated with the beam and borehole wall impacts.

For t = 10 s, the reader can see the normalized PDF of drill-bit angular velocity in Figure 32. It is noted again an unimodal behavior, with maximum again near the mean value. But now a large dispersion around the mean can be seen. Moreover, in Figure 33 it is shown the nominal model, the mean value, and the 95% probability envelope of beam transversal displacement and velocity in z at x = 50 m. Here the mean values of both, velocity and displacement, present correlation with the nominal models. Indeed, both present discrepancies in the oscillation amplitudes, especially the velocity, that are more pronounced, as before, in the instants wherein the system is subject to impacts. The confidence bands present meaningful amplitudes, what evidentiates a certain level of dispersion around the means, which are more significant, as expected, at the instants of impact.

The PDF of drilling process efficiency function is shown in Figure 34. One can observe a unimodal distribution with the maximum around 16% and wide disper- sion between 0 and 40%, declining rapidly to negligible values outside this range.

Finally, in Figure 35 one can see the PDF of drillstring rate of penetration function. One notes an unimodal behavior in a narrow range between 20 and 50 "meters per hour", with the maximum around 30 "meters per hour".

Robust optimization of drillstring rate of penetration

To improve the level of confidence of drilling process optimization, uncertainties intrinsic to the problem should be taken into account. This leads to a robust optimization problem, i.e, optimization under uncertainty where the range of random parameters are known, but not necessarily their distribution [START_REF] Beyer | Robust optimization -A comprehensive survey[END_REF][START_REF] Schuëller | Computational methods in optimization considering uncertainties -an overview[END_REF][START_REF] Capiez-Lernout | Robust design optimization in computational mechanics[END_REF][START_REF] Capiez-Lernout | Design optimization with an uncertain vibroacoustic model[END_REF][START_REF] Capiez-Lernout | Robust updating of uncertain damping models in structural dynamics for low-and medium-frequency ranges[END_REF][START_REF] Soize | Robust updating of uncertain computational models using experimental modal analysis[END_REF][START_REF] Ben-Tal | Robust Optimization[END_REF].

Taking into account the uncertainties, through the parametric approach presented in section 5, drill-bit velocity becomes the stochastic process U bit (t, θ), so that the random rate of penetration is defined by

ROP(V 0 , Ω, θ) = 1 t f -t 0 t f t=t0 U+ bit (t, θ) dt. (102) 
In the robust optimization problem, who plays the role of objective function is the expected value of the random variable ROP(V 0 , Ω, θ), i.e., E ROP(V 0 , Ω, θ) .

Regarding the restriction imposed by the von Mises criteria, now the equivalent stress is the random field σ V M (V 0 , Ω, x, t, θ), so that the inequality is written as

UTS -max 0≤x≤L t0≤t≤t f σ V M (V 0 , Ω, x, t, θ) ≥ 0. ( 103 
)
However, the robust optimization problem considers as restriction a probability of the event defined by inequality (103),

P      UTS -max 0≤x≤L t0≤t≤tf σ V M (V 0 , Ω, x, t, θ) ≥ 0      ≥ 1 -P risk , (104) 
where 0 < P risk < 1 is the risk percentage acceptable to the problem. A robust optimization problem very similar to this one, in the context of a vertical drillstring dynamics, is considered in [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF].

To solve this robust optimization problem it is employed a trial strategy which discretizes the "operating window" in a structured grid of points and then evaluates the objective function E ROP(V 0 , Ω, θ) and the probabilistic constraint (104) in these points.

Accordingly, it is considered the same "operating window" used in the deterministic optimization problem solved above, i.e., 1/360 m/s ≤ V 0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, in addition to UTS = 650 × 10 6 P a and P risk = 10%. Each MC simulation in this case used 128 realizations to compute the propagation of uncertainties.

Concerning the simulation results, the probabilistic constraint (104) is respected in all grid points that discretize the "operating window". Thus, the admissible region of robust optimization problem is equal to the "operating window". In what follows, the contour map of function E ROP(V 0 , Ω, θ) can be see in Figure [START_REF] Oberkampf | Verification and Validation in Scientific Computing[END_REF]. Note that the maximum, which is indicated on the graph with a blue cross, occurs at the point (V 0 , Ω) = (1/90 m/s, 7π/3 rad/s). This point is located in the boundary of the admissible region, in the upper right corner, and corresponds to a expected value of the mean rate of penetration, during the time interval analyzed, approximately equal to 58 "meters per hour". This result says that, in the "operating window" considered here, increasing drillstring rotational and translational velocities provides the most robust strategy to maximize its ROP into the soil. This is in some ways an intuitive result, but is at odds with the result of the deterministic optimization problem, which provides another strategy to achieve optimum operating condition.

Concluding remarks

A model was developed in this work to describe the nonlinear dynamics of horizontal drillstrings. The model uses a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing large displacements that the beam undergoes. This model also considers the friction and shock effects due to transversal impacts, as well as, the force and torque induced by bit-rock interaction.

It should be emphasized that the paper not only proposes a mechanical analysis of this complex dynamic system, but, through this analysis, also provides a formulation for this type of system, and a methodology, that can be reused to other rotating slender mechanical systems subjected to friction and shock effects.

Numerical simulations showed that the mechanical system of interest has a very rich nonlinear dynam-ics, which reproduces complex phenomena such as bitbounce, stick-slip, and transverse impacts. The study also indicated that large velocity fluctuations observed in the phenomena of bit-bounce and stick-slip are correlated with the transverse impacts, i.e., with the number of shocks per unit time which the system is subjected. Also, the mechanical impacts cause the beam to assume complex spatial configurations, which are formed by flexural modes associated to high natural frequencies.

A study aiming to maximize drilling process efficiency, varying drillstring velocities of translation and rotation was presented. The optimization strategy used a trial approach to seek for a local maximum, which was located within "operating window" and corresponds to an efficiency of approximately 16%.

The probabilistic analysis of the nonlinear dynamics showed that, with respect to the velocities, nominal model and mean value of the stochastic model differ significantly. Furthermore, at the instants which the system was subjected to mechanical impacts, it was possible to see a more pronounced dispersion around the mean value. Regarding the velocities probability distributions, it was noticed a unimodal behavior essentially.

Two optimizations problems, one deterministic and one robust, where the objective was to maximize drillstring rate of penetration into the soil, respecting its structural limits, were formulated and solved. The solutions of these problems provided two different strategies to optimize the ROP.

Finally, it sounds stressing that the mathematical model used in this work has not gone through any process of experimental validation. This is because experimental data for this type of system is difficult to be obtained, and to construct an experimental apparatus in real scale is virtually impossible. An interesting proposal for future work would be the construction of an experimental test rig, in reduced scale, that emulates the main aspects of a real drillstring. The model used in this study could be validated, following, for instance, the methodology presented in [START_REF] Batou | Identification of stochastic loads applied to a non-linear dynamical system using an uncertain computational model and experimental responses[END_REF], with the aid of experimental measurements taken from this reduced apparatus.
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 1 Fig. 1 Schematic representation of two exploratory wells. The left well configuration is vertical while the right one is directional.
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 3 Fig.3Schematic representation of the mechanical system under analysis.
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 4 Fig. 4 Schematic representation of the beam geometry used to model the deformable tube under rotation, and the inertial system of coordinates used.
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 7 Fig.7Illustration of the function used to describe the reaction force on drill-bit, due to bit-rock interaction effects.
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 510511512 Fig. 10 Distribution of the flexural modes as function of dimensionless frequency, for several values of slenderness ratio.
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 13 Fig. 13 Illustration of static equilibrium configuration of a horizontal drillstring with 100 m length.
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 14 Fig. 14 Illustration of drill-bit displacement (top) and drillbit velocity (bottom).
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 15 Fig. 15 Illustration of drill-bit rotation (top) and drill-bit angular velocity (bottom).
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 16 Fig. 16 Illustration of transversal displacement (top) and velocity in z (bottom) when x = 50 m.

Fig. 17 Fig. 18 Fig. 19

 171819 Fig. 17 Illustration of beam radial displacement for x = 50 m.
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 2021 Fig.[START_REF] Freudenrich | How Oil Drilling Works[END_REF] Illustration of the mechanical system, for several instants, sectioned by the planes y = 0 m, and x = {0, 50, 100} m.
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 222324 Fig. 22 Illustration of power spectral density functions of beam transversal velocity in z (top) and angular velocity around x (bottom) when x = 50 m.
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 2526 Fig.[START_REF] Hughes | The Finite Element Method[END_REF] Illustration of maximum von Mises stress contour plot, for an "operating window" defined by 1/360 m/s ≤ V 0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.

Fig. 27

 27 Fig.[START_REF] Jansen | Nonlinear Dynamics of Oilwell Drillstrings[END_REF] Illustration of the contour plot of the rate of penetration function, with an alternative definition, for an "operating window" defined by 1/360 m/s ≤ V 0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.
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 28 Fig. 28 This figure illustrates the convergence metric of MC simulation as function of the number of realizations.
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 29 Fig.[START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF] Illustration of the nominal model (red line), the mean value (blue line), and the 95% probability envelope (grey shadow) for the drill-bit longitudinal displacement (top) and velocity (bottom).
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 30 Fig. 30 Illustration of the normalized probability density function of drill-bit longitudinal velocity.
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 31 Fig.31Illustration of the nominal model (red line), the mean value (blue line), and the 95% probability envelope (grey shadow) for the drill-bit rotation (top) and angular velocity (bottom).
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 32 Fig. 32 Illustration of the normalized probability density function of drill-bit angular velocity.
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 33 Fig. 33 Illustration of the nominal model (red line), the mean value (blue line), and the 95% probability envelope (grey shadow) for the beam transversal displacement (top) and velocity in z (bottom) at x = 50 m.
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 3435 Fig. 34 Illustration of the probability density function of the drilling process efficiency.
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 36 Fig.36Illustration of the contour plot of the mean rate of penetration function, for an "operating window" defined by 1/360 m/s ≤ V 0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum is indicated with a blue cross in the upper right corner.

Table 1

 1 Physical parameters of the mechanical system that are used in the simulation.

	parameter	value	unit
	ρ	7900	kg/m 3
	g	9.81	m/s 2
	ν	0.3	-
	κs	6/7	-
	c	0.01	-
	E	203 × 10 9	P a
	R bh	95 × 10 -3 m
	R int	50 × 10 -3 m
	Rext	80 × 10 -3 m

Table 2

 2 Parameters of the friction and shock model that are used in the simulation.

	parameter value	unit
	kFS 1 kFS 2 cFS	1 × 10 10 N/m 1 × 10 16 N/m 3 1 × 10 6 (N/m 3 )/(m/s)
	µFS	0.25	-

Table 3

 3 Parameters of the bit-rock interaction model that are used in the simulation.

	parameter value	unit
	ΓBR	30 × 10 3 N
	αBR	400	1/(m/s)
	µBR	0.4	-

Table 4

 4 Dimension of the FEM model as a function of beam length.

	beam length full model reduced model
	(m)	DoFs	DoFs
	50	306	37
	100	3006	49
	150	4506	60
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	Γ 4 = E A	1 2	1 + u	v 2 + w 2 +	1 2	u 2 3 + u	+ (108)
	E I 4 1 + u	θ 2 x +	3 2	θ 2 y + θ 2
	ks G A 1 + u		θ 2 y + θ 2 z ,
	Γ 5 = E A u +	1 2	u 2 + v 2 + w 2	v +	(109)
	E I 4 2 θ 2 x +	1 2	θ 2 y + θ 2 z	v +
	Γ 6 = E A u +	1 2	u 2 + v 2 + w 2	w +	(110)
	E I 4 2 θ 2 x +	1 2	θ 2 y + θ 2 z	w +

ks E z + ks G A C θx θy w -θz v -S θx θy v + θz w + E E z θ x + ks ks E ks z .

This appendix presents the coefficients which appears in geometric nonlinearity force of Eq.[START_REF] Schuëller | A state-of-the-art report on computational stochastic mechanics[END_REF]. For the sake of saving space, in the following lines it is used the abbreviations: S θx = sin θx, and C θx = cos θx.
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