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ABSTRACT: The French dairy cattle genomic 

evaluation uses an extension of Marker-Assisted BLUP 
(MA-BLUP) based on a haplotype model with a residual 
polygenic effect. A two-step approach to select SNP and 
construct haplotypes linked to QTL was tested by cross-
validation for two breeds with moderate (Montbéliarde) and 
large (Holstein) reference populations. The comparison 
with other genomic evaluation approaches showed MA-
BLUP validation performances which are very similar for 
Montbéliarde and slightly lower for Holstein. Some 
simplifying or ad-hoc assumptions explaining these results 
have been identified and reveal directions for improvement. 
In particular, a genome-wide strategy to pinpoint the most 
informative haplotypes linked to QTL is highly desirable. 
The robustness and computing simplicity of MA-BLUP 
remain two appealing features for routine genomic 
evaluations. The use of haplotypes is expected to give more 
robust and reliable predictions over more distantly related 
animals. 
Keywords: dairy cattle; genomic evaluation; genomic 
selection; quantitative trait loci 
 

Introduction 
 

In the nineties, several large QTL detection 
programs in dairy cattle led to the discovery of many QTL 
for various economic traits (see Khatkar et al. (2004), for a 
review). In France, based on the results of such a program 
(Boichard et al. (2003)), a rather unique large scale marker 
assisted selection program called MAS1 was implemented 
between 2001 and 2008: more than 70,000 animals were 
genotyped for 45 microsatellites to enhance EBV of young 
bulls computed using a marker-assisted BLUP (MA-BLUP) 
evaluation. MAS1 was used as a pre-selection tool of young 
bulls before progeny testing (Guillaume et al. (2008)).  

QTL detected rather inaccurately with such a 
reduced number of microsatellites explained only a small 
part of the total genetic variability. With the possibility to 
genotype thousands of SNP, associations between markers 
and QTL are more easily detected. Increasing the number of 
QTL in a MAS approach raises the part of the total genetic 
variability due to QTL but leads to a larger fraction of false 
QTL due to lack of power of the experimental designs.  

Genomic selection (GS) as proposed by 
Meuwissen et al. (2001) assumes that most QTL have a 
small effect and that a precise estimation of each QTL 
effect is not relevant, as long as their sum is a good 
predictor of the breeding value of selection candidates. 
With GS, a formal QTL detection step is not needed and 
inclusion of false QTL is not an issue. GS proved to be very 
successful when reference populations used to establish 
prediction equations were large enough. Nevertheless, it 
seems counterintuitive to completely ignore any strong 

prior knowledge on where large QTL are located, e.g., 
major genes such as DGAT1 or GRH. 
 Among QTL detection approaches, Linkage 
Disequilibrium and Linkage Analysis (LDLA – Meuwissen 
and Goddard (2000)) combines the robustness of linkage 
analysis and the high resolution of LD analysis and is well 
suited for grand-daughter designs. However, with high 
density genotypes, it faces problems of high false discovery 
rate, inaccurate QTL location and large overestimation of 
the proportion of genetic variance explained by each QTL. 
The main reason is that each QTL position is tested 
independently, one at a time, ignoring potential LD with 
other QTL. Some of these limitations can be at least partly 
circumvented (e.g., see Jonas et al., this congress) but in 
fact, most genomic evaluation where SNP effects are 
explicitly estimated altogether can be used for QTL 
detection (van den Berg et al. (2013)). It is known that 
many of the QTL detected then are potentially false positive 
but this does not preclude overall genetic predictions to be 
precise. This favorable feature may be the consequence of 
average estimated effects of false QTL close to 0 and of 
SNP altogether contributing to some sort of relationship 
measure between animals. 

By construction, QTL detection as well as GS 
efficiency strongly depend on LD between markers and 
QTL. When markers are biallelic (e.g., SNP), LD between 
neighboring markers is usually fairly small (e.g., r2~ 0.2 to 
0.25). This is often an overestimation of LD between the 
marker and any QTL for which the mutated allele is rare. A 
convenient way to increase LD is to consider haplotypes of 
markers, making them multiallelic (Edriss et al. (2013)). 
Then, LD between a rare allele at the QTL and at least one 
allele of the haplotype may be large. SNP haplotypes have 
been successfully used in LDLA analysis and GS (e.g., 
Meuwissen and Goddard (2000), Calus et al. (2009)). 

Based on these considerations, it was decided in 
2008 to extend the French MAS approach in order to 
include more QTL regions (300 to 700), traced by 
haplotypes of 3 to 5 SNP (Boichard et al. (2012)). These 
regions were defined in an ad-hoc manner using two 
complementary approaches:  20 to 40 “large” QTL were 
initially selected using an LDLA approach, the others being 
chosen grouping SNP selected with an Elastic-Net approach 
(Croiseau et al. (2011)). In a sense, such a procedure 
combines interesting features of MAS and GS, and was 
referred to as MASG. In French conditions, MASG was 
shown to be at least as efficient as other GS methods 
(Boichard et al. (2012)).  

 This paper reconsiders the choice of QTL regions, 
the comparison with various GS implementations and the 
pros and cons of a MA-BLUP approach. Data from the two 
main French dairy breeds were used for illustration. 

 
 



Material and Methods 
Data 
For Holstein and Montbéliarde, a reference 

population was created consisting of all bulls progeny-
tested and genotyped with the Illumina BovineSNP50™ 
Beadchip. All bulls born at least 4 years before the 
youngest genotyped bull with daughter performances were 
included in the training population (T). The others composed 
the validation population (V). All validation bulls were 
required to have their sire and grand-sires in the training 
population. This had an impact on the reference population 
for the Holstein breed for which the genotype of the maternal 
grand sire of a significant number of young foreign bulls of 
the Eurogenomics consortium was not available.  

The phenotypes used were generally daughter 
yield deviations (DYD) with their appropriate weight 
(EDC) transformed into their animal model equivalent. For 
foreign Holstein bulls, DYD were replaced by deregressed 
proofs (DRP). Table 1 presents the final distribution of the 
reference populations for production traits. Slight variations 
existed for the other traits. 

 
Table 1: composition of the reference populations for 
production traits 
 Holstein Montbéliarde 
Threshold date(1) 1/06/2005 1/10/2004 
Training population (T) 13165 1701 
 Validation population (V) 3391 535 
(1) Limit date of birth separating training and validation populations. 

 
For genotyped bulls, a total of 43,801 SNP on the 

29 autosomes were kept after pedigree checking and quality 
control: SNP with a minor allele frequency lower than 0.01, 
with an invalid position on the UMD3.1 assembly, etc., 
were discarded. See Baur et al., this congress, for details on 
an identical procedure applied to French Brown Swiss data. 
Each genotyped animal was then phased and missing 
genotypes at each particular SNP were imputed using 
DagPhase (Druet and George (2010)). 
 

Methodology 
In our implementation of MA-BLUP, haplotypes 

of SNP are used to trace QTL. Ideally, a direct detection of 
the most informative haplotypes is desirable. Indeed, such 
strategies have been proposed but they were either not fully 
implemented into a software (e.g., Calus et al. (2009), 
Edriss et al. (2013)) or they are currently under test 
(Croiseau and Fouilloux, this congress). Here a simplified 
(simplistic?) two-step approach was used: first, SNP 
influencing the traits of interest were selected using either 
Elastic Net (EN; Zou and Hastie (2005)) or a Bayesian 
Sparse Linear Mixed Model (BSLMM, Zhou et al. (2013)).  

Elastic Net is a variable selection method which 
combines Lasso and Ridge Regression into a larger family 
of models (Zou and Hastie (2005)). It requires the choice of 
two penalization parameters α and λ. To determine these 
parameters, a calibration (C) population consisting of the 
youngest 15% bulls of the training (T) population was 
created. A grid search was performed to find the values of 
α and λ  leading to the best average prediction in (C) when 

EN is applied to the (T-C) population. For some traits, EN 
selected a large number of SNP, incompatible with the later 
definition of a manageable number of QTL haplotypes for 
MA-BLUP. Croiseau et al (2011) showed that it was 
possible with very limited loss to choose α and λ such that 
the total number of SNP selected by EN is below a limit, 
fixed here at 2500 SNP. The α and λ values were then fixed 
and applied to the complete training population. Note that 
in this EN implementation (gmlnet package in R), no 
residual polygenic effect could be included. 
  BSLMM also combines two popular approaches 
for genomic selection: a Bayesian Variable Selection 
Regression and a polygenic model. It can be viewed as an 
efficient implementation of a BayesCπ approach with a 
residual polygenic effect and where the pedigree-based 
relationship matrix is replaced by the genomic one. One 
important limitation of the current version of the BSLMM 
software of Zhou et al. (2013) is that all observations are 
assumed to have the same associated weight, i.e., EDC are 
ignored. To mimic a QTL detection step similar to the one 
using EN, only the 2500 SNP with the largest inclusion 
probability as calculated by BSLMM were retained.  

Once SNP were selected by either EN or BSLMM, 
haplotypes were created: when 3 to 5 selected SNP were 
included in an interval of less than 2Mb (on average for the 
50k chip, 1 Mb contains 18 SNP), they were grouped to 
form a QTL haplotype (in practice, most haplotypes 
included much closer SNP). Otherwise the neighboring 
SNP of a selected SNP was/were added to form a QTL 
haplotype of at least 3 SNP.     

For the MA-BLUP evaluation, the following 
mixed linear model was applied: 
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where iy is the observation (DYD or DRP) of the 

genotyped animal i, µ is an overall mean, p
ikv and m

ikv are 
the random effects of the paternal and maternal alleles of 
haplotype k which are assumed to be independent, all with 
the same haplotype variance )2vσ ; iu is the residual polygenic 
effect and ie the model residual for animal i and { }iu=u is 

distributed as N(0,A )2uσ where A is the relationship matrix. 

For simplicity, for each trait, 2uσ was defined as a proportion 
(from 10 to 90%, by step of 10%) of the total genetic variance 

2aσ  estimated from previous datasets using an AIREML 
procedure. The remaining part was attributed to the 
haplotypes: 2vσ was taken equal to 2u2a σ−σ divided by the 
total number of haplotypes. More relevant haplotype variances 
could have been derived, but for simplicity (and lack of time), 
they were not considered here. Mixed model equations 
solutions were obtained in the following way: first, only 
equations from animals in the reference population were 
solved iteratively. At convergence, solutions from candidate 
animals without performances were computed. Reliabilities for 
all animals were directly derived from the inverse of the 
coefficient matrix for the reference population. 



 
Analyses 
 Results from MA-BLUP based on the haplotype 

lists derived from EN or BSLMM analyses were compared 
to various SNP-based genomic selection procedures: EN as 
described above, GBLUP, Bayesian Lasso (Legarra et al. 
(2009)) and BayesCπ as implemented in the GS3 software 
(Legarra et al. (2011)). For GBLUP, Bayesian Lasso, Bayes 
Cπ and both MA-BLUP, a residual polygenic component 
was also assumed. For its associated variance, different 
values were considered, from 10% to 90% of the total 
genetic variance, by step of 10%. Comparison criteria were 
the weighted correlation GEBV,DYDr between observed DYD 
(or DRP) and GEBV (which can be regarded as a predicted 
DYD) and the slope of the regression observed DYD/DRP 
on GEBV (a slope close to 1 is expected). EDC were used 
as weights. No correction was performed for the average 
reliability of DYD/DRP. 

 
Results  

Table 2 displays some key figures regarding the 
MA-BLUP. After the QTL detection step, the number of 
SNP retained was systematically 2500 with BSLMM (as 
imposed) and close to 2000 with EN. In half of the traits, 
the optimal number was less than 2500 (and as low as 205!) 
in Montbéliarde but always larger than 2500 in Holstein. 
The average decrease in GEBV,DYDr due to the restriction to 
2500 was 0.01 in Montbéliarde and 0.03 in Holstein. 
Slightly more haplotypes were retained with the EN 
approach (around 900 per trait) than with BSLMM (close to 
1000). The average number of alleles per haplotype was 
larger in Holstein than in Montbéliarde (e.g., 13.6 vs 11.9 
with EN) 

 
Table 2: average number (minimum/maximum) of SNP 
selected and haplotypes formed and average number of 
alleles per haplotype  

Detection      Number of Breed 
  with(1)  Holstein Montbéliarde 

  EN 
SNP  2086 (1890-2161) 1853 (205-2500) 
Haplotypes 890 (889-897) 896 (865-927) 
Alleles/hap 13.6 ± 6.9 11.9 ± 5.7 

BSLMM 
SNP  2500 2500 
Haplotypes 989 (970-1026) 936 (959-1029) 
Alleles/hap 13.9 ± 6.7 11.2 ± 4.8 

(1)  Elastic Net (EN); Bayesian Sparse Linear Mixed Model (BSLMM) 
 
Tables 3 and 4 present GEBV,DYDr and the optimum 

polygenic variance (as % of the total genetic variance) for 
three different groups of traits and overall. The overall 
average absolute deviation of the regression slope from 1 is 
also displayed. In all scenarios, very few traits led to a 
regression slope (slightly) larger than 1. Results of 
Bayesian Lasso are not reported because they were always 
slightly inferior but always very close to BayesCπ. In 
Montbéliarde, the overall average correlations were very 
similar whatever the genomic evaluation, with a maximum 
difference between approaches of 0.015. A detailed look at 
each trait reveals that for 12 low heritability traits (6 type 

traits and 6 functional traits), BayesCπ converged to a 
situation where no SNP were retained (π 1→ )) hence to a 
complete polygenic model. When these pathological cases 
were excluded, the average GEBV,DYDr  correlation increased 
for all methods, but the improvement varied between 
methods and as a result, Bayes Cπ  was superior by 0.010 to 
0.016 to GBLUP and MA-BLUP. For all methods, the 
optimal proportions of variance to be attributed to the 
residual polygenic effect were quite large (often around 40-
50%).  In fact, these values are substantially larger than 
what is commonly reported in the literature. Regression 
slopes were closer to 1 for BayesCπ than for GBLUP, the 
two MA-BLUP being intermediate.  

In Holstein, the convergence of BayesCπ to a fully 
polygenic model was never observed. BSLMM performed 
poorly for body condition score (a trait associated with a 
much smaller reference population in France) and for 
locomotion and stillbirth. However, the MA-BLUP based 
on the BSLMM SNP lists performed surprisingly much 
better for those traits. This is illustrated in Figure 1.  

Figures 1  
GBLUP and BayesCπ gave very similar 

correlations and these were about 0.03 greater than both EN 
and BSLMM. The two MA-BLUP approaches gave 
intermediate results. The increase in correlation with 
respect to pedigree BLUP was about twice the one observed 
in Montbéliarde. The optimal proportions of residual 
polygenic variances were smaller than in the Montbéliarde 
breed, and larger for MA-BLUP than for the other methods. 
Regression slopes were closer to 1 than for Montbéliarde, 
with better results with BayesCπ and GBLUP than with the 
two MA-BLUP. As for Montbéliarde, the two MA-BLUP 
approaches gave comparable results with a slight advantage 
to the situation using EN in the first step.  

 
Discussion 

The purpose of this study was to verify whether 
MA-BLUP with haplotype effects is a valuable alternative 
to more sophisticated genomic evaluation methods. In 
previous works leading to the first MASG implementation, 
reference populations were substantially smaller. A limited 
number of large QTL were first selected by an LDLA 
approach where each position was tested independently 
from the others, with a number of weaknesses when dense 
markers are used (lower detection power, inaccurate 
location of neighboring QTL, large overestimation of each 
QTL contribution to total genetic variance). ‘Smaller’ QTL 
were chosen in a separate analysis where SNP forming 
haplotypes were selected using a GS approach, the Elastic 
Net in our case. Here, these two components were merged 
into one: a single GS (EN or BSLMM) approach was used 
to construct a unique list of haplotypes. Admittedly, the 
approach is still rather simplistic and suffers from a number 
of questionable assumptions and short-cuts (leaving room 
for improvement!). To name just a few, limitations of the 
software used forced to implement EN without a polygenic 
component and BSLMM without accounting for the 
weights of DYD. In both cases, restrictions to a maximum 
of 2500 SNP retained were imposed. Both the number of 
retained QTL and the way SNP were grouped into 



haplotypes were quite arbitrary. Overcoming these 
limitations is certainly possible but requires some 
investment into programming. Indeed, the ultimate and 
much preferable solution is to develop an approach which 
directly selects the most suitable haplotypes: a haplotypic 
extension of BayesCπ (Croiseau and Fouilloux, this 
congress). 

 Perhaps more far-fetched, it was assumed that 
allele effects of a same haplotype were independent, with 
an equal variance for each haplotype. This is definitely far 
from true for traits where QTL with large effects are well 
known, such as DGAT1 for fat content. Again, a better 
estimation of the contribution of each haplotype to the total 
variance is certainly feasible (Knürr et al. (2013)).  

The use of haplotypes also has some shortcomings. 
In particular, it requires to phase the SNP in order to 
construct them. This can be quite time consuming and a 
potential source of some errors. But the necessity to 
combine genotypes obtained from a growing number of 
different chips has transformed imputation into a common 
practice of which phasing is simply a component.  
Haplotypes are used to increase LD between markers and 
any neighboring QTL, but increasing haplotype length 
quickly leads to a large number of allele effects to estimate. 
In our case, with haplotypes of 3 to 5 (mostly 5), the 
average number of alleles was reasonable (11 to 14) but the 
maximum was 32.Various strategies are possible to reduce 
this number such as clustering alleles which are relatively 

similar and likely to carry the same QTL (Calus et al. 

(2009); Edriss et al. (2013)). Again, this could lead to a 
better estimation of rare haplotype effects. Another 
weakness of a haplotypic model for genomic prediction is 
that new alleles can appear by recombination in the 
population of candidates, with no equivalent in the 
reference population. Ignoring these allelic effects or 
equating them to one or the average of the parental alleles 
are possible approximations. Perhaps the most promising 
development to elude some of these complications could 
come from the use of hidden state models to access 
ancestral haplotypes as in Kadri et al. (2014) 

 Based on simulations, haplotypes of 4 to 6 
consecutive SNP appeared to give the best prediction 
results (Guillaume, 2009). This was consistent with a LD 
between QTL allele and haplotype alleles (r2) increasing 
from 0.331  to 0.405 and 0.412 for haplotypes of length 2, 4 
and 6 SNP respectively, and an observed accuracy 
maximum for haplotypes of 4 SNP. Other authors (Calus et 
al. (2009); Boleckova et al. (2012)) found similar or larger 
optimal values (up to 10 for Villumsen et al. (2008) but 
with haplotypes of 5 SNP being nearly as efficient). In our 
implementation, SNP in a given haplotype were not 
necessarily consecutive markers from the 50K chip. The 
impact of this relaxed assumption has not been investigated 
yet, although the experience of Knürr et al. (2013) using 
flanking SNP of pre-selected SNP were not very good. The 
optimal number and length of haplotypes may be linked to 
the number of independent chromosome segments over the 

genome, which itself depends on the population structure. 

Table 3: average weighted correlation between GEBV and daughter yield deviation (DYD), average fraction of the 
genetic variance attributed to the residual polygenic effect and average absolute deviation (slope dev.) from 1 of the 
regression coefficient of GEBV on DYD for the Montbéliarde breed 

 Method  
Production (5)    Type traits (28) Functional traits (20)             All traits (43) 

DŶD,DYD
r  poly 

(%) DŶD,DYD
r  poly 

(%) DŶD,DYD
r  poly (%) DŶD,DYD

r  poly 
(%) 

slope  
dev. 

Polygenic 0.365 100 0.438 100 0.362 100 0.412 100  
Elastic Net 0.529 - 0.539 - 0.481 - 0.506 - 0.149 
BSLMM 0.553  0.564  0.363  0.516   
GBLUP 0.534 28 0.553 30 0.524 55 0.521 36 0.145 
BAYESCpi 0.545 38 0.545 47 0.530 56 0.520 49 0.116 
MA-BLUP (EN list) 0.527 38 0.554 37 0.507 40 0.520 39 0.160 
MA-BLUP (BSLMM list) 0.515 38 0.552 32 0.501 40 0.518 36 0.148 

Table 4: average weighted correlation between GEBV and daughter yield deviation (DYD), average fraction of the 
genetic variance attributed to the residual polygenic effect and average absolute deviation from 1 of the regression 
coefficient of GEBV on DYD for the Holstein breed 

 Production (5)    Type traits (21)  Functional traits (10) All traits (36) 

 Method  DŶD,DYD
r  poly 

(%) DŶD,DYD
r  poly 

(%) DŶD,DYD
r  poly (%) DŶD,DYD

r  poly 
(%) 

slope  
    dev. 

Polygenic (BLUP) 0.472 100 0.477 100 0.477 100 0.451 100   
Elastic Net 0.752 - 0.645 - 0.542 - 0.631 - 0.072 
BSLMM 0.788   0.644   0.534 - 0.633     
GBLUP 0.776 12 0.685 24 0.554 21 0.661 22 0.082 
BAYESCpi 0.787 18 0.687 25 0.556 22 0.665 23 0.083 
MA-BLUP (EN list) 0.763 20 0.667 39 0.541 35 0.645 35 0.106 
MA-BLUP (BSLMM list) 0.765 22 0.658 36 0.532 20 0.638 33 0.103 



So the optima probably vary across breeds. They are also 
likely to differ when selected SNP come from a high 
density chip, e.g., with the aim to apply multi-breed GS.  

Despite of all these strong limitations, we showed 
that in practice, MA-BLUP validation results were very 
robust to the SNP selection strategy. They were also close 
to those from standard GS methods and even equivalent in 
Montbéliarde. Similar conclusions were reported previously 
(e.g., Boichard et al. (2012)) with yet another SNP selection 
approach. If we compare the current results with previous 
works, it is tempting to conclude that the benefit of MA-
BLUP are larger when the size of the reference population 
is limited.  

This robustness is quite reassuring. Indeed, the 
approach presents a number of desirable features: 
1) The genetic model (1) is quite simple. In particular, in 
contrast with most other countries with GS, the resulting 
predictions have been used in France as GEBV without any 
extra blending. Indeed, whatever the trait considered, the 
optimal residual polygenic fractions are quite large 
compared to most other countries. But in fact, these 
fractions are probably comparable to what is implicitly 
obtained after blending.  
2) The solution of the mixed model equations is fast: the 
construction of the genomic relationship is avoided and the 
number of haplotype effects is reduced (usually between 
10,000 and 15000 here) compared to a GBLUP involving 
all SNP. Furthermore, no long chain of simulated values is 
required.  
3) As a result of these two points, model-based genomic 
reliabilities do not require approximations: they are directly 
derived from the actual inversion of a coefficient matrix of 
mixed model equations of manageable size. Also, they are 
probably less over-evaluated than with more standard GS 
approaches: Guillaume (2009) showed that a 25% over- 
estimation of the variance attributed to QTL had a limited 
influence on GEBV,DYDr  (change <1%) but a drastic impact on 
theoretical reliabilities (change of ~10% or more). The high 
residual polygenic fractions used are therefore a safeguard 
against overoptimistic genomic reliabilities. 
4) Genomic evaluations of a same animal are relatively 
stable over time, as long as the QTL list does not change. In 
contrast, iterative (MCMC) approaches to estimate SNP 
effects may lead to GEBV variation between runs, just by 
slight changes of the retained SNP, even though the global 
accuracy is the same.   
5) Because it relies on a stronger LD between haplotype 
alleles and underlying QTL, the QTL model is expected to 
be less sensitive to relatedness between reference and 
candidate populations: the haplotype effects are expected to 
be better maintained over generations or over groups of 
more poorly related animals. It was not possible to actually 
check this here because all validation bulls had both their 
sire and maternal grand-sire in the reference population. 
6)  The approach is robust to variation in chip density, as 
long as true or imputed genotypes are available. For 
example, haplotypes can consist of groups of SNP selected 
on the Illumina BovineHD Beadchip™ chip. If alleles of 
such haplotypes are shared by different breeds, a multibreed 

genomic evaluation can be implemented. Its accuracy 
remains to be tested. 
7) Identified causal mutations can be considered as a 
special case of QTL haplotype with only two allele effects. 
Conversely, large allele effects of a haplotype can be useful 
to more easily identify causal mutations  (Calus et al. 
(2008), Kadri et al. (2014)), especially relatively recent 
mutations.. 
8) As indicated by Legarra and Ducrocq (2012), there is no 
obstacle to include this approach into a single-step 
machinery. In matrix notation, model (1) can be written as:  
  evZu1y +++µ= ∑k k    (2) 
where Zk is an incidence matrix relating animals to alleles 
of the kth haplotype. The G matrix introduced to replace the 
part of A corresponding to genotyped animals in single-step 
mixed model equations is equal to G= 0κ A22+ ∑κ k

'
kkk ZZ  

with 0κ , .. kκ are fractions of the total genetic variance for 
alleles of haplotype k. In the iterative implementation of 
Legarra and Ducrocq (2012), the repeated computation of 
Gg2 – where g2 is the additive genetic value of genotyped 
animals -   does not present any difficulty. 
 
It is important to underline that despite similar prediction 
accuracies, the various methods compared do not lead to the 
same rankings. This was illustrated by Liu et al. (2013): the 
national GEBV of (nearly) the same young bulls differed 
more between France and three other members of the 
Eurogenomics consortium (Germany, Netherlands, Nordic 
Countries) than between these countries. This can be 
attributed to the use of a QTL model based on haplotypes 
and a large residual polygenic effect. How the different 
methods rank in terms of actual efficiency and robustness in 
the long term remains to be evaluated. 
 

Conclusion 
In contrast with most countries with a genomic 

evaluation in dairy cattle, France has kept an evaluation 
model involving SNP haplotypes and a large residual 
polygenic effect. An ad-hoc two-step approach for the 
selection and construction of these haplotypes generated 
results which were similar to other commonly used 
genomic selection approaches when the reference 
population was of moderate size (Montbéliarde) and 
slightly lower when the reference population was very large 
(Holstein). A number of simplifying or ad-hoc assumptions 
which may penalize MA-BLUP have been identified. 
Clearly, the direct genome-wide search for the most 
informative haplotypes linked to QTL offers an interesting 
perspective for improvement. Meanwhile, the robustness 
and computing simplicity of MA-BLUP remain very 
appealing features for routine genomic evaluations. The use 
of haplotypes is expected to give more robust and reliable 
predictions over more distant animals. 
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   Figure 1 : weighted correlation between GEBV and DYD per trait, for the Holstein breed 

 
Production traits: Fat%, Protein%, Milk yield, Protein Yield, Fat Yield   Type traits: Udder depth, Angularity, Height, Udder Cleft, Rump Width, Teat 
Distance, Fore Udder, Teat length, Body Depth, Teat Placement, Temperament, Rear Udder Height, Chest Width, Rear leg Rear view, Milking Speed, Udder 
Balance, Leg Set, Foot Angle Locomotion, Body Condition   Functional traits: Somatic cell score, Calving ease direct, Calving ease maternal, Stillbirth 
maternal, Mastitis occurrence, Stillbirth direct, Cow conception rate, Interval calving first AI, Longevity, heifer Conception rate  
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