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ABSTRACT: Most genomic evaluation methods have been 
based on SNP. It has been shown that differences in 
accuracy of genomic breeding values were small between 
these methods. The use of a high density chip instead of a 
medium density one in within breed or multi-breed genomic 
evaluation leads to relatively small improvements. 
Haplotypes instead of SNP improve linkage disequilibrium 
between alleles and potential quantitative trait loci. Here, an 
extension to haplotypes of GS3, a free selection genomic 
software developed by Legarra et al. (2013) is proposed. 
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INTRODUCTION 
Since the theoretical basis of the genomic selection 

proposed by Meuwissen et al. (2001), various statistical 
methods were developed and tested to improve the 
precision of genomic estimated breeding values (GEBV -
Gianola et al. (2009); Habier et al. (2011); Gianola (2013); 
Meuwissen et al. (2001)). A large panel of these methods 
has been tested on French data for the three dairy cattle 
breeds with national genomic evaluations (Croiseau et al. 
(2012); see Ducrocq et al., this congress) and there was no 
clear advantage of one method over the others in term of 
accuracy of genomic selection.  

The challenge of genomic selection approaches has 
moved to the use of higher density chips or to the 
possibility for breeds with small reference populations to 
benefit from the reference population of main breeds 
through multi-breed genomic selection. Again, no clear 
advantage of one approach over the others was evidenced in 
such contexts (Hayes et al. (2009); Erbe et al. (2012); Hozé 
et al. (in press)). 

 In this paper, we advocate the use of haplotypes 
instead of SNP to improve the accuracy of genomic 
selection approaches. Calus et al. (2007) showed on 
simulated data that for high heritability traits, the use of 
haplotypes led to higher accuracies of genomic estimated 
breeding values. In real situations, genomic evaluations 
were implemented in France using a marker assisted-BLUP 
approach where haplotypes of SNP were used to trace QTL. 
In this approach, in spite of a relatively limited number of 
haplotypes (around 800), accuracies of GEBV were as high 
as (or very close to) those obtained with other tested 
methods (see Ducrocq et al., this congress). Therefore the 
use of haplotypes is appealing to capture QTL effects and 
could improve GEBV accuracy. To address this idea, we 
formally derive a haplotypic version of the GS3 software 
developed by Legarra et al. (2013). We describe here this 
approach. 

 

METHODS 
General model. Here “haplotype” will refer to the 

locus analyzed, and “allele” to the allelic form at this locus. 
Following the original model proposed by Habier et al. 
(2011), the haplotypic model can be written as: 
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where µ is a mean (or a vector of nuisance effects), iu is the 
random polygenic effect for animal i, K is the number of 

haplotypes, p
ijh and m

ijh are the random effects of the paternal 

and maternal alleles of haplotype j of animal i, ie is a 
random residual for animal i, and jδ is an indicator variable 
equal to 0 (no effect) with probability π and equal to 1 with 
probability (1-π). Note that jδ is applied to the whole 
haplotype. So, for a given haplotype, all the allele effects 
are estimated or all of them are set to zero. All the alleles of 
a given haplotype have the same variance. 

Haplotypic GBLUP. 
In the haplotypic GBLUP, jδ is equal to 1 (all 

haplotypes are included). GEBV are directly estimated 
using an extension of the mixed model equations proposed 
by Van Raden (2008). The genomic relationship matrix G is 
formed as follows (Legarra, personal communication): 
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where lk is the number of alleles of haplotype k, and pki is 
the allelic frequency of its ith allele. P is the matrix of 
repeated rows of allelic frequencies and Z is the incidence 
matrix of haplotype effects on individuals, with terms zn,ki 
equal to 0, 1, or 2 according to the number of alleles i of 
haplotype k carried by individual n. 

This approach is believed to be more accurate than 
the traditional GBLUP based on SNP because haplotypes 
are more informative. Indeed, the same alleles of a 
haplotype carried by two individuals are more likely to be 
identical by descent than identical by state. 
 

Haplotypic BLUP 
Using an equivalent model, the haplotypic effects 

can be estimated solving the standard mixed model 
equations (MME), with lk levels per haplotype. The 
haplotypic part of the MME can be written as  
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with λ = 2

eσ  / 2
hσ  and 2

hσ equals 2
gσ / K 

This system of equations can be solved with 
conventional methods. 
 



MCMC Haplotypic BLUP 
The haplotype effects of the previous model can be 

estimated by MCMC, with the following sampling process. 
Let *

ky  denote the vector of phenotypes adjusted for all 
effects of the model except hk, hk being the lk-vector of 
allelic effects of haplotype k. hk samples are generated as:  
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where MVN stands for the multivariate normal distribution. 
 

Variance Estimation. 
In the MCMC approach, a common haplotypic 

variance is assumed for all haplotypes. The residual and 
haplotypic variances are sampled as follows: 

• σe
2 ~ Inverted-χ2 ( VarE, DfE ) 

with DfE = n+nep and VarE = [ e’e / n + Vep nep] / (n+nep) 
Vep is the a priori residual variance and nep the 
corresponding degree of belief. 

• σh
2 ~ Inverted-χ2 ( VarH, DfH ) 

with DfH = K+nhp  and: 
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µk is the allelic mean effect weighted by the allele 
frequencies. Vhp is the a priori haplotypic variance and nhp is 
the corresponding degree of belief.  
The additive genetic variance 2

gσ  can also be sampled as in 
the original version of GS3 based on SNP. 
 

Haplotype Selection 
Selection of a limited number of haplotypes, i.e. 

those with the largest prediction ability, is expected to be 
beneficial. Conceptually, the marker haplotypes with the 
highest association with QTL are picked. This strategy 
should provide a better persistency of predictions in case 
that close relationships between the reference population 
and candidates are lacking. 

The selection step relies on the following process. 
For each haplotype k, two likelihoods are computed under 
model H0 ( kδ =0, i.e., assuming no haplotypic effect) and 
H1 ( kδ =1, i.e., assuming nonzero haplotypic effects with 
variance 2

hσ ).  
The log-likelihoods can be written as: 
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with i=0 or 1, V0= Z’k Zk σe
2 + log(π) 

V1= Z’k Zk σe
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The probabilities of H0 and H1 are expressed as 
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where c is a position parameter (a constant) to avoid 
computing difficulties. 

The selection can then be performed by sampling 
kδ from a binomial distribution with probability Prob(H1). 

 

At each iteration, π, the proportion of haplotypes 
with no effect, is sampled from a Beta distribution as 
follow: 

π ~ Beta(n+α ; m+β) 
where n and m correspond respectively to the total number 
of haplotypes retained (i.e., with an effect) or not retained 
in the model, α and β are parameters representing prior 
information. According to these prior values, π is either 
estimated by the iterative process or more or less constraint 
to a fixed preset value. 

 
Practical implementation in GS3 

GS3 is a widely spread software written by Legarra 
et al. (2013). It is able to handle high throughput SNP 
information to efficiently compute GBLUP in a direct way 
or via MCMC, with or without variance estimation, as well 
as the so-called BayesC and BayesCπ methods. It is a 
convenient starting point for the implementation of the 
haplotypic analysis as described above. 
 

Data Format 
Haplotypes are assumed to be defined before the 

analysis. SNP must be phased and without missing values. 
A first change compared with the SNP approaches involves 
the coding of haplotypic alleles, which are computed 
immediately after reading SNP data as a first step of GS3. 
The haplotype length is defined by a number of SNP 
provided by the user. Whereas GS3 analyses the complete 
genome without any reference to marker map or 
chromosomes, its haplotypic version must use files of 
phased genotypes per chromosome, with markers ordered 
according to their physical positions. Haplotypes are 
defined as sets of contiguous SNP that never overlap. 
Consequently, the last haplotype on a chromosome can be 
shorter than the others according to the number of markers 
on the chromosome. Summary statistics (number of alleles 
and allelic frequencies) about haplotypes are tabulated. 
 

Haplotype Handling 
Whereas SNP-based methods estimate only one 

effect per SNP, haplotypic methods have to deal with a 
varying number lk of alleles per haplotype. This requires 
indexing the first position and the number of alleles of each 
haplotype in vector h and the corresponding columns of Z. 
 

Computations by Block 
SNP-based methods use only scalar algebra whereas 

the haplotypic approach requires dealing with all alleles of 
each haplotype at a time. The successive left-hand sides are 
therefore lk x lk matrices which need to be built and inverted. 
The situation is similar for the log-likelihoods computation. 
For most methods implemented in GS3, these computations 
must be done repeatedly, with iterative solving methods if 
matrices cannot be stored, and especially for MCMC 
approaches because then these matrices are not constant. 
The sampling of haplotypic effects was also modified 
because it involves multivariate normal distributions. All 
these parts related to matrix algebra are very time 
consuming computationally. 

 



Substitution Effects 
GS3 estimates allelic substitution effects, therefore 

only one effect per SNP. In order to maintain this 
interesting feature and to replicate what is done in case of 
haplotypes of one SNP, it was decided to also estimate the 
substitution effects in the haplotypic implementation. 
Therefore, the most frequent allele was chosen as a basis of 
comparison for the other ones.  

Accordingly, the Z matrix was adapted in the 
following way:  
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with iknm , the number (0, 1 or 2) of alleles i of haplotype k 
carried by individual n.  
 

Computing Time. 
As mentioned before, the haplotypic algorithm 

involves matrix computations instead of scalar operations 
for SNP. This evolution is quite expensive in terms of 
computing time. The overall cost is a function of the 
average allele number per haplotype.  

A simulation study was carried out on a 
Montbéliarde cattle training population of 1701 bulls 
genotyped with the Illumina Bovine SNP50 Beadchip® 
(50K). Each genotyped animal was phased and missing 
genotypes at each particular SNP were imputed using the 
DAGPHASE software (Druet and Georges (2010). 

Table1 shows the total number of haplotypes, the 
total number of estimated effects, the average number of 
alleles per haplotype. Haplotype size varied from 2 to 5 
SNP. With the 50K chip, the number of observed allelic 
combination was high due to the modest linkage 
disequilibrium between successive SNP. With haplotypes 
of 5 SNP, i.e., with 32 potential alleles, about half of them 
were actually encountered on average. Consequently, the 
time to carry out a large number of iterations was highly 
impacted. Practical strategies must be envisaged to reduce 
the number of haplotypes and, therefore, limit computing 
time.  

 
Table 1. Total number of haplotypes, total number of 
estimated effects, mean number of alleles per haplotype in 
the Montbéliarde test. 

Size of 
haplotypes 

Total number 
of haplotypes 

Total number 
of alleles 

Average 
number of 

alleles 
2 21,892 82,820 3.78 
3 14,599 97,694 6.69 
4 10,956 120,222 10.97 
5 8,768 147,950 16.87 

 

Haplotype Size 
The main benefit of haplotypes is to increase linkage 

disequilibrium with QTL. Indeed, for QTL with 2 alleles 
with very unbalanced frequencies, it is quite unlikely to 
observe strong linkage disequilibrium between one SNP 
and the QTL. On the other hand, a large increase in number 
of alleles is likely to lead to an over-parameterization of the 
model. Therefore, there is an optimum to be determined. 
From our experience with the French genomic evaluation 
model (Ducrocq et al., 2014), haplotypes with 8-10 alleles 
appear to be a good trade-off. This value is obtained with a 
small number of SNP of the 50K (4 on average). Due to 
much stronger linkage disequilibrium, more SNP can be 
included to reach this goal with the high density chip. 
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