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Abstract 

Background 

Transcriptome sequencing is a powerful tool for measuring gene expression, but as well as 
some other technologies, various artifacts and biases affect the quantification. In order to 
correct some of them, several normalization approaches have emerged, differing both in the 
statistical strategy employed and in the type of corrected biases. However, there is no clear 
standard normalization method. 

Results 

We present a novel methodology to normalize RNA-Seq data, taking into account transcript 
size, GC content, and sequencing depth, which are the major quantification-related biases. In 
this study, we found that transcripts shorter than 600 bp have an underestimated expression 
level, while longer transcripts are even more overestimated that they are long. Second, it was 
well known that the higher the GC content (>50%), the more the transcripts are 
underestimated. Third, we demonstrated that the sequencing depth impacts the size bias and 
proposed a correction allowing the comparison of expression levels among many samples. 
The efficiency of our approach was then tested by comparing the correlation between 
normalized RNA-Seq data and qRT-PCR expression measurements. All the steps are 
automated in a program written in Perl and available on request. 

Conclusions 

The methodology presented in this article identifies and corrects different biases that 
influence RNA-Seq quantification, and provides more accurate estimations of gene 
expression levels. This method can be applied to compare expression quantifications from 
many samples, but preferentially from the same tissue. In order to compare samples from 
different tissue, a calibration using several reference genes will be required. 
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Background 

The study of transcriptome has pushed forward by the development of next-generation 
sequencing technologies. RNA-Seq offers the possibility to get information on sequence and 
quantification of all transcribed genes, but extremely lowly expressed ones [1]. As shown by 
these authors, this method differs from the microarrays which have limitations due to (i) the 
difficulty to design specific probes, leading to artifacts caused by cross-hybridization and (ii) 
the impossibility to detect expression for non-annotated genes. Expression quantification 
performed using qRT-PCR is more precise than microarrays, but is also not able to measure 
unknown genes. Moreover, the cost of TLDA (TaqMan Low Density Array - Applied 
Biosystems) for example, renders it unsuitable for large gene sets. 



The RNA-Seq protocol is a succession of technical steps followed by quantification. 
According to Illumina technology, (i) a cDNA library from a given tissue is randomly 
fragmented by sonication, (ii) specific adapters are ligated for the assignation of each 
fragment to the corresponding sample, (iii) PCR amplification are performed, and (iv) 
amplified mRNA fragments with sizes ranging from 250 to 450 bp are isolated before being 
sequenced. The quantification of the sequenced fragments (called reads) begins with the 
mapping of each read onto the assembled genome or transcriptome, in order to count the 
number of reads assigned to each known or unknown gene. When there are several transcripts 
or close paralogues for a gene, the attribution of a read to the right transcript is not always 
possible depending on the read position: 5’-end fragments are expected to be more specific 
than 3’-end ones. The second step of quantification consists in removing four biases affecting 
read counts: (i) the number of reads increases with the size of the transcript [2-6], (ii) with the 
amount of the cDNA library [7,8], (iii) sequencing efficiency decreases when the GC-content 
is too low or too high [9-12], and (iv) due to a PCR amplification step during the library 
preparation, PCR duplicates occur when two copies of the same cDNA fragment produce 
different clusters on the flow cell [13-15]. 

Since RNA-Seq emergence, a number of normalization methods have been developed to 
address one or two of the different biases [1-12,14]. Our aim was to develop an integrated 
method able to correct all these sources of bias. In order to avoid RNA-Seq quantification 
problems linked to specific isoforms, unlike most studies, we only retained genes with a 
single transcript to determine the various equations and to perform the comparison [16]. As 
for size effects, most of them are based on mathematical distribution models to compare 
expression levels between samples, but do not consider separately the opposite biases relative 
to size: short transcripts (<600 bp) are underestimated while longer ones are overestimated. 
As for the bias linked to GC content, we performed simple regression methods based on 
polynomial model. It appeared that sequencing depth has an effect on the equations driving 
the size and GC content corrections. Hence, unlike other methods, a further run of our 
program was performed to correct globally the read counts by taking into account size, GC 
content and total read numbers. In order to assess the efficiency of our approach, we 
calculated the correlation between corrected RNA-Seq counts and qRT-PCR quantifications. 

Methods 

RNA extraction 

Longissimus thoracis muscle biopsies were taken between the 7th and 9th ribs of 125 
limousine bulls slaughtered at the age of 15.8 months. The samples were immediately frozen 
in liquid nitrogen and stored at −80°C. After grinding tissues using a FastPrep FP120 
Homogenizer device (Thermo Savant) and micro-tubes “Lysing Matrix D” (MP 
Biomedicals), RNA extractions were performed with the RNeasy Midi/Maxi kit (Qiagen). 
The procedure and solution quantity were optimized for extraction from skeletal muscles and 
treatment with proteinase K as recommended by the supplier. The quality control of RNA 
step was done using RNA 6000 Nano Chips analyzed with 2100 Bioanalyzer instrument 
(Agilent Technologies). The 22 best ranking RNA samples were retained. 



RNA sequencing 

To verify the absence of degradation during the storage period, the quality of these 22 cattle 
samples were then checked again before preparing cDNA libraries according to the Illumina 
protocol. Briefly, mRNAs were isolated from total RNA by their polyA tails and cDNA 
libraries were built using random-hexamers. These cDNAs were fragmented by sonication, 
and specific adapters were then ligated to each fragment for the traceability of the sample. 
Ten cycles of PCR amplification were performed. Amplified mRNA with a size between 250 
and 450 bp were then isolated before being sequenced in paired-end reads with a length of 
100 bases using Illumina HighSeq2000 device (hosted at the INRA Genomic Platform of 
Toulouse, France). 

RNA-Seq read counting 

The first step consists in de-multiplexing the reads by recognizing specific adapter sequences 
to assign each read to the corresponding sample (three samples were pooled per flow cell 
lane). From 100 to 240 million paired-end reads were obtained per flow cell lane, 
corresponding to 27 to 91 million reads for each cDNA library. These paired-end reads were 
then mapped back to the bovine reference transcriptome, using Bos taurus known transcripts 
recorded in the Ensembl database v.61 (Website: 
ftp://ftp.ensembl.org/pub/current/fasta/bos_taurus/cdna/Bos_taurus.Btau_4.0.61.cdna.all. 
fa.gz). This set contains 27,663 transcript sequences assigned to 21,734 known genes and 
pseudogenes. Paired-end reads located exactly on the same transcript were selected and 
counted. A total of 21,455 transcripts (17,605 genes) were identified, with at least one paired-
end read within the 22 analyzed samples. 

qRT-PCR quantification 

Among the 22 cattle samples, five of them were chosen to perform qRT-PCRs on the basis of 
a large range of total read numbers. These samples showed around 10.106 (1475), 13.106 
(1455), 20.106 (1479), 24.106 (1345), and 30.106 reads (1476), respectively. These 
experiments were conducted using custom-made TLDA (Taq-Man Low Density Array) cards 
and ABI PRISM 7900HT sequence detector system (Applied Biosystems). The dataset was 
built with genes involved in glycosylation metabolism, named glyco-genes in the following. 
They concern glycosyl-transferases, glycosidases, sulfo-transferases, sugar carriers, and 
lectines. Among the around 800 genes recorded in the bovine genome (unpublished data), 
372 were selected according to two criteria: the greatest diversity of the glyco-gene groups 
and the availability of primers provided by Applied Biosystems 
(https://bioinfo.appliedbiosystems. com/genome-database/gene-expression.html). Twelve 
housekeeping genes (18S RNA, TFIID transcription factor, etc., see [17]) were added as 
controls to complete the 384-microwells of each microfluidic card. The quantification was 
done using the SDS 2.3 software (Applied Biosystems) according to the ∆Ct method (see the 
User Bulletin #2 for ABI PRISM 7700 of October 2001). Briefly, ∆Ct corresponds to the 
threshold cycle (Ct) for each gene minus that of the mean of the twelve endogenous internal 
controls. 



RNA-Seq data from public datasets (drosophila and human) 

To validate the first steps of our method, it was necessary to consider public data dealing with 
other organisms than Bos taurus. 

As for Drosophila, in the public dataset SRA: SRP009459/GEO: GSE33905 deposited by 
B.R. Graveley and co-workers, we downloaded 16 read sequence sets obtained from head of 
male and female adults (GSM838758 to GSM838760, GSM838763 to GSM838766 to 
GSM838780, and GSM838799 to GSM838802). The sequencing depth varied from 2.7 to 8.4 
million reads, with a mean value close to 5 million reads. 

As for Human, we considered the dataset SRA: SRP032775/GEO: GSE52166 deposited by 
R. Sanka and co-workers. In order to have homogeneous data, the read sequence sets came 
from whole blood of 20 individuals in a pre-infection state relatively to Plasmodium 
falciparum (GSM1335718, GSM1335720, GSM1335722 to GSM1335756). The sequencing 
depth varied from 21.2 to 72.9 million reads, with a mean value around 40 million reads. 

Using STAR aligner software v.2.3.1f [18], the read sequences were splice-aligned onto the 
Drosophila v.BDGP5.75 or the Human genome v.GRCh37.75, respectively. Transcripts were 
quantified with sigcufflinks (available upon request at www.sigenae.org), a modified version 
of the cufflinks code [19] providing raw read counts per transcript, by using the GTF 
reference files provided by Ensembl (version 75). 

Simulation of RNA-Seq data 

As we suspected that the RNA fragment sizes have an impact on the behavior of read counts 
as a function of transcript sizes, it was useful to conduct simulation using a specific program. 
We first downloaded the transcript genes of Bos taurus chromosome 20 from Ensembl 
(version 75 – genome assembly UMD3.1). All the sequences were concatenated to obtain a 
single sequence of 255,601 bp. This sequence was then split into 231 genes in the FASTA 
format, with increasing sizes from 50 bp to 1,200 bp according to an arithmetic progression 
with common difference of 5. This file was submitted to rlsim [20]. Default parameters were 
chosen, except for sequenced fragment range, and total read number (1 million). Three runs 
were launched, the first with 250–450 (mean 350) bp, the second with 450–650 (mean 550) 
bp, and the last 650–850 (mean 750) bp. For each transcript, the program assigns an 
expression level from a mixture of gamma distribution with two components with mean 
5,000 and 10,000. Then, the simulation provides for each read its sequence and the assigned 
gene. We then calculated the number of reads for each gene using the program Fishing-net, 
written in Perl, available upon request from CF and DP. 

Results 

As qRT-PCR quantification were used to validate our RNA-Seq normalization method, it was 
necessary to verify that qRT-PCR data were not subject to transcript size and GC content 
biases. As for transcript size, we tested a relationship with the ∆Ct obtained by qRT-PCR for 
cattle sample 1479 (n = 233). Through polynomial equations of first and third orders, the p-
values were 0.84 and 0.87, respectively. As for GC content in the same sample, the 
corresponding polynomial equations gave p-values of 0.57 and 0.96, respectively. We 



verified that for the four other cattle samples, no significant relationships were observed 
neither for transcript size nor for GC content (Additional file 1). 

To compare qRT-PCR results with the RNA-Seq approach, several steps of correction are 
needed. The calculations concerned 14,676 genes for which only one transcript were detected 
in Cattle. We propose an integrated method called SGTR (transcript Size, GC content and 
Total Read number) that takes into account the effects of transcript size, GC content, and 
total read number. First, it was necessary to apply a log2 transformation to raw counts to 
avoid large dispersion for high values according to [2,10,21] and [22]. 

Correction of transcript length biases 

We sorted the transcripts according to their size and built length classes: the class n contains 
all the transcripts for which the size is comprised in the [ n ; n + 99 ] interval. As for example, 
the cattle sample 1479 resulted in the Figure 1A. It is clear that two parts can be observed on 
both sides of the size 600. The regression equations for transcripts < 600 bp and ≥ 600 bp are 
respectively as follows: 

Figure 1 Method implemented to correct the biases linked to transcript size. Size classes 
were built every 100 bp for transcripts < 5000 bp, as too few transcript numbers were 
observed with a size ≥ 5000 bp leading to scattered dots. The dotted line separates the red 
regression line corresponding to transcripts < 600 bp and the blue one to transcripts ≥ 600 bp. 
The vertical axis corresponds to log2 transformed values of read numbers. A) Cattle sample 
1479. B) Drosophila sample SRR384925 (7132 genes with a single transcript). C) Human 
sample SRR1177729 (16,228 genes with a single transcript). D) Representation of sample 
1479 after correction (green). E) RNA-Seq simulated data using rlsim, where Loess 
smoothing was applied to each series. The blue points correspond to a run where the 
sequenced fragments are in the range of 250–450 bp, the red one to the range of 450–650 bp, 
and the violet one to the range of 650–850 bp. 

1 1.i iy a x b= +  (1) 
and 

2 2.i iy a x b= +  (2) 
where yi corresponds to the mean read number for the size class xi. 

We observed that the slope a1 for shorter transcripts was higher than the one a2 for longer 
transcripts, and verified that this trend was also true for the 21 other cattle samples analyzed 
by RNA-Seq. In particular, the 600 bp border remained constant. In other species (e.g. 
Drosophila and Human), we retrieved this 600 bp border in all the samples tested (16 
drosophila head samples and 20 human whole blood samples). One example of each of this 
species is presented in Figures 1B and 1C. To correct the bias linked to transcript sizes, it was 
necessary to introduce two different equations corresponding to each part of the graph. As 
size 600 is a critical value, we decided to adjust all the read numbers to this size. First 
consider the left part; for a transcript of size S, we added the value “ a1 (600 - S) ” to the 
observed read number. Likewise, for transcripts > 600 bp, we removed the value “ a2 (S - 
600) ”. As a result, the read numbers of all the transcripts were adjusted to the size 600 
(Figure 1D). 



To understand the significance of this 600 bp border, we hypothesized that it could be due to 
the length of the sequenced fragments. This idea was tested using the simulation procedure 
implemented in rlsim software. Three different fragment lengths were considered: 250–450 
(mean 350) bp, 450–650 (mean 550) bp, and 650–850 (mean 750) bp, with a fixed total read 
number of 1 million. The results are summarized in Figure 1E, with LOESS smoothing. It is 
difficult to give a precise position of the break point between the two regression lines, but it is 
clear that the greater the sequenced fragments, the more the break point is shifted toward the 
right. Moreover, the slopes for the regression lines situated before the break points seem to be 
similar. 

To assess the efficiency of our method, we calculated the Pearson correlations between qRT-
PCR and RNA-Seq counts corrected by FPKM (Fragments Per Kilobase per Million mapped 
reads) [23] or SGTR for the five bovine samples. We choose FPKM as it is a one of the most 
frequently method used for normalization. Briefly, it consists in dividing the fragment counts 
by transcript size and the total number of reads, and adjusted to 1 kb and 1 million reads. 

Among all the genes detected by qRT-PCR and RNA-Seq methods, we considered five sub-
samples according to the class size of transcripts. The results shown in Table 1 indicate that 
the correction by FPKM is improved by transforming the raw values by their logarithms. 
Whatever the samples, the p-values observed for FPKM were largely worse than the one 
corresponding to log2(FPKM), except for transcripts < 1,000 bp and for transcripts ≥ 4,000 bp 
of the sample 1475 and 1455 which presented the lowest sequencing depth. This resulted 
from the distribution of values illustrated in Figure 2A and 2B. Consequently, further 
comparisons will only be made on the log2(FPKM) values. When we compare SGTR 
correction according to size only with the previous normalization, the p-values were 
generally of the same order of magnitude. Nevertheless, we observed slightly better results 
with our method for transcripts < 1,000 bp but faintly worse results for transcripts between 
1,000 and 2,000 bp, whatever the sample. 



Table 1 Comparison between FPKM and SGTR methods according to transcript size 
 N Samples FPKM  log2(FPKM)  SGTR - Size SGTR - Size and GC content 
All genes 159 1475 1.07E-15 7.96E-39 1.71E-39 4.80E-39 
Size < 1,000 bp 9 1475 9.59E-03 2.15E-02 1.58E-02 2.62E-02 
1,000 – 2,000 bp 63 1475 1.86E-06 6.39E-18 4.71E-17 2.56E-17 
2,000 – 3,000 bp 49 1475 2.81E-07 3.55E-14 1.75E-14 2.47E-14 
3,000 – 4,000 bp 28 1475 3.25E-04 1.86E-06 1.86E-06 3.01E-06 
Size > 4,000 bp 10 1475 1.56E-03 5.82E-03 6.95E-03 5.42E-03 
All genes 155 1455 8.84E-16 2.95E-39 5.86E-39 3.40E-39 
Size < 1,000 bp 9 1455 3.84E-02 1.03E-01 8.34E-02 1.05E-01 
1,000 – 2,000 bp 60 1455 9.81E-07 1.57E-18 2.00E-17 4.19E-18 
2,000 – 3,000 bp 50 1455 3.48E-09 9.07E-16 8.60E-16 1.43E-15 
3,000 – 4,000 bp 26 1455 5.60E-05 2.80E-07 2.99E-07 4.50E-07 
Size > 4,000 bp 10 1455 4.44E-03 2.26E-03 2.99E-03 1.96E-03 
All genes 162 1479 4.63E-14 8.24E-44 1.37E-43 2.02E-49 
Size < 1,000 bp 9 1479 7.54E-02 1.55E-01 1.18E-01 9.34E-02 
1,000 – 2,000 bp 62 1479 1.75E-08 1.37E-16 6.87E-16 5.11E-18 
2,000 – 3,000 bp 53 1479 1.68E-05 1.64E-19 1.64E-19 9.64E-22 
3,000 – 4,000 bp 29 1479 1.67E-05 2.80E-09 3.08E-09 4.36E-10 
Size > 4,000 bp 9 1479 1.33E-03 2.81E-05 5.39E-05 1.04E-04 
All genes 152 1345 1.16E-14 1.57E-42 1.86E-42 6.11E-44 
Size < 1,000 bp 9 1345 3.83E-02 9.84E-02 6.95E-02 7.98E-02 
1,000 – 2,000 bp 58 1345 7.93E-08 6.39E-18 6.85E-17 2.43E-18 
2,000 – 3,000 bp 50 1345 2.04E-05 8.39E-18 5.17E-18 1.74E-18 
3,000 – 4,000 bp 26 1345 5.08E-03 7.67E-07 7.87E-07 1.01E-06 
Size > 4,000 bp 9 1345 6.83E-04 1.62E-04 2.59E-04 4.44E-04 
All genes 162 1476 2.73E-15 1.73E-41 6.74E-41 1.51E-44 
Size < 1,000 bp 9 1476 5.12E-02 6.26E-02 4.52E-02 5.10E-02 



1,000 – 2,000 bp 62 1476 3.38E-08 7.54E-17 4.72E-16 4.92E-18 
2,000 – 3,000 bp 53 1476 1.55E-05 2.56E-17 3.53E-17 1.89E-18 
3,000 – 4,000 bp 29 1476 3.44E-04 6.14E-07 7.13E-07 3.47E-07 
Size > 4,000 bp 9 1476 9.18E-04 1.44E-04 2.76E-04 5.51E-04 
N corresponds to the number of analyzed genes. The five samples (1475, 1455, 1479, 1345, and 1476) refer respectively to samples with a total 
read number around 10.106, 13.106, 20.106, 24.106, and 30.106 reads. Abbreviations: SGTR size: correction for transcript size; and SGTR Size 
and GC content: correction for transcript size and GC content. Only the p-values of Pearson correlation with qRT-PCR quantifications are 
indicated. p-values were calculated using the Past3 program [24]. 



Figure 2 Relationships between RNA-Seq normalization methods and qRT-PCR 
quantifications (Cattle sample 1479). A) FPKM corrected values. B) log2(FPKM) corrected 
values. C) SGTR corrected values including size and GC content bias correction. 

Removing of the GC-content effect 

For the gene dataset of each cattle sample, we first calculated the trend curve for read 
numbers according to GC content. Polynomial equations of different order were tested and 
revealed dissymmetric dome shaped curves: the left increasing part (GC from 35 to 40%) was 
hardly visible by comparison to the right decreasing one (GC from 45 to 80%), where 
decreasing trend was getting more and more pronounced for GC > 50% (data not shown). We 
retained a third order polynomial function that clearly showed this last trend in all the 
samples, giving the Equation 3 (Figure 3A). Below the 50% threshold, the mean read 
numbers remained fairly constant. 

Figure 3 Method implemented to correct GC content biases. Variations in size-corrected 
mean read numbers according to GC content. The polynomial equations are indicated above 
(A:  Cattle sample 1479, and D: Drosophila sample SRR384925). Application of the previous 
equation (Eq.3) to differences between 50% GC content and each GC content value, giving 
the equation indicated above (Eq.4) (B: Cattle sample 1479, and E: Drosophila sample 
SRR384925). Effect of GC content bias correction on the whole dataset. Clearly, no 
remaining dependence can be observed: the p-value to third order polynomial equation is 
1.00 (C: Cattle sample 1479, and F: Drosophila sample SRR384925). 

3 2. . . ,y c x d x e x f= + +  (3) 
where y represents the size-corrected mean read number and x the GC content. 

Second, for each GC percentage, we calculated the difference between the GC content and 
50% that we applied to the previous polynomial equation leading to the Figure 3B. The best 
fitting polynomial function was then deduced: 

3 2. . . ,y g x h x i x j= + + +  (4) 

where y corresponds to the predicted read number and x represents the difference between a 
GC content and 50%. 

Third, we adjusted the size-corrected values by removing “g.x3 + h.x2 + i.x ” of this last 
function to all the transcripts. The Figure 3C illustrates the efficiency of GC bias correction. 

For the 20 human samples, we obtained the same profiles of size-corrected read number 
according to GC content as in Cattle (data not shown). In contrast, for the 16 drosophila 
samples, the polynomial curves were different (Figure 3D and 3E). Nevertheless, the 
correction of the GC content bias using the previous procedure yielded a smoothing curve 
absolutely flat (Figure 3F), attesting the efficiency of our method. 

The final step consisted in testing the effect of the GC content bias removing on the 
correlation between RNA-Seq counting and qRT-PCR quantification, in the case of bovine 
data. Except for the sample 1475 (10.106 reads), this last bias correction improved the global 
correlation with qRT-PCR quantifications relatively to the simple size correction by SGTR 



(Table 1). By comparison with log2(FPKM) correction, the removing of size and GC content 
biases improved the global correlation with qRT-PCR results, except for the sample 1455 
which presented a low sequencing depth (13.106 reads) and showed similar results as 
log2(FPKM) correction. The Figure 2C illustrates the correlation obtained between SGTR 
including size and GC content corrections and qRT-PCR quantifications for the sample 1479. 
We observed a better proportionality than the one provided by log2(FPKM) correction 
(Figure 2B). 

Adjustment according the total read number 

For the 22 cattle samples, we calculated the correlations between total read numbers and the 
regression parameters (a1, b1, a2, and b2) as given in Figure 1. Except the coefficient b1, all 
the coefficients were positively correlated with total read numbers (Figure 4A, 4B, and 4C). 
The new regression parameters were defined as ui and vi for the slope and constant 
respectively: 

Figure 4 Correlation between regression parameters and total read numbers (Cattle 
sample 1479). A) Slope a1 for transcripts < 600 bp. B) Slope a2 for transcripts ≥ 600 bp. C) 
Constant b2 for transcripts ≥ 600 bp. The equations are indicated below the regression lines. 

1 1 . ,i iy u x v= +  (5) 

2 2. ,i iy u x v= +  (6) 
and 

3 3.i iy u x v= +  (7) 
where yi corresponds to the regression parameter for a total read number xi. 

As 20 million was close to the mean value of total read numbers among the 22 samples, we 
decided to adjust all TRN (Total Read Numbers) to 20 million. For transcripts < 600 bp and 
TRN, we corrected the log2-transformed read numbers by adding the value “ u1 (20.106 - 
TRN ) ” to the parameter a1 in the Equation 1. Consequently, for a transcript of size S, we 
corrected the values with the following equation: 

( ) ( ) ( )2 1 1 .  iy log a u TRN S= + + 
 −−6read numbers 20 10 600   (8) 

where yi corresponds to the corrected read number for the transcript xi. 

Likewise, for transcripts ≥ 600 bp, we added the value “ u2 (20.106 - TRN) ” to the parameter 
a2 in the Equation 2, and adjusted the corrected value by adding “ [ u3 ( 20.106 - TRN ) ] ”. 
As a result, the log2-transformed read numbers were corrected with the subsequent equation: 

( ) ( ) ( ) ( )2 2 2 3 .  .iy log a u TRN S u TRN= − + − −  − +6 6read numbers 20 10 600 20 10  (9) 

where yi represents the corrected read number for the transcript xi. 

On the other hand, after calculating the Eq.4’ corresponding to the Eq.4 based on the size- 
and TRN-corrected values, we determined the correlations between TRN and the regression 
parameters for GC content (defined as g’, h’ , i’ , and j’ , as in Figure 3B). It appears that none 



of these parameters were linked to sequencing depth. Consequently, we corrected the GC 
content bias by removing “ g’.x3 + h’.x2 + i'.x ” to the size- and TRN-corrected values, giving 
the following equation: 

( ) ( )2   ’. ’. ’. ,iy log g x h x i x= − − − + +3 2size and TRN corrected values   (10) 

where yi corresponds to the full-corrected read number, and x to the difference between the 
GC content and 50%. 

Lastly, the negative final values were considered as null. It should be noted that when we 
applied the correction due to TRN, the correlations between SGTR and qRT-PCR 
quantifications became slightly better comparatively to the previous SGTR steps (Size and 
GC content corrections), except for the samples 1475 and 1476 which present the lowest and 
the highest sequencing depth (Table 2). In summary, the full SGTR correction showed better 
results than log2(FPKM), except for the sample 1475. 



Table 2 Correction of the impact of total read numbers 
 N Samples log2(FPKM) SGTR - Size SGTR - Size and GC content Full SGTR 

All genes 

159 1475 7,96E-39 1.71E-39 4.80E-39 1.08E-38 
155 1455 2,95E-39 5.86E-39 3.40E-39 2.66E-39 
162 1479 8,24E-44 1.37E-43 2.02E-49 1.21E-49 
152 1345 1,57E-42 1.86E-42 6.11E-44 5.64E-44 
162 1476 1,73E-41 6.74E-41 1.51E-44 2.28E-44 

N corresponds to the number of analyzed genes. The five samples (1475, 1455, 1479, 1345, and 1476) refer respectively to samples with a total 
read number around 10.106, 13.106, 20.106, 24.106, and 30.106 reads. Abbreviations: SGTR size: correction for transcript size; SGTR Size and 
GC content: correction for transcript size and GC content; and Full SGTR: correction for transcripts size, total read number, and GC content. 
Only the p-values of Pearson correlation with qRT-PCR quantifications are indicated. 



Discussion 

Our results showed that non-transformed counts values from RNA-Seq presented worse 
correlations with qRT-PCR quantification than the log2-transformed ones, as already stressed 
by [2,10,21], and [22]. The prior transformation of read counts by log2 function was 
motivated by the variability of data corresponding to highly expressed genes, often observed 
in large size transcripts. We hypothesized that this transformation could also attenuate the 
overestimations due to PCR duplicates. Indeed, the more expressed the transcripts, the higher 
the probability to generate duplicates (several clusters of reads share exactly the same start 
and end) [13,15]. Otherwise, certain authors have proposed to apply log2-transformed values 
to the data extracted from qRT-PCR [25,26]. Given our regression curves, it is clear that for 
our samples, this correction is inappropriate (unpublished data). 

As for transcript size correction, two strategies have been adopted by different authors. In the 
first one, the transcripts are ranked in quantiles containing identical numbers [2,6,7]. The 
advantage is a balanced distribution facilitating further statistical analysis. However, it is 
difficult to assign a mean read number to scaled sizes. In the second one, size classes are built 
irrespective of the number of genes per class [4], leading to an increasing dispersion for the 
classes of higher sizes (mainly due to lower number of genes). Both approaches allowed 
avoiding certain limitations implemented in RPKM (Reads Per Kilobase of exon model per 
Million mapped reads) [1] or FPKM [23] methods, where the number of read is simply 
divided by transcript size. The main difference consists in taking into consideration paired-
reads in the FPKM method while only simple reads in the RPKM one. 

We choose the second strategy because of the excellent regression quality of mean read 
numbers by size classes. We interpret the border 600 bp observed whatever the species 
dataset (Figure 1A-1C) as a result of sonication and selection of cDNA fragments between 
250 and 450 bp. Indeed, fragments > 600 bp are all the more so represented that they are long 
[1,3,4,27]. Conversely, the fragments < 600 bp are under-represented as many small 
segments were not sequenced. Moreover, the simulation conducted with rlsim confirmed our 
view, and showed that the border increases with the size of the sequenced fragments (Figure 
1E). Hence, this proves the effect of the cDNA fragments size selection on the break point 
between the two regression lines. As a result, independent corrections are needed for both 
transcript sizes. This last point provided slightly better correction than the log2(FPKM) for 
transcripts < 1,000 bp (see Table 1). According to [14,28] and [29], RNA-Seq protocol 
including PCR in the first steps introduced biases linked to GC content, as cDNA fragments 
with high GC and AT content are under-sequenced. To correct this bias, [10,14] and [30] 
proposed to build GC-classes. In our method, we took into account the general trend by 
calculating a three order polynomial equation, which was used to correct the decrease over 
50% GC content. The efficiency of our correction was sample-dependent and more precisely 
linked to sequencing depth. Indeed, for a low number of reads, the GC bias correction did not 
improve the normalization, in contrast to samples with higher sequencing depth. SGTR 
including Size and GC content corrections provide thus globally better results than 
log2(FPKM) (Table 2), which is in agreement with the conclusions of [8] and [10]. We expect 
that the GC content correction should be more accurate if it was applied on gene segments 
(~300 to 500 bp) and not on full length transcripts, as there are variations along the sequence 
in their GC content. 

Lastly, since the sequencing depth introduces effects on transcript size bias, we adjusted the 
TRN to 20 million reads in reason of its medium value. Hence, we modified the parameters 



a1, a2, and b2, but this step requires numerous samples to obtain reliable values. Finally, these 
size and TRN adjusted values were then corrected for GC content bias. 

Our integrated method corrects some biases linked to transcript size and GC content, but also 
sequencing depth. However, it is striking that for the lowest sequencing depths (sample 1475: 
10 million reads; 1455: 13 million reads) our correction gave worse or equal correlations with 
qRT-PCR values than log2(FPKM). In contrast, for read counts over 20 million, our method 
significantly improves the read counting, for the whole dataset and for most gene size classes. 
The question is to interpret this observation and several considerations have to be taken into 
account. First, in our samples, when the total number of reads is low, it is particularly true for 
transcript with sizes shorter than 600 pb, the regression equation between transcript size and 
read counts is less accurate than the one for transcript sizes longer than 600 pb. Second, the 
more expressed the transcripts (total read numbers over 20 million), the higher is the 
probability to generate duplicates and other biases induced by RNAseq. Our method can be 
compared to GAM (Generalized Additive Model) of [11], where the data are corrected for 
length, GC content, and dinucleotide frequency biases. However, these authors have shown 
that the correction of dinucleotide frequency biases did not improve results. Unlike GAM 
method, our model is not additive as we showed that the regression coefficient linked to 
transcript length depend on the sequencing depth. That was not the case for polynomial 
equation coefficients used to correct the GC content bias. Improvements are still needed to 
better take into account the variation of GC content per read in a given transcript, as the GC 
content is not homogeneous along the sequence. Protocols excluding PCR in first step could 
avoid this issue, and problems linked to PCR duplicates [13,15,28]. On the other hand, it is 
highly desirable to provide a good estimation of the number of reads corresponding to each 
transcript isoform. To overcome this issue, we took into account genes presenting only one 
transcript. In contrast to Human [11], this choice does not result in a dramatic loss of 
information as more than 50% of bovine genes have a single transcript in the available 
annotation file. The accurate determination of transcript size suffers from biases linked to 
cDNA library preparation. Indeed, it seems that random-hexamers present some favored and 
disfavored sites, so that specific regions are selected more easily than others leading to biases 
for low expressed genes [1,31,32]. RNA fragmentation before its reverse-transcription in 
cDNA reduces this bias leading to more uniform gene coverage [33]. Nevertheless, these 
technical effects associated to library preparation as well as some variations observed 
between flow cells have always a smaller influence that the biological effect [6,9]. Otherwise, 
the fine determination of TSSs (Transcription Start Sites) deduced from alignment of the 
reads onto the genome (and not onto the known transcripts) could further improve the 
accuracy of transcript size. 

Conclusions 

We demonstrated that our method is robust and suitable to compare the read counts of genes 
for numerous samples of the same tissue. All the steps described are sequentially automated 
within SGTR program written in Perl, and available upon request from RP and DP. The 
extension of our method to the normalization of the read numbers between different tissues 
requires considering a set of reference genes as calibrators. 
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Additional file 1: Table S1 Absence of significant correlations between qRT-PCR data and 
transcript sizes or GC contents. N corresponds to the number of analyzed genes. The five 
samples (1475, 1455, 1479, 1345, and 1476) refer respectively to samples with a total read 
number around 10.106, 13.106, 20.106, 24.106, and 30.106 reads. We indicated the p-values 
associated to polynomial (first and third orders) regression equations between ∆CT values 
and transcript sizes or GC contents. 
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