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Abstract

Background

Transcriptome sequencing is a powerful tool for measuring gepeession, but as well as
some other technologies, various artifacts and biases affecjuttrgification. In order tp
correct some of them, several normalization approaches have endiffgenhg both in the
statistical strategy employed and in the type of cordebtases. However, there is no clear
standard normalization method.

Results

We present a novel methodology to normalize RNA-Seq data, takm@adcbunt transcript
size, GC content, and sequencing depth, which are the major quantificglited biases. |n
this study, we found that transcripts shorter than 600 bp have an undatedterpression
level, while longer transcripts are even more overestimatedhtiyatare long. Second, it wias
well known that the higher the GC content (>50%), the more the tipissare
underestimated. Third, we demonstrated that the sequencing depthsitheasize bias and
proposed a correction allowing the comparison of expression levels amamgsamples.
The efficiency of our approach was then tested by comparing direlation betwee
normalized RNA-Seq data and gRT-PCR expression measurementsheAliteps ar
automated in a program written in Perl and available on request.

D o

Conclusions

The methodology presented in this article identifies and carrdifferent biases that
influence RNA-Seq quantification, and provides more accurate egtimmaof gene
expression levels. This method can be applied to compare expressigificai®ns from
many samples, but preferentially from the same tissue. In todeompare samples frgm
different tissue, a calibration using several reference genes wébbeed.
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Background

The study of transcriptome has pushed forward by the developmentxifameration
sequencing technologies. RNA-Seq offers the possibility tonf@tnnation on sequence and
guantification of all transcribed genes, but extremely lowly esg®d ones [1]. As shown by
these authors, this method differs from the microarrays whict laitations due toi) the
difficulty to design specific probes, leading to artifacts cdusecross-hybridization and
the impossibility to detect expression for non-annotated genes. Bijpraguantification
performed using gRT-PCR is more precise than microarrays, blgasiot able to measure
unknown genes. Moreover, the cost of TLDA (TagMan Low Density Arapplied
Biosystems) for example, renders it unsuitable for large gene sets.



The RNA-Seq protocol is a succession of technical steps followedjulantification.
According to lllumina technology, i) a cDNA library from a given tissue is randomly
fragmented by sonicationji) specific adapters are ligated for the assignation of each
fragment to the corresponding samplgj) (PCR amplification are performed, ant)(
amplified mRNA fragments with sizes ranging from 250 to 450 bpsatated before being
sequenced. The quantification of the sequenced fragments (callés) teegins with the
mapping of each read onto the assembled genome or transcriptomeéeilirtcocount the
number of reads assigned to each known or unknown gene. When there are severptdranscr
or close paralogues for a gene, the attribution of a read togtetranscript is not always
possible depending on the read position: 5’-end fragments are expedtedrtore specific
than 3’-end ones. The second step of quantification consists in remouinigidses affecting
read counts:i) the number of reads increases with the size of the transcript [2-8litk the
amount of the cDNA library [7,8]ji{) sequencing efficiency decreases when the GC-content
is too low or too high [9-12], andW due to a PCR amplification step during the library
preparation, PCR duplicates occur when two copies of the same ¢idydent produce
different clusters on the flow cell [13-15].

Since RNA-Seq emergence, a number of normalization methods have hetrpee to
address one or two of the different biases [1-12,14]. Our aim avesvielop an integrated
method able to correct all these sources of bias. In order td &MA-Seq quantification
problems linked to specific isoforms, unlike most studies, we ongined genes with a
single transcript to determine the various equations and to petfiermomparison [16]. As
for size effects, most of them are based on mathematicabdigin models to compare
expression levels between samples, but do not consider separatepptsite biases relative
to size: short transcripts (<600 bp) are underestimated whilerlongs are overestimated.
As for the bias linked to GC content, we performed simple reagressethods based on
polynomial model. It appeared that sequencing depth has an effdot equations driving
the size and GC content corrections. Hence, unlike other methodsher fruh of our
program was performed to correct globally the read countskinygtanto account size, GC
content and total read numbers. In order to assess the efficienoyr odipproach, we
calculated the correlation between corrected RNA-Seq counts and qRT-P CiRagiainis.

Methods

RNA extraction

Longissimus thoracis muscle biopsies were taken between tffeand ' ribs of 125
limousine bulls slaughtered at the age of 15.8 months. The samplesnnezdiately frozen
in liquid nitrogen and stored at —80°C. After grinding tissues using Piegs FP120
Homogenizer device Thermo Savant) and micro-tubes “Lysing Matrix D” MP
Biomedicals), RNA extractions were performed with the RNeasy Midi/Mkixi(Qiagen).
The procedure and solution quantity were optimized for extraction fketatal muscles and
treatment with proteinase K as recommended by the supplier. They quasitrol of RNA
step was done using RNA 6000 Nano Chips analyzed with 2100 Bioanalyremiest
(Agilent Technologies). The 22 best ranking RNA samples were retained.



RNA sequencing

To verify the absence of degradation during the storage period, they quidhese 22 cattle
samples were then checked again before preparing cDNAidibraccording to thdlumina
protocol. Briefly, mRNAs were isolated from total RNA by theplyA tails and cDNA
libraries were built using random-hexamers. These cDNAs fragenented by sonication,
and specific adapters were then ligated to each fragmetitdaraceability of the sample.
Ten cycles of PCR amplification were performed. AmplifiedMARwith a size between 250
and 450 bp were then isolated before being sequenced in paired-endviteaaldength of
100 bases usinglumina HighSeq2000 device (hosted at the INRA Genomic Platform of
Toulouse, France).

RNA-Seq read counting

The first step consists in de-multiplexing the reads by r@zog specific adapter sequences
to assign each read to the corresponding sample (three sampéeposted per flow cell
lane). From 100 to 240 million paired-end reads were obtained per fldwlace,
corresponding to 27 to 91 million reads for each cDNA libraryséhmired-end reads were
then mapped back to the bovine reference transcriptome, Basrtgurus known transcripts
recorded in the Ensembl database v.61 (Website:
ftp://ftp.ensembl.org/pub/current/fasta/bos_taurus/cdna/Bos_taurus.Btau_4.0.8ll.cdna
fa.gz). This set contains 27,663 transcript sequences assigned to Riovd%# genes and
pseudogenes. Paired-end reads located exactly on the same gransce selected and
counted. A total of 21,455 transcripts (17,605 genes) were identifiedaw@hst one paired-
end read within the 22 analyzed samples.

gRT-PCR quantification

Among the 22 cattle samples, five of them were chosen to pegieirPCRs on the basis of
a large range of total read numbers. These samples showed arourfd(1478), 13.10
(1455), 20.10 (1479), 24.10 (1345), and 30.f0reads (1476), respectively. These
experiments were conducted using custom-made TLDA (Tag-ManDemwity Array) cards
and ABI PRISM 7900HT sequence detector systAppl{ed Biosystems). The dataset was
built with genes involved in glycosylation metabolism, named glycoggenéhe following.
They concern glycosyl-transferases, glycosidases, sulfo-trassfer sugar carriers, and
lectines. Among the around 800 genes recorded in the bovine genome (unpulhdis)ed
372 were selected according to two criteria: the greatestsilly of the glyco-gene groups
and the availability of primers provided by Applied Biosystems
(https://bioinfo.appliedbiosystems. com/genome-database/gene-expreadjon.ftwelve
housekeeping genes (18S RNA, TFIID transcription factor, etc.[158¥ were added as
controls to complete the 384-microwells of each microfluidic calee quantification was
done using the SDS 2.3 softwargpplied Biosystems) according to thCt method (see the
User Bulletin #2 for ABI PRISM 7700 of October 2001). BrieflACt corresponds to the
threshold cycle (Ct) for each gene minus that of the mean oiviteet endogenous internal
controls.



RNA-Seq data from public datasets (drosophila and timan)

To validate the first steps of our method, it was necessary to consider publicalizig \aéh
other organisms thaBos taurus.

As for Drosophila, in the public dataset SRA: SRP009459/GEO: GSE33905 tddplogi

B.R. Graveley and co-workers, we downloaded 16 read sequence s@tedliiom head of

male and female adults (GSM838758 to GSM838760, GSM838763 to GSM838766 to
GSM838780, and GSM838799 to GSM838802). The sequencing depth varied from 2.7 to 8.4
million reads, with a mean value close to 5 million reads.

As for Human, we considered the dataset SRA: SRP032775/GEO: GSE5216i6eddmps

R. Sanka and co-workers. In order to have homogeneous data, the reantesagie came
from whole blood of 20 individuals in a pre-infection state relativelyPtasmodium
falciparum (GSM1335718, GSM1335720, GSM1335722 to GSM1335756). The sequencing
depth varied from 21.2 to 72.9 million reads, with a mean value around 40 million reads.

Using STAR aligner software v.2.3.1f [18], the read sequences wéce-apgned onto the
Drosophila v.BDGP5.75 or the Human genome v.GRCh37.75, respectively. Transergts
quantified with sigcufflinks (available upon request at www.sigenag.amnodified version

of the cufflinks code [19] providing raw read counts per transcriptusigg the GTF

reference files provided by Ensembl (version 75).

Simulation of RNA-Seq data

As we suspected that the RNA fragment sizes have an imp#oe dehavior of read counts
as a function of transcript sizes, it was useful to conduct simlasing a specific program.
We first downloaded the transcript genesBufs taurus chromosome 20 from Ensembl
(version 75 — genome assembly UMD3.1). All the sequences wereteoaiem to obtain a
single sequence of 255,601 bp. This sequence was then split into 231rgEre$ASTA
format, with increasing sizes from 50 bp to 1,200 bp according toithmatic progression
with common difference of 5. This file was submitted to risim [Z#fault parameters were
chosen, except for sequenced fragment range, and total read nummu#io(d. Three runs
were launched, the first with 250-450 (mean 350) bp, the second with 450—-650550¢a
bp, and the last 650-850 (mean 750) bp. For each transcript, the prograns assig
expression level from a mixture of gamma distribution with twegonents with mean
5,000 and 10,000. Then, the simulation provides for each read its sequence asijtieel as
gene. We then calculated the number of reads for each genehssipggram Fishing-net,
written in Perl, available upon request from CF and DP.

Results

As gRT-PCR quantification were used to validate our RNA-Seq normalizatithhodjét was
necessary to verify that qRT-PCR data were not subject nisctigt size and GC content
biases. As for transcript size, we tested a relationship héth@t obtained by gRT-PCR for
cattle sample 1479 (n = 233). Through polynomial equations of first andotideds, thep-
values were 0.84 and 0.87, respectively. As for GC content in the sample, the
corresponding polynomial equations gapesalues of 0.57 and 0.96, respectively. We



verified that for the four other cattle samples, no significafdtionships were observed
neither for transcript size nor for GC content (Additional file 1).

To compare qRT-PCR results with the RNA-Seq approach, sevepa st correction are
needed. The calculations concerned 14,676 genes for which only one tramsceipietected
in Cattle. We propose an integrated method called SGERs¢ript Sze, GC content and
Total Read number) that takes into account the effects of transcript size, GGerehraand
total read number. First, it was necessary to apgiygatransformation to raw counts to
avoid large dispersion for high values according to [2,10,21] and [22].

Correction of transcript length biases

We sorted the transcripts according to their size and builtHeslgsses: the classcontains
all the transcripts for which the size is comprised in ther + 99 | interval. As for example,
the cattle sample 1479 resulted in the Figure 1A. It is dedirtévo parts can be observed on
both sides of the size 600. The regression equations for transc@P@bp and 600 bp are
respectively as follows:

Figure 1 Method implemented to correct the biases linked to transcript se Size classes
were built every 100 bp for transcripts < 5000 bp, as too few transcript numbers were
observed with a size 5000 bp leading to scattered dots. The dotted line separates the red
regression line corresponding to transcripts < 600 bp and the blue one to tranOPisp.
The vertical axis correspondsltm, transformed values of read numbey.Cattle sample
1479.B) Drosophila sample SRR384925 (7132 genes with a single transCiptuman
sample SRR1177729 (16,228 genes with a single trans@)pRepresentation of sample
1479 after correction (greerg) RNA-Seq simulated data using rlsim, where Loess
smoothing was applied to each series. The blue points correspond to a run where the
sequenced fragments are in the range of 250-450 bp, the red one to the range of 450-650 bp,
and the violet one to the range of 650-850 bp.

Y =a.x +h (1)
and
Y, =a,.% +b, 2)

wherey; corresponds to the mean read number for the Ezgexg

We observed that the slojpe for shorter transcripts was higher than the anéor longer
transcripts, and verified that this trend was atse for the 21 other cattle samples analyzed
by RNA-Seq. In particular, the 600 bp border reradirconstant. In other species (e.g.
Drosophila and Human), we retrieved this 600 bpdéorin all the samples tested (16
drosophila head samples and 20 human whole blaoglsa). One example of each of this
species is presented in Figures 1B and 1C. Toddire bias linked to transcript sizes, it was
necessary to introduce two different equationsesponding to each part of the graph. As
size 600 is a critical value, we decided to adpibktthe read numbers to this size. First
consider the left part; for a transcript of sRewe added the valued; (600 -S) ” to the
observed read number. Likewise, for transcripts08 Bp, we removed the valueas (S -
600) ”. As a result, the read numbers of all the trapss were adjusted to the size 600
(Figure 1D).



To understand the significance of this 600 bp borde hypothesized that it could be due to
the length of the sequenced fragments. This ideatested using the simulation procedure
implemented in risim software. Three different freent lengths were considered: 250-450
(mean 350) bp, 450-650 (mean 550) bp, and 650-+8Bar( 750) bp, with a fixed total read
number of 1 million. The results are summarize&igure 1E, with LOESS smoothing. It is
difficult to give a precise position of the breakiqt between the two regression lines, but it is
clear that the greater the sequenced fragmentsnaone the break point is shifted toward the
right. Moreover, the slopes for the regressiondisituated before the break points seem to be
similar.

To assess the efficiency of our method, we caledl#te Pearson correlations between gqRT-
PCR and RNA-Seq counts corrected by FPKIvagments Per Kilobase per Million mapped
reads) [23] or SGTR for the five bovine samples. We cs®o&PKM as it is a one of the most
frequently method used for normalization. Brieftygonsists in dividing the fragment counts
by transcript size and the total number of readd,ajusted to 1 kb and 1 million reads.

Among all the genes detected by gRT-PCR and RNAfBetthods, we considered five sub-
samples according to the class size of transcrijts.results shown in Table 1 indicate that
the correction by FPKM is improved by transformitig raw values by their logarithms.
Whatever the samples, tipevalues observed for FPKM were largely worse tHam ane
corresponding tbog,(FPKM), except for transcripts < 1,000 bp and fanscripts> 4,000 bp

of the sample 1475 and 1455 which presented thedbwequencing depth. This resulted
from the distribution of values illustrated in Figu2A and 2B. Consequently, further
comparisons will only be made on theg,(FPKM) values. When we compare SGTR
correction according to size only with the previomsrmalization, thep-values were
generally of the same order of magnitude. Nevesdslwe observed slightly better results
with our method for transcripts < 1,000 bp but figinvorse results for transcripts between
1,000 and 2,000 bp, whatever the sample.



Table 1 Comparison between FPKM and SGTR methods according to transcript s&z

N Samples FPKM logz(FPKM) SGTR - Size SGTR - Size and GC content
All genes 159 1475 1.07E-15 7.96E-39 1.71E-39 4.80E-39
Size < 1,000 bp 9 1475 9.59E-03 2.15E-02 1.58E-02 .62E202
1,000 — 2,000 bp 63 1475 1.86E-06 6.39E-18 4.71E-17 2.56E-17
2,000 - 3,000 bp 49 1475 2.81E-07 3.55E-14 1.75E-14 2.47E-14
3,000 — 4,000 bp 28 1475 3.25E-04 1.86E-06 1.86E-06 3.01E-06
Size > 4,000 bp 10 1475 1.56E-03 5.82E-03 6.95E-03 5.42E-03
All genes 155 1455 8.84E-16 2.95E-39 5.86E-39 3.40E-39
Size < 1,000 bp 9 1455 3.84E-02 1.03E-01 8.34E-02 .05B-01
1,000 — 2,000 bp 60 1455 9.81E-07 1.57E-18 2.00E-17 4.19E-18
2,000 - 3,000 bp 50 1455 3.48E-09 9.07E-16 8.60E-16 1.43E-15
3,000 — 4,000 bp 26 1455 5.60E-05 2.80E-07 2.99E-07 4.50E-07
Size > 4,000 bp 10 1455 4.44E-03 2.26E-03 2.99E-03 1.96E-03
All genes 162 1479 4.63E-14 8.24E-44 1.37E-43 2.02E-49
Size < 1,000 bp 9 1479 7.54E-02 1.55E-01 1.18E-01 348302
1,000 — 2,000 bp 62 1479 1.75E-08 1.37E-16 6.87E-16 5.11E-18
2,000 - 3,000 bp 53 1479 1.68E-05 1.64E-19 1.64E-19 9.64E-22
3,000 — 4,000 bp 29 1479 1.67E-05 2.80E-09 3.08E-09 4.36E-10
Size > 4,000 bp 9 1479 1.33E-03 2.81E-05 5.39E-05 .04EL04
All genes 152 1345 1.16E-14 1.57E-42 1.86E-42 6.11E-44
Size < 1,000 bp 9 1345 3.83E-02 9.84E-02 6.95E-02 .98E+02
1,000 — 2,000 bp 58 1345 7.93E-08 6.39E-18 6.85E-17 2.43E-18
2,000 — 3,000 bp 50 1345 2.04E-05 8.39E-18 5.17E-18 1.74E-18
3,000 — 4,000 bp 26 1345 5.08E-03 7.67E-07 7.87E-07 1.01E-06
Size > 4,000 bp 9 1345 6.83E-04 1.62E-04 2.59E-04 A4E04
All genes 162 1476 2.73E-15 1.73E-41 6.74E-41 1.51E-44
Size < 1,000 bp 9 1476 5.12E-02 6.26E-02 4.52E-02 10502




1,000 — 2,000 bp 62 1476 3.38E-08 7.54E-17 4.72E-16 4.92E-18
2,000 - 3,000 bp 53 1476 1.55E-05 2.56E-17 3.53E-17 1.89E-18
3,000 — 4,000 bp 29 1476 3.44E-04 6.14E-07 7.13E-07 3.47E-07
Size > 4,000 bp 9 1476 9.18E-04 1.44E-04 2.76E-04 51604

N corresponds to the number of analyzed genesfiidasamples (1475, 1455, 1479, 1345, and 147@) rekpectively to samples with a total
read number around 102.a.3.16, 20.16, 24.16, and 30.10reads. Abbreviations: SGTR size: correction fanscript size; and SGTR Size
and GC content: correction for transcript size & content. Only thg-values of Pearson correlation with gRT-PCR quinatifons are
indicated p-values were calculated using the Past3 prograin [24



Figure 2 Relationships between RNA-Seq normalization methods and gRT-PCR
guantifications (Cattle sample 1479). AFPKM corrected value®) log,(FPKM) corrected
values.C) SGTR corrected values including size and GC cariitieis correction.

Removing of the GC-content effect

For the gene dataset of each cattle sample, we daisulated the trend curve for read
numbers according to GC content. Polynomial eqoatf different order were tested and
revealed dissymmetric dome shaped curves: thenftasing part (GC from 35 to 40%) was
hardly visible by comparison to the right decregsone (GC from 45 to 80%), where
decreasing trend was getting more and more promalioc GC > 50% (data not shown). We
retained a third order polynomial function thataclg showed this last trend in all the
samples, giving the Equation 3 (Figure 3A). Beldwve t50% threshold, the mean read
numbers remained fairly constant.

Figure 3 Method implemented to correct GC content biasesVariations in size-corrected
mean read numbers according to GC content. Thenpolial equations are indicated above
(A: Cattle sample 1479, aml Drosophila sample SRR384925). Application of thevipus
equation (Eq.3) to differences between 50% GC eraied each GC content value, giving
the equation indicated above (Eq.B) Cattle sample 1479, aid Drosophila sample
SRR384925). Effect of GC content bias correctiorthenwhole dataset. Clearly, no
remaining dependence can be observedptvedue to third order polynomial equation is
1.00(C: Cattle sample 1479, aid Drosophila sample SRR384925).

y=cx’d.x’+ex+f, (3)
wherey represents the size-corrected mean read numbertaedsC content.

Second, for each GC percentage, we calculateditfezetice between the GC content and
50% that we applied to the previous polynomial ¢éignaeading to the Figure 3B. The best
fitting polynomial function was then deduced:

y=g.X+hx®+ix+j, (4)

wherey corresponds to the predicted read numbenarepresents the difference between a
GC content and 50%.

Third, we adjusted the size-corrected values byorémg “g.x¢ + h.@ + i.x " of this last
function to all the transcripts. The Figure 3Csthates the efficiency of GC bias correction.

For the 20 human samples, we obtained the samdéepraff size-corrected read number
according to GC content as in Cattle (data not show contrast, for the 16 drosophila
samples, the polynomial curves were different (FBg8D and 3E). Nevertheless, the
correction of the GC content bias using the previptocedure yielded a smoothing curve
absolutely flat (Figure 3F), attesting the effiagrof our method.

The final step consisted in testing the effect lné {GC content bias removing on the
correlation between RNA-Seq counting and gRT-PCRnfication, in the case of bovine
data. Except for the sample 1475 (16.8éhds), this last bias correction improved thdalo

correlation with gRT-PCR quantifications relativety the simple size correction by SGTR



(Table 1). By comparison wittog,(FPKM) correction, the removing of size and GC eot
biases improved the global correlation with gRT-Pf@Rults, except for the sample 1455
which presented a low sequencing depth (13rHads) and showed similar results as
log.(FPKM) correction. The Figure 2C illustrates tharetation obtained between SGTR
including size and GC content corrections and gRRRjuantifications for the sample 1479.
We observed a better proportionality than the omaviged by log,(FPKM) correction
(Figure 2B).

Adjustment according the total read number

For the 22 cattle samples, we calculated the @ifosls between total read numbers and the
regression parametera;( by, ap, andb,) as given in Figure 1. Except the coefficibat all

the coefficients were positively correlated witltalaead numbers (Figure 4A, 4B, and 4C).
The new regression parameters were definedsjaand v; for the slope and constant
respectively:

Figure 4 Correlation between regression parameters and total read numbers (Cédt
sample 1479). ASlopea; for transcripts < 600 bf) Slopea, for transcripts> 600 bp.C)
Constant, for transcripts> 600 bp. The equations are indicated below theessgon lines.

Yi SULX (5)

Yi = Uy X TV, (6)
and

Yi =UgX Vg (7)

wherey; corresponds to the regression parameter for bréad numbek;.

As 20 million was close to the mean value of togald numbers among the 22 samples, we
decided to adjust all TRN (Total Read Numbers)Qa@llion. For transcripts < 600 bp and
TRN, we corrected théog,-transformed read numbers by adding the valug (20.10 -
TRN) ” to the parametea; in the Equation 1. Consequently, for a transasipsize S, we
corrected the values with the following equation:

y, =log, (read numbers)+[a1+u1( 20 16—TRN)]( 600-S) (8)

wherey; corresponds to the corrected read number for#msderiptx;.
Likewise, for transcripts 600 bp, we added the values (20.16 - TRN) " to the parameter

a, in the Equation 2, and adjusted the correctedevhjuadding | us ( 20.10 - TRN) ] "
As a result, théog,-transformed read numbers were corrected withubsexquent equation:

Y, =log, (read numbers) ~| a, +u,( 20 16-TRN) |(S— 60P+u,( 20 TO-TRN)  (9)

wherey; represents the corrected read number for thedriahs;.

On the other hand, after calculating the Eq.4’ esponding to the Eq.4 based on the size-
and TRN-corrected values, we determined the cdivak between TRN and the regression
parameters for GC content (definedgash’, i’, andj’, as in Figure 3B). It appears that none



of these parameters were linked to sequencing d€mihsequently, we corrected the GC
content bias by removingd’.x® + h’.x* + i'.x " to the size- and TRN-corrected values, giving
the following equation:

y; =log, (size- and TRN- corrected valuey—(g’.x° +H.x* +i.x), (10)

wherey; corresponds to the full-corrected read number,»atwthe difference between the
GC content and 50%.

Lastly, the negative final values were considergdall. It should be noted that when we
applied the correction due to TRN, the correlatidnstween SGTR and gRT-PCR

guantifications became slightly better comparayiviel the previous SGTR steps (Size and
GC content corrections), except for the sample$ B 1476 which present the lowest and
the highest sequencing depth (Table 2). In sumntheyfull SGTR correction showed better

results tharog,(FPKM), except for the sample 1475.



Table 2 Correction of the impact of total read numbers

N Samples log2(FPKM) SGTR - Size SGTR - Size and GC content Full SGTR
159 1475 7,96E-39 1.71E-39 4.80E-39 1.08E-38
155 1455 2,95E-39 5.86E-39 3.40E-39 2.66E-39
All genes 162 1479 8,24E-44 1.37E-43 2.02E-49 1.21E-49
152 1345 1,57E-42 1.86E-42 6.11E-44 5.64E-44
162 1476 1,73E-41 6.74E-41 1.51E-44 2.28E-44

N corresponds to the number of analyzed genesfildneamples (1475, 1455, 1479, 1345, and 147@) rekspectively to samples with a total
read number around 10%a3.16, 20.16, 24.16, and 30.10reads. Abbreviations: SGTR size: correction fanscript size; SGTR Size and
GC content: correction for transcript size and @@tent; and Full SGTR: correction for transcriptzestotal read number, and GC content.
Only thep-values of Pearson correlation with qRT-PCR quamatifions are indicated.



Discussion

Our results showed that non-transformed countsegalutom RNA-Seq presented worse
correlations with gqRT-PCR quantification than thg,-transformed ones, as already stressed
by [2,10,21], and [22]. The prior transformation mfad counts byog, function was
motivated by the variability of data correspondinghighly expressed genes, often observed
in large size transcripts. We hypothesized tha ttansformation could also attenuate the
overestimations due to PCR duplicates. Indeedyihie expressed the transcripts, the higher
the probability to generate duplicates (severadtels of reads share exactly the same start
and end) [13,15]. Otherwise, certain authors hawepgsed to appliog.-transformed values

to the data extracted from gRT-PCR [25,26]. Givan regression curves, it is clear that for
our samples, this correction is inappropriate (Uriphed data).

As for transcript size correction, two strategiasdbeen adopted by different authors. In the
first one, the transcripts are ranked in quantdestaining identical numbers [2,6,7]. The
advantage is a balanced distribution facilitatiogtHer statistical analysis. However, it is
difficult to assign a mean read number to scaleéssiln the second one, size classes are built
irrespective of the number of genes per classlg¢dljing to an increasing dispersion for the
classes of higher sizes (mainly due to lower nundfegenes). Both approaches allowed
avoiding certain limitations implemented in RPKIRe@ds Per Kilobase of exon model per
Million mapped reads) [1] or FPKM [23] methods, where the number ofdrd@a simply
divided by transcript size. The main difference sists in taking into consideration paired-
reads in the FPKM method while only simple read@éRPKM one.

We choose the second strategy because of the excefigression quality of mean read
numbers by size classes. We interpret the bordér 0 observed whatever the species
dataset (Figure 1A-1C) as a result of sonicatiomh salection of cDNA fragments between
250 and 450 bp. Indeed, fragments > 600 bp atbealnore so represented that they are long
[1,3,4,27]. Conversely, the fragments < 600 bp areler-represented as many small
segments were not sequenced. Moreover, the simletinducted with rlsim confirmed our
view, and showed that the border increases witlsit® of the sequenced fragments (Figure
1E). Hence, this proves the effect of the cDNA ifin@gts size selection on the break point
between the two regression lines. As a result,gaddent corrections are needed for both
transcript sizes. This last point provided slightistter correction than tHeg,(FPKM) for
transcripts < 1,000 bp (see Table 1). Accordind14,28] and [29], RNA-Seq protocol
including PCR in the first steps introduced biadgdsed to GC content, as cDNA fragments
with high GC and AT content are under-sequencedcdreect this bias, [10,14] and [30]
proposed to build GC-classes. In our method, wé iato account the general trend by
calculating a three order polynomial equation, Whizas used to correct the decrease over
50% GC content. The efficiency of our correctiorsvgample-dependent and more precisely
linked to sequencing depth. Indeed, for a low nunabeeads, the GC bias correction did not
improve the normalization, in contrast to samplath vhigher sequencing depth. SGTR
including Size and GC content corrections provitheist globally better results than
logz(FPKM) (Table 2), which is in agreement with theaclusions of [8] and [10]. We expect
that the GC content correction should be more ateuf it was applied on gene segments
(~300 to 500 bp) and not on full length transcripis there are variations along the sequence
in their GC content.

Lastly, since the sequencing depth introduces &ffex transcript size bias, we adjusted the
TRN to 20 million reads in reason of its mediumuealHence, we modified the parameters



a1, a, andby, but this step requires numerous samples to obttable values. Finally, these
size and TRN adjusted values were then correcte@@content bias.

Our integrated method corrects some biases linkéxdnscript size and GC content, but also
sequencing depth. However, it is striking thattfer lowest sequencing depths (sample 1475:
10 million reads; 1455: 13 million reads) our cotren gave worse or equal correlations with
gRT-PCR values thalmg2(FPKM). In contrast, for read counts over 20 miili@ur method
significantly improves the read counting, for thieole dataset and for most gene size classes.
The question is to interpret this observation agwkrl considerations have to be taken into
account. First, in our samples, when the total remolb reads is low, it is particularly true for
transcript with sizes shorter than 600 pb, theeggion equation between transcript size and
read counts is less accurate than the one forciiphsizes longer than 600 pb. Second, the
more expressed the transcripts (total read numbees 20 million), the higher is the
probability to generate duplicates and other biaseégced by RNAseq. Our method can be
compared to GAM Generalized Additive Model) of [11], where the data are corrected for
length, GC content, and dinucleotide frequencydsaslowever, these authors have shown
that the correction of dinucleotide frequency bsaded not improve results. Unlike GAM
method, our model is not additive as we showed tinatregression coefficient linked to
transcript length depend on the sequencing deptht Was not the case for polynomial
equation coefficients used to correct the GC cdnipéas. Improvements are still needed to
better take into account the variation of GC confenr read in a given transcript, as the GC
content is not homogeneous along the sequencexddietexcluding PCR in first step could
avoid this issue, and problems linked to PCR dapds [13,15,28]. On the other hand, it is
highly desirable to provide a good estimation @& ttumber of reads corresponding to each
transcript isoform. To overcome this issue, we todk account genes presenting only one
transcript. In contrast to Human [11], this chodees not result in a dramatic loss of
information as more than 50% of bovine genes hawngle transcript in the available
annotation file. The accurate determination of scaupt size suffers from biases linked to
cDNA library preparation. Indeed, it seems thadmn-hexamers present some favored and
disfavored sites, so that specific regions arectsfiemore easily than others leading to biases
for low expressed genes [1,31,32]. RNA fragmentatiefore its reverse-transcription in
cDNA reduces this bias leading to more uniform geoeerage [33]. Nevertheless, these
technical effects associated to library preparawsnwell as some variations observed
between flow cells have always a smaller influetieg the biological effect [6,9]. Otherwise,
the fine determination of TSSs (Transcription S&ites) deduced from alignment of the
reads onto the genome (and not onto the known drigits) could further improve the
accuracy of transcript size.

Conclusions

We demonstrated that our method is robust andtdeita compare the read counts of genes
for numerous samples of the same tissue. All thpsstlescribed are sequentially automated
within SGTR program written in Perl, and availalbipon request from RP and DP. The

extension of our method to the normalization of itsad numbers between different tissues
requires considering a set of reference genesliasatars.



Animal ethics

All animal experimentation complied with the Frengééterinary Authorities’ rules. No ethics
approval was required by a specific committeehasselected animals were not animals bred
for experimental reasons.

Competing interests

The authors declare that they have no competiegdsts.

Authors’ contributions

AM and DP conceived the study. CM prepared the RifdAples and performed the RNA-
Seq experiments. CF performed the gRT-PCR analyster the supervision of LF. CF and
CM analyzed the data and developed the method. ©©kKepsed the RNA-Seq data from
bovine samples and from public datasets. RP impiédethe software. CM and DP drafted
the manuscript. AM, DP and DR obtained the diffefremds. DR was the initiator of the
bovine RNAseq project. All authors read and appddae final manuscript.

Acknowledgements

We are grateful to Diane Esquerré and Olivier BeaciNRA, Toulouse) for their help in

RNA library preparation and sequencing, respedtivéle also thank Dr Mekki Boussaha
(INRA, Jouy-en Josas) for helpful discussion. TA¢ARSeq work was funded by the INRA
Animal Genetics Department (BovRNA-Seq project).eThampling of the Limousin

Longissimus thoracis biopsies was part of the Qgahe project, funded by the French
National Research Agency (contracts ANR-05-GANI-@0® ANR-05-GANI-017-01) and

APIS GENE (contract 01-2005-QualviGenA-02). The gRTIR work was funded by the
Limousin Regional Council.

References

1. Mortazavi A, Williams BA, McCue K, Schaeffer Wold B: Mapping and quantifying
mammalian transcriptomes by RNA-SeqNat Methods 2008,5:621—-628.

2. Cloonan N, Forrest ARR, Kolle G, Gardiner BBAguikner GJ, Brown MK, Taylor DF,
Steptoe AL, Wani S, Bethel G, Robertson AJ, Perli@s Bruce SJ, Lee CC, Ranade SS,
Peckham HE, Manning JM, McKernan KJ, Grimmond S$tem cell transcriptome
profiling via massive-scale mRNA sequencindNat Methods 2008,5:613-619.

3. Sultan M, Schulz MH, Richard H, Magen A, Klingpaff A, Scherf M, Seifert M,
Borodina T, Soldatov A, Parkhomchuk D, Schmidt DKé&2ffe S, Haas S, Vingron M,
Lehrach H, Yaspo M-LA global view of gene activity and alternative splicing by deep
sequencing of the human transcriptomeScience 2008,321:956—-960.

4. Oshlack A, Wakefield MJTranscript length bias in RNA-seq data confounds systems
biology. Biol Direct 2009,4:14.



5. Robinson MD, Oshlack AA scaling normalization method for differential expression
analysis of RNA-seq dataGenome Biol 2010,11:R25.

6. Bullard JH, Purdom E, Hansen KD, Dudoit Braluation of statistical methods for
normalization and differential expression in MRNA-Seq expements. BMC
Bioinformatics 2010,11:94.

7. Robinson MD, Smyth GKSmall-sample estimation of negative binomial dispersion,
with applications to SAGE data.Biostatistics 2008,9:321-332.

8. Dillies M-A, Rau A, Aubert J, Hennequet-Antier Zeanmougin M, Servant N, Keime C,
Marot G, Castel D, Estelle J, Guernec G, JagleoBndau L, Laloé D, Le Gall C, Schaéffer
B, Le Crom S, Guedj M, Jaffrézic F, The French Gtaique ConsortiumA comprehensive
evaluation of normalization methods for Illumina high-throughput RNA sequencing
data analysis.Brief Bioinform 2012,14(6):671—-683.

9. Srivastava S, Chen |A two-parameter generalized Poisson model to improve the
analysis of RNA-seq dataNucleic Acids Res 2010,38:€170.

10. Risso D, Schwartz K, Sherlock G, Dudoit&Z-content normalization for RNA-Seq
data. BMC Bioinformatics 2011,12:480.

11. Zzheng W, Chung LM, Zhao HBias detection and correction in RNA-Sequencing
data. BMC Bioinformatics 2011,12:290.

12. Hansen KD, lIrizarry RA, WU ZRemoving technical variability in RNA-seq data
using conditional quantile normalization. Biostat Oxf Engl 2012,13:204—-216.

13. Mamanova L, Andrews RM, James KD, Sheridan ENf PD, Langford CF, Ost TWB,
Collins JE, Turner DJ:FRT-seq: amplification-free, strand-specific, transcriptane
sequencing Nat Methods 2010,7:130-132.

14. Benjamini Y, Speed TEBBummarizing and correcting the GC content bias in high-
throughput sequencing.Nucleic Acids Res 2012,40:e72.

15. Xu H, Luo X, Qian J, Pang X, Song J, Qian Gei£h, Chen SrastUniq: a fast de novo
duplicates removal tool for paired short readsPL0oS One 2012,7(12).€52249.

16. Li J, Jiang H, Wong WHModeling non-uniformity in short-read rates in RNA-Seq
data. Genome Biol 2010,11:R50.

17. Ermonval M, Petit D, Le Duc A, Kellermann O,lIéaP-F:Glycosylation-related genes
are variably expressed depending on the differentiation stateof a bioaminergic
neuronal cell line: implication for the cellular prion protein. Glycoconj J 2009,26:477—
493.

18. Dobin A, Davis CA, Schlesinger F, Drenkow Jleg&i C, Jha S, Batut P, Chaisson M,
Gingeras TRSTAR: ultrafast universal RNA-seq aligner.Bioinformatics 2013,29:15-21.



19. Trapnell C, Roberts A, Goff L, Pertea G, KimKelley DR, Pimentel H, Salzberg SL,
Rinn JL, Pachter LDifferential gene and transcript expression analysis of RNAeq
experiments with TopHat and Cufflinks. Nat Protoc 2012,7:562-578.

20. Sipos B, Slodkowicz G, Massingham T, GoldmanRealistic simulations reveal
extensive sample-specificity of RNA-seq biase®)13. arXiv preprint arXiv:1308.3172.

21. Marioni JC, Mason CE, Mane SM, Stephens M, d5Wa RNA-seq: An assessment of
technical reproducibility and comparison with gene expressiorarrays. Genome Res
2008,18:1509-1517.

22. Sun Z, Zhu Y:Systematic comparison of RNA-Seq normalization methods using
measurement error modelsBioinforma Oxf Engl 2012,28:2584—-2591.

23. Trapnell C, Williams BA, Pertea G, Mortazavi lwan G, van Baren MJ, Salzberg SL,
Wold BJ, Pachter LTranscript assembly and abundance estimation from RNA-Seq
reveals thousands of new transcripts and switching among isofosnNat Biotechnol
2010,28:511-515.

24. Hammer @, Harper D, Ryan Past: paleontological statistics software package for
education and data analysis.Palaeontol Electron 2001, 4(4):9. 178kb. http://palaco—
electronica.org/2001_1/past/issuel_01.htm.

25. Lee S, Seo CH, Lim B, Yang JO, Oh J, Kim M, Ssd_ee B, Kang C, Lee &ccurate
guantification of transcriptome from RNA-Seq data by effecive length normalization.
Nucleic Acids Res 2011,39:e9.

26. Jones DC, Ruzzo WL, Peng X, Katze MGhew approach to bias correction in RNA-
Seq.Bioinformatics 2012,28:921-928.

27. Gao L, Fang Z, Zhang K, zhi D, Cui Kength bias correction for RNA-seq data in
gene set analyse®ioinformatics 2011,27:662—669.

28. Kozarewa |, Ning Z, Quail MA, Sanders MJ, Bexan M, Turner DJAmplification-
free lllumina sequencing-library preparation facilitates improved mapping and
assembly of GC-biased genomeblat Methods 2009,6:291-295.

29. Aird D, Ross MG, Chen W-S, Danielsson M, FehingRuss C, Jaffe DB, Nusbaum C,
Gnirke A: Analyzing and minimizing PCR amplification bias in Illumina sequencing
libraries. Genome Biol 2011,12:R18.

30. Pickrell JK, Marioni JC, Pai AA, Degner JF, Efigardt BE, Nkadori E, Veyrieras J-B,
Stephens M, Gilad Y, Pritchard JKInderstanding mechanisms underlying human gene
expression variation with RNA sequencingNature 2010,464:768—772.

31. Hansen KD, Brenner SE, Dudoit Biases in Illumina transcriptome sequencing
caused by random hexamer primingNucleic Acids Res 2010,38:e131.

32. Roberts A, Trapnell C, Donaghey J, Rinn JL, higac L: Improving RNA-Seq
expression estimates by correcting for fragment biassenome Biol 2011,12:R22.



33. Nagalakshmi U, Wang Z, Waern K, Shou C, RahaGBrstein M, Snyder MThe
transcriptional landscape of the yeast genome defined by RNAequencing.cience
2008,320:1344-1349.

Additional files

Additional_file_1 as DOCX

Additional file 1: Table S1 Absence of significant correlations between gRTRR{ata and
transcript sizes or GC contents. N correspondseémtimber of analyzed genes. The five
samples (1475, 1455, 1479, 1345, and 1476) redpentively to samples with a total read
number around 10.£013.16, 20.16, 24.16, and 30.10reads. We indicated thgevalues
associated to polynomial (first and third ordeegression equations betwe®@T values
and transcript sizes or GC contents.
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