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expression data
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Abstract

Background: In recent years, there has been great interest in using transcriptomic data to infer gene regulatory
networks. For the time being, methodological development in this area has primarily made use of graphical Gaussian
models for observational wild-type data, resulting in undirected graphs that are not able to accurately highlight causal
relationships among genes. In the present work, we seek to improve the estimation of causal effects among genes by
jointly modeling observational transcriptomic data with arbitrarily complex intervention data obtained by performing
partial, single, or multiple gene knock-outs or knock-downs.

Results: Using the framework of causal Gaussian Bayesian networks, we propose a Markov chain Monte Carlo
algorithm with a Mallows proposal model and analytical likelihood maximization to sample from the posterior
distribution of causal node orderings, and in turn, to estimate causal effects. The main advantage of the proposed
algorithm over previously proposed methods is its flexibility to accommodate any kind of intervention design,
including partial or multiple knock-out experiments. Using simulated data as well as data from the Dialogue for
Reverse Engineering Assessments and Methods (DREAM) 2007 challenge, the proposed method was compared to
two alternative approaches: one requiring a complete, single knock-out design, and one able to model only
observational data.

Conclusions: The proposed algorithm was found to perform as well as, and in most cases better, than the alternative
methods in terms of accuracy for the estimation of causal effects. In addition, multiple knock-outs proved to
contribute valuable additional information compared to single knock-outs. Finally, the simulation study confirmed
that it is not possible to estimate the causal ordering of genes from observational data alone. In all cases, we found
that the inclusion of intervention experiments enabled more accurate estimation of causal regulatory relationships
than the use of wild-type data alone.

Keywords: Causal inference, Gaussian Bayesian network, Intervention calculus, Metropolis-Hastings,
Maximum likelihood

Background
The inference of gene regulatory networks from transcrip-
tomic data has been a wide research area in recent years.
Several approaches have been proposed to infer networks
from observational transcriptomic data (also referred to as
wild-type or steady-state expression data), mainly based
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on the use of graphical Gaussian models [1]. These meth-
ods, however, rely on the estimation of partial correlations
and result in undirected graphs that cannot highlight
the causal relationships among genes. For this reason, a
great deal of research has focused instead on the use of
causal Bayesian networks for a wide variety of applications
[2,3].

As an example, [4] and [5] make use of causal Bayesian
networks in the case of multinomial data, where the
former applies a score-based method and the latter
samples graph structures using a Markov chain Monte
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Carlo (MCMC) approach. Using Gaussian causal Bayesian
networks (GBN), Maathuis et al. [6,7] recently proposed
a method called Intervention-calculus when the DAG is
Absent (IDA) to predict bounds for causal effects from
observational data alone. In the IDA, the PC-algorithm
[2,8,9] is first applied to find the associated completed par-
tially directed acyclic graph (CPDAG), corresponding to
the graphs belonging to the appropriate equivalence class.
Following this step, bounds for total causal effects of each
gene on the others are estimated using intervention cal-
culus [10] for each directed acyclic graph (DAG) in the
equivalence class.

However, if intervention experiments such as gene
knock-outs or knock-downs are available, it is valu-
able to jointly perform causal network inference from
a combination of wild-type and intervention data. One
such approach has been proposed by Pinna et al. [11],
based on the simple idea of calculating the deviation
between observed gene expression values and the expres-
sion under each systematic intervention. In particular,
Pinna et al. propose the calculation of several matri-
ces to evaluate the differences between observational
and intervention expression values: a simple deviation
matrix, a standardized deviation matrix, and a z-score
deviation matrix. In addition, for large networks (e.g.,
100 genes), a down-ranking algorithm is applied to the
initial graph obtained from these deviation matrices to
remove feed-forward edges. In order to evaluate all pos-
sible causal links among genes, the method requires a
single replicate of observational data as well as a sin-
gle knock-out experiment for each gene in the net-
work. An improved version of the Pinna approach was
very recently proposed [12] to provide more accurate
network inference for large-scale networks through a
novel implemention of the transitive reduction step. As
with the originally proposed method, this approach also
requires systematic single knock-outs for all genes in the
network.

The method proposed in [11] has the dual advantages
of being very fast to compute and being quite general,
as it does not require any assumption of acyclicity of the
graph. In addition, as this method provided the best net-
work estimation in the Dialogue for Reverse Engineering
Assessments and Methods (DREAM4) in silico 100-gene
network sub-challenge [13-16], it may be considered as a
reference. We note that the method with the best perfor-
mance for the DREAM4 10-gene network subchallenge
was that of [17], based on an automated approach using
Petri Nets with Fuzzy Logic; unfortunately, no software
is publicly available to implement this method, making it
difficult to use in practice.

In this work we propose a novel method in the con-
text of GBNs using a Markov chain Monte Carlo (MCMC)
algorithm and Mallows model that is flexible enough to

accurately infer causal gene networks from an arbitrary
mixture of observational and intervention data, including
partial and multiple gene knock-out experiments. As such,
the novelty of the proposed method is as follows: 1) it
is the only method able to fully make use of all avail-
able intervention information, 2) it does not require a
systematic intervention experiment to be performed for
each gene, and 3) it can deal with sophisticated multi-
ple intervention designs. To benchmark its performance
on observational data alone as well as systematic single
knock-out data, the proposed method was compared to
those of [7] and [11] on simulated data as well as the data
from the DREAM4 challenge [13]; in addition, we also
consider more complicated simulations based on partial
and multiple knock-out designs.

Methods
Gaussian Bayesian network framework
Let G = (V , E) be a graph defined by a set of verti-
ces V and edges E ⊂ (V × V ). Let the vertices of a
graph represent p random variables X1, . . . , Xp. As in the
approach of [7], we consider here the framework of causal
GBNs, which correspond to Bayesian networks where the
nodes have a Gaussian residual distribution and edges
represent linear dependencies. In this case, it also follows
that the joint distribution of the network is multivariate
Gaussian.

In DAGs such as GBNs, we often encounter the pres-
ence of Markov equivalence classes, i.e. multiple network
structures that yield the same joint distribution; in such
cases, observational data alone generally cannot orient
edges. For this reason, in many cases the use of inter-
vention data can help overcome this issue, as presented
below.

Calculation of causal effects
Following an intervention on a given node Xi, denoted
do(Xi = x), we consider the expected value of each other
gene in the network via do-calculus as shown in Theorem
3.2.2 (Adjustment for direct causes) in [10]:

E(Xj|do(Xi = x))

=
⎧⎨
⎩
E(Xj) if Xj ∈ pa(Xi)∫

E(Xj|x, pa(Xi))P(pa(Xi))dpa(Xi) if Xj /∈ pa(Xi)

where pa(Xi) represents the parents of node Xi. It is
important to point out that P(Y |do(X = x)) is differ-
ent from the conditional probability P(Y |X = x). Using
this framework, the total causal effects may be defined as
follows:

βij = ∂

∂x
E(Xj|do(Xi = x))
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and are equal to 0 if Xi is not an ancestor of Xj. On the
other hand, the direct causal effects (i.e. the edges in the
graph) are defined as:

αij = ∂

∂x
E(Xj|pa(Xj), do(Xi = x)).

Proposed causal inference method
In the GBN framework, when observational data are
jointly modeled with intervention data for an arbitrary
subset of genes, the network follows a multivariate
Gaussian distribution of dimension equal to the num-
ber of genes that had no intervention (as the expression
value of the gene under intervention is fixed to a given
value), and the log-likelihood value can subsequently be
calculated for a proposed network.

The calculations in the following section assume that
the nodes in the graph have been sorted according to an
appropriate causal ordering in the graph such that if i < j,
then Xj is not an ancestor of Xi; we note that such an
ordering is possible under the assumption of acyclicity of
the graph. In practice, of course, it is typically not possible
to correctly order nodes in such a way without knowledge
of the underlying DAG. For this reason, we aim to explore
various network structures based on causal orderings, and
to choose among those with the best likelihood value for
an arbitrary set of observational and intervention data.
The Metropolis-Hastings algorithm [18,19], through the
use of a proposal distribution for causal orderings, allows
such an exploration to take place and to approach a local
maximum of the likelihood.

Likelihood calculation
Let p be the number of nodes in the graph, G the DAG
structure and W the matrix containing the values for
all edges. The nodes are assumed to have been sorted
by parental order for G and W, i.e. if i < j, then Xj
is not an ancestor of Xi. This sorting is possible under
the assumption of acyclicity and may not necessarily be
unique. Under this ordering, W is an upper triangular
matrix and thus nilpotent. In the GBN framework, it is
assumed that each node of G has a residual Gaussian dis-
tribution, independently from the rest of the network. Let
us consider XI with I = {1, . . . , p}, a set of p Gaussian
random variables defined by:

Xj = mj +
∑

i∈pa(j)
wi,jXi + εj with εj ∼ N (0, σ 2

j ). (1)

We assume that the εj are independent, and that i ∈
pa(j) ⇒ i < j (this assumption is equivalent to assuming
that the directed graph obtained using the parental rela-
tionships is acyclic). Given the parental structure of the
graph, wi,j may only be nonzero on the edge set, (i, j) ∈
E = {i ∈ pa(j), j ∈ I}.

Let us now consider the matrix form of Equation (1):

X = m + XW + ε

where X = (X1, . . . , Xp), m = (m1, . . . , mp), and ε =
(ε1, . . . , εp) are row-vectors of dimension p, and W =
(wi,j)1�i,j�p is a p-dimensional square matrix. By recur-
sively applying this formula and taking advantage of the
nilpotence of matrix W, we obtain:

X = mL + εL

where L = (I − W)−1 = I + W + . . .+ Wp−1. This proves
that the model defined in Equation (1) is equivalent to X ∼
N (μ, �) with:

μ = mL and � = LT diag(σ 2)L =
∑
j∈I

σ 2
j LT eT

j ejL

where ej is a p-dimensional null row-vector except for its
jth term which is equal to 1, and where σ = (σ1, . . . , σp) is
a row-vector of dimension p.

The log-likelihood of the model given N observations
xk = (xk

1, . . . , xk
p) (1 � k � N) is then:

�(m, σ , W) = −Np
2

log(2π) − N
∑
j∈I

log(σj)

− 1
2

N∑
k=1

∑
j∈I

1
σ 2

j
(xk

j − xkWeT
j − mj)

2.

To see this, let us define Ak = (xk −mL)�−1(xk −mL)T

for all k. Since �−1 = (I − W)diag(1/σ 2)(I − W)T we get:

Ak =
∑
j∈I

1
σ 2

j
(xk(I − W) − m)eT

j ej(xk(I − W) − m)T

=
∑
j∈I

1
σ 2

j
(xk

j − xkWeT
j − mj)

2.

As shown in the Additional file 1, analytical formu-
lae can be obtained for the derivatives with respect to
parameters θ = (m, σ , W).

The likelihood presented above only takes into account
observational data. Let us now consider the case of an
arbitrary mixture of observational and intervention data.
We assume that we perform an intervention on a subset
J ⊂ I = {1, . . . , p} of variables by artificially fixing the
level of the corresponding variables to a value (typically 0
in the case of knock-out experiments): do(XJ = xJ ). The
model is then obtained by assuming that all wi,j = 0 for
(i, j) ∈ E and j ∈ J ; we denote the corresponding matrix
WJ . We also assume that the variables Xj for j ∈ J are
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fully deterministic. As before, the resulting model is hence
Gaussian: XI |do(XJ = xJ ) ∼ N (μJ (xJ ), �J ) with

μJ (xJ ) = νJ (xJ )LJ , �J =
∑
j/∈J

σ 2
j LT

J eT
j ejLJ ,

where
νJ (xJ )eT

j

=
{

xj if j∈J
mj otherwise and LJ =(I−WJ)−1 =I+WJ +. . .+Wp−1

J .

For the likelihood calculation, we consider N data gen-
erated under xk = (xk

1, . . . , xk
p) (1 � k � N) with

intervention on Jk (where Jk = ∅ means no interven-
tion). We denote by Kj = {k, j /∈ Jk}, and by Nj = |Kj|
its cardinal. The log-likelihood of the model can then be
written as:

�(m, σ , W) = − log(2π)

2
∑

j
Nj −

∑
j

Nj log(σj)

− 1
2

∑
k

∑
j/∈Jk

1
σ 2

j
(xk

j − xkWeT
j − mj)

2.

(2)

This is mainly due to the fact that for any intervention
set J we have WJ eT

j = WeT
j for all j /∈ J . Considering

the derivative with respect to mj for all j such that Nj > 0,
we obtain:

mj = 1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )

which can be plugged into the likelihood expression to get:

�̃(σ , W) = − log(2π)

2
∑

j
Nj −

∑
j

Nj log(σj)

− 1
2

∑
k

∑
j/∈Jk

1
σ 2

j
(yk,j

j − yk,jWeT
j )2

where for (k, j) such that j /∈ Jk we have:

yk,j = xk − 1
Nj

∑
k′∈Kj

xk′

and W can be estimated by solving the following linear
system:

∑
i′,(i′,j)∈E

wi′,j
∑
k∈Kj

yk,j
i yk,j

i′ =
∑
k∈Kj

yk,j
i yk,j

j for all (i, j) ∈ E .

(3)

Note that the system might be degenerate if the inter-
vention design gives no insight on some parameters. It is
hence finally possible to obtain σ through:

σ 2
j = 1

Nj

∑
k∈Kj

(yk,j
j − yk,jWeT

j )2.

Proposed MCMC algorithm
The Metropolis-Hastings algorithm [18,19] is a random
walk over 	, the parameter space of the model. It relies on
an instrumental probability distribution Q which defines
the transition from position Xt to a new position X. The
probability of moving from state Xt to the new state X is
defined by:

P(Xt+1 = X|Xt) = min
{

π(X)Q(Xt , X)

π(Xt)Q(X, Xt)
, 1

}
(4)

where π(X) is the likelihood function.
In order to propose a new causal node ordering O
 from

the previous ordering O, we propose to make use of the
Mallows model [20]. Briefly, under this model, the density
of a proposed causal ordering is defined as follows:

P(O
) = P(O
|O, φ)

= 1
Z

φd(O
,O)

where φ ∈ (0, 1] is a fixed temperature parameter, Z is
a normalizing constant, and d(·, ·) is a dissimilarity mea-
sure between O and O
 based on the number of pairwise
ranking disagreements. In addition, we remark that as the
temperature parameter φ approaches zero, the Mallows
model approaches a uniform distribution over all causal
orderings, and if φ = 1, the model corresponds to a dirac
distribution on the reference ordering O. In the following,
we will use a reparameterization of the temperature coef-
ficient φ such that φ = exp(−1/η), with η > 0. Due to the
symmetry of d, it is clear that P(O
|O, φ) = P(O|O
, φ),
which allows a simplification of the Q terms in the accep-
tance ratio in Equation (4). We note that a related MCMC
approach to explore the space of causal node orderings
was recently proposed by [5] in the case of categorical
data, making use of an equi-energy sampler.

Proposals for causal node orderings using the afore-
mentioned Mallows model may be obtained by sampling
using a repeated insertion model as described in [21].
Based on this new proposal for the node ordering O
,
maximum likelihood estimators may be calculated for the
model parameters θ = (m, σ , W) using the likelihood
described in Equation (2). Subsequently, the Metropolis-
Hastings ratio may be calculated and used to determine
whether the proposed causal node ordering is accepted or
rejected.

R code to implement the proposed MCMC-Mallows
algorithm, as well as a sample script providing an example
to run the algorithm for a set of simulated data, may be
found in Additional files 2 and 3.

Results and discussion
Simulation study
Data were simulated under a GBN as in Equation (1)
with 10 genes and 21 edges and as described in [9]; the
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underlying structure is given in Figure 1. For the residual
distributions of each gene, we chose 0.5 for the means and
three settings for the standard deviations (σ = 0.01, 0.1
and 0.5), which correspond to small, moderate and large
noise for the marginal distributions. Non-zero param-
eters wi,j were simulated with values drawn uniformly
from (−1, −0.25) ∪ (0.25, 1), and for each setting, 100
datasets were generated. The goal was to try to accu-
rately infer the total and direct causal effects among
genes.

Several intervention designs were simulated: 1) 20
observational (wild-type) replicates with no interventions,
2) a mixed setting with 10 wild-types and one knock-out
per gene, 3) a partial knock-out design with 15 wild-types
and one knock-out for five genes: {N1, N4, N6, N7, N9},
4) a multiple knock-out design with 10 wild types, one
knock-out per gene and five double knock-outs: {N1, N5},
{N1, N6}, {N4, N7}, {N6, N9}, and {N7, N10} and 5) a mul-
tiple knock-out design as in the previous setting, where
all simulated data for three randomly chosen genes were
removed (resulting in a set of three hidden variables). Note
that we have previously shown [22] that observational data
alone (Setting 1 described above) are not informative for
the causal node ordering as in such a case, the likelihood
is invariant to permutations of the order. Consequently, in
this setting node orderings were uniformly sampled rather

N6 N9N1

N4 N7

N10

N8 N5

N2

N3

Figure 1 Graph structure used in simulation study. Graph
structure taken from [9] used for the simulation study for a graph with
ten nodes and 21 edges.

than using the MCMC-Mallows algorithm; we refer to this
strategy as MCMC-uniform.

An MCMC algorithm with Mallows proposal distribu-
tion was run to explore the posterior distribution of causal
node orderings, as presented in the previous section, with
full estimation of θ = (m, σ , W) using the maximum like-
lihood estimators. For the simulations, a small trial run of
1000 iterations was run over a range of possible tempera-
ture values η (0.2 to 1.5 by 0.1) for the Mallows model, and
the value yielding an acceptance rate closest to 30 to 40%
[23] was subsequently used for the full run of the MCMC
algorithm. In all simulation settings tested here, this value
was chosen to be η = 0.6 (for σ = 0.01 and 0.1) or η = 1
(for σ = 0.5). As a comparison, we also attempted a
trial run of the algorithm using a naive uniform proposal
distribution (η = 1010) in place of the Mallows model,
which generally led to acceptance rates of less than 1%.
The MCMC-Mallows algorithm was subsequently run for
50,000 iterations, including a burn-in of 5000 iterations
and thinning every 50 iterations. We note that due to the
analytical maximization step of the likelihood, the method
is quite fast and takes only a few minutes to run for each
dataset.

In order to benchmark its performance on observational
data alone as well as systematic single knock-out data, the
proposed algorithm was compared to two previously pro-
posed methods: 1) Pinna [11], which requires a single,
systematic knock-out to be performed for every gene, and
2) IDA [7] using the PC-algorithm [2], which only makes
use of the observational data. As the PC-algorithm used by
[7] provides bounds (a, b) for the estimated causal effects,
we considered two options to facilitate comparisons with
the other methods: an “optimistic” calculation, where we
use the value max(abs(a, b)), and a more conservative
“pessimistic” strategy, using the value min(abs(a, b)) if a
and b have the same sign, 0 otherwise.

Finally, several criteria were used to compare the differ-
ent methods on both total causal effects and direct causal
effects: area under the receiver operating characteristic
(ROC) curve (AUROC), area under the precision-recall
curve (AUPRC), Spearman correlation between true and
estimated total or direct causal effects, and the mean
squared error (MSE) of estimated total or direct causal
effects. Note that the results are calculated for the full
L = (I − W)−1 (total causal effects) and W matrices
(direct causal effects) and not just the upper triangular.
For the AUROC and AUPRC calculations, positive edges
corresponded to (total or direct) causal effects with a
nonzero value, and negatives corresponded to (total or
direct) causal effects with a null value.

Results for total causal effects are presented in Table 1
for σ = 0.1, and in Tables S1 and S2 in Additional file 1
for σ = 0.01 and 0.5. It can first be noted that results
for the IDA method are identical for different levels of
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Table 1 Comparison of methods for total causal effects for simulated data with moderate variability (σ = 0.1)

Setting Criterion MCMC-Mallows Pinna IDA (opt) IDA (pes)

Observation only

AUROC 0.749 (0.043) — 0.76 (0.062) 0.643 (0.079)

AUPRC 0.638 (0.053) — 0.628 (0.078) 0.527 (0.088)

Spearman 0.48 (0.091) — 0.491 (0.128) 0.254 (0.177)

MSE 0.056 (0.007) — 0.182 (0.054) 0.126 (0.034)

Mixed

AUROC 0.948 (0.03) 0.825 (0.048) 0.733 (0.068) 0.67 (0.073)

AUPRC 0.868 (0.042) 0.737 (0.059) 0.569 (0.087) 0.53 (0.091)

Spearman 0.696 (0.053) 0.553 (0.097) 0.42 (0.14) 0.318 (0.186)

MSE 0.026 (0.012) 0.104 (0.011) 0.334 (0.137) 0.196 (0.067)

Partial KO

AUROC 0.845 (0.059) 0.795 (0.017) 0.736 (0.056) 0.646 (0.085)

AUPRC 0.734 (0.078) 0.725 (0.038) 0.588 (0.075) 0.514 (0.092)

Spearman 0.587 (0.104) 0.636 (0.034) 0.449 (0.099) 0.285 (0.187)

MSE 0.035 (0.015) 0.081 (0.008) 0.215 (0.066) 0.146 (0.049)

Multiple KO

AUROC 0.959 (0.016) 0.83 (0.035) 0.733 (0.068) 0.67 (0.073)

AUPRC 0.886 (0.028) 0.725 (0.039) 0.569 (0.087) 0.53 (0.091)

Spearman 0.712 (0.028) 0.625 (0.058) 0.42 (0.14) 0.318 (0.186)

MSE 0.015 (0.006) 0.107 (0.008) 0.334 (0.137) 0.196 (0.067)

AUROC 0.932 (0.046) 0.574 (0.165) 0.58 (0.145) 0.562 (0.121)

Multiple KO AUPRC 0.539 (0.078) 0.36 (0.105) 0.353 (0.086) 0.35 (0.08)

(3 hidden genes) Spearman 0.67 (0.109) 0.037 (0.372) 0.076 (0.316) 0.076 (0.31)

MSE 0.044 (0.034) 0.15 (0.041) 0.45 (0.225) 0.294 (0.124)

Several intervention designs were simulated: 1) 20 observational (wild-type) replicates with no interventions, 2) mixed setting with 10 wild-types and one knock-out
per gene, 3) partial knock-out design with 15 wild-types and one knock-out for five genes {N1, N4, N6, N7, N9}, 4) multiple knock-out design with 10 wild types, one
knock-out per gene and five double knock-outs: {N1, N5}, {N1, N6}, {N4, N7}, {N6, N9}, and {N7, N10}, and 5) a multiple knock-out design as in the previous setting, with
three hidden variables. Results were averaged over 100 simulations (standard deviations in parentheses): area under the ROC curve (AUROC), area under the
precision-recall curve (AUPRC), Spearman correlation between true and estimated total causal effects, and mean squared error (MSE) of estimated total causal effects.

variation σ ; this is due to the fact that it operates on
sufficient statistics (correlation matrices) rather than on
the data themselves. Similarly, results are identical for the
MCMC-uniform method at different levels of σ when only
observational data are present. Based on observational
data only, we note that the proposed algorithm performs
as well as the IDA approach; this is unsurprising as both
methods are based on GBNs.

When single knock-outs were simulated (one for each
gene) with a large variability (σ = 0.5), the IDA [7]
approach has slightly more accurate estimation of causal
effects than Pinna [11], although we recall that the former
method solely makes use of the observational data. On the
other hand, when the amount of variability decreases (σ =
0.1 and 0.01), the Pinna approach outperforms IDA, even
for the optimistic version. In all three settings (σ = 0.5,
0.1, 0.01), the proposed MCMC-Mallows algorithm was
better able to estimate the causal effects than either Pinna
or IDA, as shown by the different criteria presented here.
Similar conclusions may be obtained in the context of par-
tial intervention designs. The MCMC-Mallows approach
was found to outperform the IDA approach, especially for

moderate and low variability. As it requires knock-outs
to be performed for all genes in the network, the perfor-
mance of the Pinna approach suffers when only a subset
of interventions are available.

In addition, it was found that considering multiple
knock-outs led to an improvement of the estimation of the
causal effects over single knock-outs alone. We note that,
like the partial knock-out design, this complex interven-
tion design can only be fully accommodated by the pro-
posed MCMC-Mallows method. In this setting, the Pinna
method uses only information on the 10 single knock-
outs and the IDA approach only the observational data.
Finally, in the multiple knock-out setting where data for
three genes were hidden, resulting in a set of latent vari-
ables, we note that the MCMC-Mallows approach appears
to be least affected by the missing information and main-
tains a satisfactory performance. Similar conclusions may
be drawn concerning the comparisons among methods for
the direct total causal effects, shown in Table 2 and Tables
S3 and S4 in Additional file 1.

Figure 2 presents the posterior distribution of causal
node ordering from the MCMC-Mallows method ave-
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Table 2 Comparison of methods for direct causal effects for simulated data with moderate variability (σ = 0.1)

Setting Criterion MCMC-Mallows Pinna IDA (opt) IDA (pes)

Observation only

AUROC 0.79 (0.041) — 0.773 (0.064) 0.651 (0.083)

AUPRC 0.633 (0.061) — 0.577 (0.085) 0.472 (0.102)

Spearman 0.474 (0.094) — 0.484 (0.122) 0.246 (0.17)

MSE 0.059 (0.006) — 0.193 (0.057) 0.138 (0.035)

Mixed

AUROC 0.951 (0.03) 0.842 (0.051) 0.746 (0.06) 0.678 (0.073)

AUPRC 0.841 (0.051) 0.688 (0.084) 0.5 (0.081) 0.465 (0.091)

Spearman 0.668 (0.055) 0.534 (0.097) 0.409 (0.132) 0.306 (0.181)

MSE 0.048 (0.015) 0.107 (0.01) 0.35 (0.131) 0.211 (0.067)

Partial KO

AUROC 0.871 (0.064) 0.784 (0.018) 0.749 (0.068) 0.655 (0.094)

AUPRC 0.721 (0.089) 0.663 (0.054) 0.532 (0.088) 0.459 (0.115)

Spearman 0.574 (0.106) 0.606 (0.04) 0.437 (0.104) 0.272 (0.185)

MSE 0.055 (0.015) 0.088 (0.007) 0.228 (0.068) 0.161 (0.052)

Multiple KO

AUROC 0.962 (0.017) 0.839 (0.032) 0.746 (0.06) 0.678 (0.073)

AUPRC 0.864 (0.034) 0.69 (0.046) 0.5 (0.081) 0.465 (0.091)

Spearman 0.683 (0.033) 0.614 (0.051) 0.409 (0.132) 0.306 (0.181)

MSE 0.038 (0.009) 0.108 (0.008) 0.35 (0.131) 0.211 (0.067)

AUROC 0.94 (0.045) 0.561 (0.189) 0.576 (0.156) 0.555 (0.133)

Multiple KO AUPRC 0.483 (0.085) 0.288 (0.107) 0.279 (0.078) 0.276 (0.073)

(3 hidden genes) Spearman 0.633 (0.106) 0.048 (0.37) 0.07 (0.311) 0.064 (0.305)

MSE 0.069 (0.048) 0.149 (0.032) 0.454 (0.207) 0.296 (0.109)

Several intervention designs were simulated: 1) 20 observational (wild-type) replicates with no interventions, 2) mixed setting with 10 wild-types and one knock-out
per gene, 3) partial knock-out design with 15 wild-types and one knock-out for five genes {N1, N4, N6, N7, N9}, 4) multiple knock-out design with 10 wild types, one
knock-out per gene and five double knock-outs: {N1, N5}, {N1, N6}, {N4, N7}, {N6, N9}, and {N7, N10}, and 5) a multiple knock-out design as in the previous setting, with
three hidden variables. Results were averaged over 100 simulations (standard deviations in parentheses): area under the ROC curve (AUROC), area under the
precision-recall curve (AUPRC), Spearman correlation between true and estimated direct causal effects, and mean squared error (MSE) of estimated direct causal effects.

raged over 100 simulations for the observation data only
(top left), the mixed setting with 10 wild types and one
knock-out for each gene (top right), the partial knock-out
setting (bottom left), and the multiple knock-out setting
(bottom right) for moderately noisy data (σ = 0.1). Note
that a plot is not included for the hidden variable design,
as the true and estimated node orderings are dependent
on which three genes are selected to be removed. In these
plots, node labels are included on the vertical axis, and
estimated positions within orderings along the horizon-
tal axis. Potential orderings for each node within the true
graph are highlighted with black outlines; as an exam-
ple, node N6 could be placed in the first, second, or
third position, while node N3 could only be placed in the
tenth position in the true graph. The intensity of colors
within each box represents the average proportion of iter-
ations in which a node was placed in a particular order.
To follow our example, in the mixed setting (top right of
Figure 2), on average node N6 was most often placed in
the first position, and occasionally positioned second or
third, while node N3 was nearly always placed in the last
position.

We may remark on several points. First, as shown in
the Methods section, it is not possible to estimate the
node orders from observational data only. As expected,
the node orders were more accurately estimated when
a complete knock-out design was considered, with one
knock-out for each gene, than for a partial knock-out
design. For low to medium variability (σ = 0.01 and
0.1) the proposed algorithm was able to very accurately
estimate the potential node orders for the complete
and multiple knock-out designs (see Figures S1–S4 in
Additional file 1). Finally, we note that the node ordering
is not unique for the DAG considered here, as illustrated
by the black squares in Figure 2.

DREAM data analysis
The proposed MCMC-Mallows algorithm as well as the
two previously presented methods [7,11] were applied to
data from the DREAM4 challenge, an international com-
petition held yearly to contribute to the development of
powerful inference methods [13-16]. In the DREAM4 in
silico network challenge, network topologies (with feed-
back loops) were extracted from transcriptional regula-
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Figure 2 Posterior distribution of node orders from the MCMC-Mallows approach, averaged over 100 simulations. Results from simulation
setting with σ = 0.1: Observations only (top left), complete single knock-outs (top right), partial single knock-outs (bottom left), multiple knock-outs
(bottom right). Node labels are included on the vertical axis, estimated positions within causal orderings along the horizontal axis, and the intensity
of color of each square corresponds to the average proportion of iterations in which a given node was placed in a given position. As the causal node
ordering is not unique for this DAG, true potential positions for each node are outlined in black.

tory networks of E. coli and S. cerevisiae, and data were
subsequently simulated and distributed to the partici-
pants. The goal was to infer directed regulatory networks
from simulated data with either 10 or 100 genes. Based on
the considered evaluation criteria (AUROC and AUPRC),
the Petri Nets with Fuzzy Logic method [17] and Pinna
method [11] were found to be the best performers for the
10-gene and 100-gene network challenges, respectively.
In this paper we will focus on the five simulated 10-gene

networks and perform inference based on wild type and
multifactorial perturbation data (jointly considered to be
observational data) as well as knock-out data.

Figure 3 presents the ROC curves as well as the
precision-recall curves for the different methods in each
of the five DREAM4 datasets. Table 3 contains the val-
ues for the AUROC and AUPRC for each method on
each of the five DREAM4 datasets, as well as the overall
DREAM score for each. The overall DREAM score is cal-
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Figure 3 Comparison of methods on data with a complete design from the DREAM4 challenge. ROC curves (top) and precision-recall curves
(bottom) for the five simulated 10-gene networks of the DREAM4 challenge [13] for the MCMC-Mallows, Pinna, and IDA (optimistic and pessimistic)
methods.

culated as the average of global AUROC and AUPR scores,
which are calculated across all datasets as the mean of
the − log10 p-values (calculated via permuation tests) for
each dataset. As a point of reference, the reported perfor-
mance of the top-performing method from the DREAM4
challenge, Petri Nets with Fuzzy Logic [17], is also pro-
vided; we could not confirm these results as no software is
publicly available for its implementation.

Table 3 Comparison of methods on complete DREAM4
data

Criterion Dataset Petri MCMC- Pinna IDA IDA
Nets Mallows (opt) (pes)

AUROC

1 0.972 0.447 0.833 0.448 0.413

2 0.841 0.647 0.584 0.610 0.641

3 0.900 0.717 0.816 0.638 0.638

4 0.954 0.867 0.899 0.554 0.483

5 0.928 0.814 0.700 0.599 0.534

AUPRC

1 0.916 0.183 0.506 0.142 0.133

2 0.547 0.289 0.331 0.243 0.284

3 0.968 0.340 0.416 0.242 0.242

4 0.852 0.633 0.664 0.162 0.158

5 0.761 0.308 0.278 0.146 0.156

DREAM score overall 7.127 2.579 3.563 0.735 0.723

Area under the ROC curve (AUROC), area under the precision-recall curve
(AUPRC), and DREAM score for each of the five DREAM4 datasets for the Petri
Nets [17], MCMC-Mallows, Pinna et al., and IDA (optimistic and pessimistic)
methods. Results for the Petri Nets method [17] and evaluation scripts for the
overall DREAM score were obtained from the DREAM4 evaluation page, located
at http://wiki.c2b2.columbia.edu/dream/results/DREAM4.

It can first be observed that the IDA [7], whether
optimistic or pessimistic versions of the causal effects
estimations are used, performs the worst; this is unsur-
prising, as it only makes use of the observational data. On
the other hand, the proposed MCMC-Mallows method
compares quite well to the Pinna approach, except for
the first data set where Pinna clearly outperforms the
others. We note that the simulated intervention setting
was well adapted to the Pinna method, as one knock-
out was available for each gene; in addition, we note
that as the MCMC-Mallows and IDA methods are based
on a causal Bayesian network framework, feedback loops
in the network cannot be modeled due to the assump-
tion of acyclicity in the graph. Finally, it can be seen
that the Petri Nets method of [17] significantly outper-
forms the other methods on these data; however, we recall
that the major contribution of our proposed MCMC-
Mallows approach is not its ability to best model com-
plete, single knock-out intervention designs but rather
its unique flexibility to accommodate more complex or
incomplete intervention designs, as we demonstrate in the
following.

To assess the performance of each of the methods on
the DREAM4 data with only an incomplete set of gene
knock-out experiments (similar to the partial knock-out
simulation above), we remove half of the knock-out exper-
iments (chosen at random) from each dataset. Figure 4
presents the ROC and precision-recall curves for this par-
tial knock-out setting and Table 4 provides the AUROC,
AUPRC, and overall DREAM scores. As no software is
publicly available to implement the Petri Nets approach,

http://wiki.c2b2.columbia.edu/dream/results/DREAM4
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Figure 4 Comparison of methods on data with a partial design from the DREAM4 challenge. ROC curves (top) and precision-recall curves
(bottom) for the five simulated 10-gene networks of the DREAM4 challenge [13], where for each dataset five knock-outs were removed at random,
for the MCMC-Mallows, Pinna, and IDA (optimistic and pessimistic) methods.

no results for this method may be obtained in this con-
text. The performance of IDA is identical in this set-
ting to that of the full data, as it uses the observa-
tional data alone. The loss of information as compared
to the complete data is reflected in the lower overall
DREAM scores for both the MCMC-Mallows and Pinna
approaches; we note that in nearly all cases (with the
exception of the second dataset), the Pinna method is

Table 4 Comparison of methods on partial DREAM4 data

Criterion Dataset MCMC- Pinna IDA IDA
Mallows (opt) (pes)

AUROC

1 0.708 0.555 0.448 0.413

2 0.525 0.637 0.610 0.641

3 0.711 0.498 0.638 0.638

4 0.748 0.682 0.554 0.483

5 0.676 0.565 0.599 0.534

AUPRC

1 0.344 0.346 0.142 0.133

2 0.240 0.306 0.243 0.284

3 0.271 0.214 0.242 0.242

4 0.322 0.494 0.162 0.158

5 0.194 0.168 0.146 0.156

DREAM score overall 1.844 1.450 0.735 0.723

Area under the ROC curve (AUROC), area under the precision-recall curve
(AUPRC), and DREAM score for each of the five DREAM4 partial datasets, where
only five of the single-gene knock-outs are included, for the MCMC-Mallows,
Pinna et al., and IDA (optimistic and pessimistic) methods. Results for the Petri
Nets method [17] are not provided as no software is publicly available to
implement this approach. Evaluation scripts for the overall DREAM score were
obtained from the DREAM4 evaluation page, located at http://wiki.c2b2.
columbia.edu/dream/results/DREAM4.

adversely affected by the loss of intervention data as com-
pared to the previous results. On the other hand, the
MCMC-Mallows appears to be the least adversely affected
by the incomplete design and maintains a similar perfor-
mance to the complete design. As such, although the com-
plete intervention design clearly yields more information
about causal effects among genes, the MCMC-Mallows
approach appears to be best able to extract pertinent
information when only partial intervention designs are
available.

Conclusions
In this paper we proposed a flexible and powerful
approach for joint causal network inference from both
observational and intervention data, using an MCMC
algorithm and Mallows model. The computational effi-
ciency of the method is very much improved by the
analytical maximization step of the likelihood.

In the simulation study presented above, the proposed
MCMC-Mallows algorithm was found to perform bet-
ter than Pinna [11] and IDA [7] in terms of accuracy of
estimation of the causal effects, as evidenced by the ten-
dancy to have larger AUROC, larger Spearman correlation
coefficients and smaller MSE than the other approaches.
Additionally, our simulations demonstrated that multiple
knock-out designs contributed valuable additional infor-
mation for causal network inference beyond single knock-
outs; we therefore anticipate that the need for methods
able to accommodate complex intervention designs will
only increase as such data become more common. The
results for the complete DREAM4 data are somewhat
inconclusive, with Pinna performing best on two datasets,

http://wiki.c2b2.columbia.edu/dream/results/DREAM4
http://wiki.c2b2.columbia.edu/dream/results/DREAM4


Rau et al. BMC Systems Biology 2013, 7:111 Page 11 of 12
http://www.biomedcentral.com/1752-0509/7/111

MCMC-Mallows best on two others, and nearly equiv-
alent performance on the last; in addition, all methods
considered here performed considerably worse than the
winning Petri Nets method of [17] on the complete set
of data. We note that the DREAM networks, like many
real biological networks, contain feedback loops that can-
not be modeled by methods based on causal Bayesian
networks such as MCMC-Mallows and IDA. However,
despite this limitation, the results of the partial design
for DREAM4 data demonstrate that the MCMC-Mallows
method is best able to accommodate complex interven-
tion designs, including partial gene knock-outs. In fact,
the novelty of the MCMC-Mallows approach, and the pri-
mary contribution of this work, lies in its flexibility to
model arbitrary single, multiple, and partial knock-out
designs.

In its present form, the proposed algorithm is not appli-
cable to large-scale networks made up of several hundreds
of nodes. Due to the curse of dimensionality, the size
of the search space of causal node orderings explodes in
dimension as the number of nodes increases, meaning
that alternative MCMC samplers, such as parallel temper-
ing, may be better suited to such situations. In addition,
the resolution of the linear system in Equation (3) needed
for the likelihood calculation has complexity O(p6) when
no sparsity constraints are included for matrix W. As
such, the generalization of the proposed algorithm to a
p >> n situation will require the addition of a ridge or
Lasso penalty, as recently proposed by [24], as well as a
modification of the proposal distribution and sampling
strategy. The current algorithm is fully compatible with
such extensions and this will be the focus of our research
in the near future.

The choice of optimal experimental knock-out designs
is an important issue for causal inference and merits
further attention. Hauser and Bühlmann [25] recently pro-
posed two strategies for the choice of optimal interven-
tions. The first is a greedy approach using single-vertex
interventions that maximizes the number of edges that
can be oriented after each intervention; the second yields
a minimum set of targets of arbitrary size that guarantee
full identifiability. However, alternative approaches could
be envisaged in future research. In particular, recall that
in the GBN framework, the likelihood associated to the
multivariate Gaussian distribution of the network can be
explicitly written as presented in this work. The choice of
optimal knock-outs to be performed to improve and val-
idate the causal inference can then rely on the evaluation
of the amount of information contributed by each possi-
ble intervention, which can for example be obtained by
the Fisher information. Its calculation requires the deriva-
tion of the likelihood function, which is not trivial but has
already been derived in [22]. We anticipate that this issue
will remain an interesting challenge for future research.

Additional files

Additional file 1: Supplementary materials. This file contains details for
calculations as well as additional results from the simulation study
presented in the main paper.

Additional file 2: R code to implement MCMC-Mallows approach. This
file contains the R code to implement the proposed MCMC-Mallows
approach.

Additional file 3: Example R code to run MCMC-Mallows approach.
This file contains the R code to run the proposed MCMC-Mallows approach
for a set of simulated data.
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