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Abstract

Background: Information for mapping of quantitative trait loci (QTL) comes from two sources: linkage
disequilibrium (non-random association of allele states) and cosegregation (non-random association of allele
origin). Information from LD can be captured by modeling conditional means and variances at the QTL given
marker information. Similarly, information from cosegregation can be captured by modeling conditional
covariances. Here, we consider a Bayesian model based on gene frequency (BGF) where both conditional means
and variances are modeled as a function of the conditional gene frequencies at the QTL. The parameters in this
model include these gene frequencies, additive effect of the QTL, its location, and the residual variance. Bayesian
methodology was used to estimate these parameters. The priors used were: logit-normal for gene frequencies,
normal for the additive effect, uniform for location, and inverse chi-square for the residual variance. Computer
simulation was used to compare the power to detect and accuracy to map QTL by this method with those from
least squares analysis using a regression model (LSR).

Results: To simplify the analysis, data from unrelated individuals in a purebred population were simulated, where
only LD information contributes to map the QTL. LD was simulated in a chromosomal segment of 1 cM with one
QTL by random mating in a population of size 500 for 1000 generations and in a population of size 100 for 50
generations. The comparison was studied under a range of conditions, which included SNP density of 0.1, 0.05 or
0.02 cM, sample size of 500 or 1000, and phenotypic variance explained by QTL of 2 or 5%. Both 1 and 2-SNP
models were considered. Power to detect the QTL for the BGF, ranged from 0.4 to 0.99, and close or equal to the
power of the regression using least squares (LSR). Precision to map QTL position of BGF, quantified by the mean
absolute error, ranged from 0.11 to 0.21 cM for BGF, and was better than the precision of LSR, which ranged from
0.12 to 0.25 cM.

Conclusions: In conclusion given a high SNP density, the gene frequency model can be used to map QTL with
considerable accuracy even within a 1 cM region.

Background
Molecular information is currently being used for
mapping quantitative trait loci (QTL) and for genetic
evaluation. This information usually consists of mole-
cular genotypes at polymorphic loci. These loci can be
broadly classified into two types: I) those that have a
direct effect on the trait, and II) those that do not
have a direct effect on the trait but are linked to a
trait locus (markers). Loci of type II can be further
classified into two types: IIa) loci that are in linkage
disequilibrium with the trait locus across the popula-
tion (LD markers), and IIb) loci that are in linkage

equilibrium with the trait locus (LE markers) [1]. In
outbred populations, until recently, marker analyses
were primarily based on LE markers [2-6]. LE markers
do not provide information to model the mean at
linked QTL, but they do provide information to model
covariances at the linked QTL. These covariances can
be written in terms of the conditional IBD probabilities
at a linked QTL [2,5,6] and provide information to
map QTL and for genetic evaluation using markers.
This cosegregation (CS) information comes from the
non-random association of grand-parental origin of
alleles at markers and QTL. This kind of analysis is
called pedigree-based linkage or cosegregation analysis.
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depends on the number of recombinations or meioses
within the pedigree. On the other hand, LD markers
provide information to model both the mean and cov-
ariances at the linked QTL [7-11]. This LD informa-
tion comes from the non-random association of allele
states at markers and QTL. Before high density geno-
types were available, LD between markers and QTL
was created by crossing of two divergent lines. Given
the high density genotypes that are currently available,
markers that are in close proximity to QTL are
expected to be in LD with the QTL. Thus LD or asso-
ciation mapping can now be undertaken in outbred
populations without the need to create specialized
crosses. These analyses that capture the information
from LD markers for mapping and genetic evaluation
are called population-based association or linkage dis-
equilibrium (LD) analyses. Association analysis is
expected to have higher accuracy than linkage analysis,
but it is less robust to spurious association [12]. An
analysis that combines the LD and CS information
(LDCS analysis) has higher accuracy than LA analysis
alone as well as greater robustness to spurious associa-
tion than LD analysis alone [12,13]. Many methods
have been proposed for the LDCS analysis. In some of
these methods, phenotypes are modeled as a mixture
distribution due to the segregation of the QTL. Ana-
lyses involving mixture distributions are computation-
ally demanding [12,14-17]. Thus, other methods often
model phenotypes as a normal distribution, where the
mean and covariance matrix are computed conditional
on marker information [3,13,18-25]. The method pro-
posed in this paper belongs to the latter group.
An analysis that models the mean and covariances

using LD markers was first proposed by Goddard [3]
and was further developed by Wang et al. [18], when
disequilibrium was entirely due to crossbreeding and the
marker locus was assumed to be in equilibrium with the
QTL in the parental breeds. Methodology to accommo-
date purebred populations with disequilibrium was con-
sidered by Fernando and Totir [23]. The parameters in
their model included the mean and variance at the
linked QTL for each marker haplotype in the founders
[23], but did not specify the number of alleles at the
QTL. Here, we consider a similar approach but follow-
ing Fernando [22] and Johnson and Harris [26], we
assume only two alleles at the linked QTL, which is also
a common assumption in models where segregation of
the QTL is explicitly modeled resulting in a mixture dis-
tribution for the phenotypes [7,12,14-17,27-29]. The
parameters in this two-allele model include the gene fre-
quency at the linked QTL for each marker haplotype in
the founders and the additive effect of the QTL [22,26].
Harris [26] estimated these model parameters by
restricted maximum likelihood [30]. One of the

problems with this approach is that the number of gene
frequencies to be estimated increases exponentially with
the number of marker loci that are used to form haplo-
types. The number of parameters to be estimated can be
reduced by making assumptions about how LD is gener-
ated, which then provides a model for QTL gene fre-
quencies for the different haplotypes [15]. In this paper
a logit-normal prior probability density is considered for
the QTL gene frequencies to accommodate relationships
between QTL frequencies for different marker
haplotypes.
In this paper we will first present the gene frequency

model that combines linkage disequilibrium (LD) and
cosegregation information, as first introduced by Fer-
nando [22]. Then we will evaluate the performance of
the model by determining the power of detecting a QTL
within a given chromosomal region and precision for
fine mapping of a QTL that has been detected to the
given region, using high-density SNP genotypes by Baye-
sian analysis. To simplify the analysis we only consider
data from unrelated individuals in a purebred popula-
tion. Analysis of data from related individuals will be
discussed in a subsequent paper. Results from the gene
frequency models will be compared with those from
QTL mapping by least squares regression analysis [31].
A method based on computing identical by descent
(IBD) probabilities for the unobservable QTL given
observable marker has also been used for LD mapping
in livestock [32]. Previous studies, however, have shown
that this IBD method and regression give comparable
results (see Discussion) [31].

Methods
Gene Frequency Model
In the following we assume the QTL has been localized
to a 1 cM segment of the genome, and it will be fine
mapped within this region using biallelic single nucleo-
tide polymorphism (SNP) markers. A single QTL with
two alleles, Q1 and Q2, is assumed to be present on this
segment of the genome, and this QTL will be referred
to as the marked QTL (MQTL). All other QTL are
assumed to be unlinked to the markers and are referred
to as residual QTL (RQTL). All QTL are assumed to be
additive.
Suppose genotypes at the MQTL were observed.

Then, trait phenotypic values of individuals in a pure-
bred population can be modeled as

y X ZQ Zu e= + + +  , (1)

where y is the vector of trait phenotypic values, b is a
vector of non-genetic fixed effects, μ is the QTL substi-
tution effect, u is the vector of the sum of additive
effects of all RQTL, e is a vector of residuals, and X, Q
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and Z are known incidence matrices. Given data from p
animals, the incidence matrix Q will have p rows and a
single column, with row i of Q containing the number
of Q2 alleles carried by animal i.
Now, for the situation considered here, the genotypes

at the MQTL are not observed, and genotypes are avail-
able only at linked markers. Thus, Q is an unobservable
random matrix. The usual mixed model methodology
cannot accommodate models with unobservable inci-
dence matrices. Thus we define

a Q Q M

Q Q M

= − ( )
= −

 

 

E

E( ) ,
(2)

where M denotes the observed genotypic information
on markers, and E(Q|M) is the conditional expectation
of Q given M. Using the double-expectation theorem,

E M E EQ M Q ( )⎡⎣ ⎤⎦ = ( ) , (3)

so a in 2 is a random vector with null mean. Now, Qμ
in 1 can be written as

Q Q M a = +E( | ) . (4)

The level of LD between the marker and the QTL,
which is usually quantified by the squared correlation (r2)
between them, determines the ability to predict the allele
at the QTL from the allele at the marker locus. Consider
the following situations with different levels of LD. When
the marker locus and the QTL are in LE (r2 = 0), they are
independent, thus the conditional mean E(Q|M) = E(Q)
doesn’t depend on marker information M. When the
marker locus and the QTL are in LD (r2 > 0), they are
dependent, thus the conditional mean E(Q|M) depends
on marker information M. When the marker locus and
the QTL are in complete LD (r2 = 1), they are perfectly
correlated, thus the allele at the QTL can be predicted
exactly from allele at the marker locus. These situations
show that E(Q|M) depends on the LD between the mar-
kers and QTL. Thus by modeling the conditional mean
of Qμ given marker information, E(Q|M)μ, captures the
LD information for mapping the QTL. Although a has
null mean, its covariance matrix depends on the marker
information because of the cosegregation of the QTL and
linked markers [2]. Thus modeling the covariance matrix
of a given marker information, Cov(a|M), captures the
cosegregation information for mapping QTL. In the fol-
lowing, we will denote the conditional expectation E(Q|
M) by Q

∧ . Now the model for the trait phenotypic values
can be written as

y X ZQ Za Zu e= + + + + ˆ . (5)

Provided we can compute Q
∧ , all the incidence

matrices in this model are known, and the mixed model
equations for this model can be setup provided we can
compute the inverse of the covariance matrix for each
of the random vectors a and u . The covariance matrix
for u is proportional to the additive relationship matrix
A. The inverse of the additive relationship matrix is
sparse, and thus it can be computed efficiently [33]. On
the other hand, the inverse of the covariance matrix for
a is not sparse, and thus its computation is not efficient.
However, Za can be written as Wv, where

a v vi i
m

i
p= + ,

vi
m and vi

p are the additive effects of the maternal
and paternal MQTL alleles of individual i, and W is a
known incidence matrix relating v to y. It can be shown
that the covariance matrix, Σv , for v can be calculated
using a simple recursive formula that also leads to an
efficient algorithm to invert Σv [23]. The model for trait
phenotypic values now becomes

y X ZQ Wv Zu e= + + + + ˆ . (6)

When the marker locus is in equilibrium with the
MQTL, the QTL and marker are independent. And as
we will see in detail in the following section, each row
of Q

∧ will be a constant that is equal to twice the fre-
quency of the QTL. Thus, ZQ

∧ μ can be dropped from
the model. In this situation, only cosegregation informa-
tion will contribute to the analysis through the modeling
of covariances among MQTL effects. When disequili-
brium is complete and all marker genotypes are
observed, E(Q|M) = Q. Thus, in this situation, v is null,
and after utilizing the disequilibrium information, cose-
gregation information does not contribute to the analy-
sis. When disequilibrium is partial, E(Q|M) ≠ Q, and v
is not null. In this situation, disequilibrium information
will contribute to the analysis through the model for the
mean of MQTL effects, and cosegregation information
will contribute to the analysis through the model for
covariances between MQTL effects. These points are
further clarified in the following sections, in which we
will show how to compute Q

∧ and the covariance matrix
for v.

Mean of MQTL additive genetic values
Recall that the mean of MQTL effects is Q

∧ μ, where
row i of Q has the number of Q2 alleles carried by ani-
mal i. Thus, the ith element of Q is the sum of two Ber-
noulli variables, I(SQ(m, i) = Q2|M), which is a variable
indicating whether the maternal allele of i is a Q2, and I
(SQ(p, i) = Q2|M), which is a variable indicating whether
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the paternal allele of i is a Q2. Now, Qi has expected
value:

ˆ [ ( ( , ) | ) ( ( , ) | )]

Pr( ( , ) | ) Pr

Q E I S m i Q M I S p i Q M

S m i Q
i Q Q

Q

= = + =

= = +
2 2

2 M (( ( , ) | )

,

S p i Q

p p

Q

i
m

i
p

=

= +
2 M (7)

where

p S m i Q p S p i Qi
m

Q i
p

Q= = = =Pr( ( , ) | ), Pr( ( , ) | ),2 2M M

and SQ(m, i) is the maternal MQTL allele state and SQ
(p, i) the paternal MQTL allele state of individual i.
These probabilities depend on the location l of the QTL
relative to the markers. Let FQ(m, i) = Hj denote the
event that the maternal MQTL allele of individual i ori-
ginated in a founder with marker haplotype Hj. Then,
for a founder i, pi

m can be written as

p S m i Q

S m i Q F m i H M

F m i

i
m

Q

j
Q Q j

j
Q

= ( ) =( )
= ( ) = ( ) =( )
=

∑
∑

Pr ,

Pr , , ,

Pr ,

2

2

M

(( ) =( ) ( ) = =( )
= ( ) =( )

H M S m i Q F m i H M

F m i H M S m

j Q Q j

Q j Q

Pr , | ( , ) ,

Pr , Pr ,

2

ii Q F m i H

F m i H M

Q j
j

j
Q j j

( ) = ( ) =( )
= ( ) =( )

∑
∑

2 ,

Pr , ,

(8)

where πj is the conditional probability that a founder
with marker haplotype Hj has MQTL allele Q2. Simi-
larly, pi

p can be written as

p F p i Hi
p

Q j j

j

= ( ) =( )∑Pr , .M  (9)

The πj in 14 and 15 are the disequilibrium para-
meters. Thus, under equilibrium, when marker and
QTL allele states are independent, the conditional prob-
ability of a Q2 allele on a founder haplotype does not
depend on the marker alleles on that haplotype, i.e.,

Pr , , Pr ,

Pr .

S m i Q F m i H S m i Q

Q

Q Q j Q( ) = ( ) =( ) = ( ) =( )
= ( )

2 2

2

(10)

Because

Pr , Pr , ,F m i H F p i HQ j

j

Q j

j

( ) =( ) = ( ) =( ) =∑ ∑M M 1 (11)

for all i,

p Q F m i Hj M

Q

i
m

Q
j

= ( ) ( ) =( )
=

∑Pr Pr ,

Pr( ).

2

2

(12)

Similarly,

p Qi
p = Pr( ).2 (13)

Thus, from 7, 12 and 13, each row of Q
∧ is a constant

that is equal to twice the frequency of the QTL.
However, under disequilibrium, when marker allele

states SA and QTL allele states SQ are not independent,
the πj are not all equal and it follows that pi

m and pi
p

depend on the marker haplotypes and thus would be
different for animals with different marker haplotypes.
Thus vector Q

∧ is not a vector of constants. This
demonstrates that disequilibrium information contri-
butes to modeling the mean of MQTL effects.

Covariance of MQTL additive genetic values
Cosegregation information contributes to modeling the
covariances of MQTL effects. The gametic value vi

m is
the product of a Bernoulli variable with probability para-
meter pi

m and μ, thus the variance of vi
m is

Var( ) ( ),v p pi
m

i
m

i
m= − 2 1 (14)

and similarly, the variance of vi
p is

Var( ) ( ).v p pi
p

i
p

i
p= − 2 1 (15)

As it is shown by 12 and 13 that under equilibrium
p p Qi

m
i
p= = Pr( )2 , thus the variance of MQTL gametic

values does not depend on the marker genotypes. How-
ever, under disequilibrium, pi

m and pi
p thus the var-

iance of MQTL gametic values depend on the marker
genotypes. These variances contribute to the diagonal
elements of the covariance matrix Σv of the vector of
gametic values. In this paper, we mainly focus on unre-
lated individuals, whose gametic values are uncorrelated,
thus the off-diagonal elements of the covariance matrix
are zero.

Bayesian Inference
Bayesian methods will be used to make inferences on
QTL effects and position under the statistical model
described in the previous section. Given the high marker
density being used in this paper, the QTL position is
restricted to the midpoint between adjacent markers. In
the Bayesian approach, prior knowledge about para-
meter values in a statistical model are quantified in
terms of prior probabilities. Then, inferences about
parameter values are based on posterior probabilities,
which are obtained using Bayes theorem as

f f f( | ) ( | ) ( ),  y y∝ (16)
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where f(y|θ) is the conditional density of the data vec-
tor y given the vector of parameter values θ, and f(θ) is
the prior probability density of θ.
In this paper we only consider a case with unrelated

individuals, which allows RQTL effects to be merged
with the residual effects of model (1). Cases with pedi-
gree data will be covered in a subsequent paper. When
individuals are unrelated, the gametic deviations of
those individuals are also uncorrelated, thus cosegrega-
tion information can also be combined with the residual,

e v v ei i
P

i
m

i
* .= + + (17)

This, however, results in the residual variances to be
heterogeneous,

var var var var( ) ( ) ( ) ( )

( ) (

*e v v e

p p p p

i i
p

i
m

i

i
P

i
P

i
m

i

= + +

= − + − 2 21 1 mm
e) .+  2

(18)

Residual covariance matrix R* is diagonal with ele-
ment ri i,

* equal to var( )*ei when individuals are unre-
lated. Now, the model simplifies to

y X ZQ= + + ˆ .*e (19)

The parameters in model 19 are: b,  e
2 , π, μ and l

because all other variables, such as pi
p and pi

m , are
functions of these parameters, as specified through
equations 14 and 15. The size of the vector of condi-
tional QTL probabilities of marker haplotypes, π is 2k

when using haplotypes of k markers. In this study we
only consider models where k is 1 or 2. When k is 1,
the estimated QTL location was limited to the marker
positions, and π is a vector of size 2 with elements cor-
responding to haplotypes 0 and 1 of the marker at the
putative QTL location. When k is 2, the estimated QTL
location was limited to the mid-points of adjacent mar-
kers, and π is a vector of size 4, with elements corre-
sponding to haplotypes 00, 01, 10 and 11 of the two
SNPs flanking the putative QTL location, with alleles
denoted by 0 and 1.
The prior densities that were used for these para-

meters are described next. Following common practice,
the priors given below were used for b and  e

2 , which
are parameters in the usual mixed linear model [34].
A flat prior was used for the fixed effects b:

f( ) . ∝ constant (20)

The prior for  e
2 was taken to be scaled inverted chi-

square distribution with degree of freedom ve and scale
parameter Se

2 ,

p v S

ve
veSe

e
e e e e( | , ) ( ) exp 


2 2 2

1
2

2

2 2
∝ −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− +
(21)

The prior for π was taken to be logit-normal because
this distribution can account for any correlations
between elements of π, which can range from 0 to 1.
Thus the logit transformation of π,

x =
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

log

log

,







1
1 1

4
1 4

 (22)

was taken to be multivariate normal with null mean
and covariance matrix Σx. So the prior for π was written
as

f
x i

i
i

x

i

( )
| | /

exp ’ log = 1 −⎧
⎨
⎩

⎫
⎬
⎭

∂
∂ −

⎡

⎣
⎢

⎤

⎦
⎥

−

=
∏1

2 2
1
2 1

1

1

4

 



x x

== −⎧
⎨
⎩

⎫
⎬
⎭ −1

−

=
∏1

2

1
2

1
12

1

1

4

  | |
exp ’

( )/


x
x

i i i
x x

(23)

where ∂
∂ −=∏ 


i
i
ii

log
1

4

1[ ] is the Jacobian of the trans-
formation. The covariance matrix Σx accommodates
covariances between elements of π, which arises from
the LD generating mechanism. In the following we,
however, only consider the case where π’s are uncorre-
lated, which means Σx is diagonal.
The prior for the effect of the biallelic QTL, μ, was set

to be normal with null mean and variance sμ,

f( ) exp
 



 
= −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

1
2

2

2
(24)

The prior for location of the QTL, l, was taken to be a
discrete uniform distribution. If there are L segments on
the chromosome, the prior density for l was set to be

f l
L

l L( ) , ,...= =1
1 2 (25)

It was further assumed that trait phenotypic values
had a multivariate normal distribution given all location
and dispersion parameters:

y X Z R| , , , , ( , *).
^

    e l N Q2   + (26)

Then the joint posterior density of parameters is

f l f l f f f f u f le e e( , , , , | ) ( | , , , , ) ( ) ( ) ( ) ( ) ( )       2 2 2  y y∝ (27)
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Drawing inference directly from this posterior is
impractical, so a Markov-chain was constructed for
which 27 is the stationary distribution. Under certain
conditions, samples drawn from such a chain can be
used to make inferences on the parameters in 27 [34].
The most important conditions here are the existence of
a unique stationary distribution and irreducibility of the
chain [35]. As described below, a blocked Gibbs sam-
pling strategy was used to construct a Markov Chain
with stationary distribution 27. The sampler consisted of
three blocks: fixed effect b was in the first block, π, μ
and l were in the second, and  e

2 was in the third.
Parameters in each block were sampled from their full
condition distributions, which are the conditional distri-
butions of these parameters given parameters in other
blocks and the phenotypic and marker data.
The conditional posterior distribution of fixed effect

parameter b is

     | , , , , ( , ),
^

 2 2 1 2
e eNy C − (28)

where 
∧ is the solution to the mixed model equa-

tions, and C is the left hand side of mixed model equa-
tions. For each of the remaining parameter blocks, the
full conditional posterior distribution does not have a
standard form. Thus, Metropolis-Hasting algorithm was
used. This requires a proposal distribution to draw the
candidate samples from. The joint conditional posterior
distribution of π, μ and l is

f l f l f le e e( , , | , , ) ( | , , , , ) ( , , | , )

| | /
ex

          y y

R*

2 2 2

1
1 2

∝

∝ pp{ ( )’ ( )}

| | /
exp{ ’ }

− − − − −

−

∧ ∧
−

−

1
2

1
1 2

1
2

1

1

1

y X Z Q R* y X Z Q

x x

   




x
x  i ii

( )

exp{ }.

1

1 1
2

2

2

1

4

−

−

=
∏

 



 

(29)

Rather than drawing samples from a proposal for π,
we draw samples from a proposal distribution of x and
the sampled x is transformed to π. The proposal for x
was taken to be a multivariate normal distribution with
mean equal to the value from the previous sample and
variance Σx-prop. Thus the proposal for x is

q
n

x prop
k k k k k k

x pr
( | )

( ) | | /
exp ( )’ ( )x x x x x x− − −−

=
−

− − −1 1 1
1

2 1 2
1
2  oop

−∑⎧
⎨
⎩

⎫
⎬
⎭

1
. (30)

Then, the proposal for π is

q
n

x prop
k k k k k k

x pr
( | )

( ) | | /
exp ( )’ ( )  − − −−

=
−

− − −1 1 1
1

2 1 2
1
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x x x x
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−
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∑

∏

⎧
⎨
⎩

⎫
⎬
⎭

−

1

1

4
1

1 , ( , )
,

(31)

where n is the size of vectors x and π. The covariance
matrix Σx was set to I x

2 , with  x
2 sufficiently small

such that x will be sampled in the neighborhood of the
previous sample. The proposal distribution of μ was
taken to be normal with mean equal to the value from
previous sample and variance  −prop

2 sufficiently small
to ensure sampling in the neighborhood of the previous
sample,
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The proposal for l was taken to be

q l
Lk( ) ,= 1

(33)

where L is the number of chromosome segments
flanked by adjacent markers.
In the Metropolis-Hasting algorithm the candidate

samples are accepted with probability [36]:

 = ′min( , ),1 1 (34)
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The full conditional posterior of  e
2 is
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Since R* is not equal to I e
2 , the full conditional pos-

terior of  e
2 , does not have the form of the usual

inverse chi-square distribution. Thus Metropolis-Hasting
was used with a normal proposal
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(37)

to obtain candidate samples. The mean of this propo-
sal distribution of  e

2 was set to the previously accepted
value of  e

2 , and variance  e prop2
2

− was set to a suffi-
ciently small value to ensure sampling in the neighbor-
hood of the previous sample. The candidate samples
were also accepted with probability:
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Least squares analysis of regression method
Least squares regression to map a QTL using high-den-
sity SNP genotypes, as described by Grapes et al. [31],
was used for comparison. The regression method on
haplotypes is

y b g ei j
j

n

ij i= + +
=∑
1

, (40)

where gij is the copy number of haploype j for indivi-
dual i, and bj is the effect of haplotype j on phenotype. In
this study we only consider models with 1 or 2 SNPs. For
the 1-SNP regression method, there are two possible
haplotypes 0 and 1, and the hypothesis H0: b0 = b1 vs Ha :
b0 ≠ b1 was tested. For the 2-SNP regression method,
there are four possible haplotypes 00, 01, 10 and 11, and
the hypothesis H0: b00 = b01 = b10 = b11 vs Ha : b00 ≠ b01
or b00 ≠ b11 or b01 ≠ b11 was tested. This analysis was
repeated for each SNP or SNP bracket. The estimated
QTL location was at the SNP yielding the smallest p-
value for the 1-SNP model, and at the midpoint of the
SNP bracket yielding the smallest p-value for the 2-SNP
model. When several locations had p-values numerically
equal to zero, the middle location among those with zero
p-values was chosen to be the QTL location.

Simulation
Computer simulation was used to compare the power to
detect and the precision to map QTL by Bayesian analy-
sis using the gene frequency model (BGF) with least
squares using the regression method (LSR). We simu-
lated 2000 biallelic loci spaced either 0.01, 0.005 or
0.002 cM apart. Among these, every tenth locus was a
QTL, and the remaining loci were markers. In the first
generation, alleles were sampled independently from a
Bernoulli distribution with probability 0.5. This gener-
ates a genome in Hardy-Weinberg and linkage equili-
brium. LD was generated in this chromosomal segment
by random mating with a mutation rate of 2.5 * 10-5

and an effective population size of 500 for 1000 genera-
tions, followed by 50 generations of random mating
with the population size reduced to 100. It has been
estimated that the effective population size of livestock
has decreased due to breed formation and artificial

breeding [37]. The effective population sizes used in this
simulation attempt to mimic this phenomenon. The
initial allele frequencies of 0.5 and mutation rate of
2.5 * 10-5 allow the population to approach mutation-
drift equilibrium after the 1050 generations of random
mating [38].
In the following, each set of 10 consecutive loci is

referred to as a locus bin. Thus, there were 200 bins on
the chromosomal segment that was simulated. In the
final generation, out of each bin, the marker that had
allele frequencies closest to 0.5 was selected. This gener-
ated markers spaced either 0.1, 0.05 or 0.02 cM apart.
For the two-marker BGF and LSR analyses, marker hap-
lotypes are assumed to be known. Out of the 200 QTLs,
the QTL that had allele frequencies closest to 0.5 was
identified. Markers for the analysis were chosen out of
the selected markers from a chromosomal segment of 1
cM consisting of k consecutive locus bins. Thus, k was
10, 20, or 50 when marker spacing was 0.1, 0.05, or 0.02
cM. It is known that some methods of fine mapping are
favored when the QTL is simulated at the center of the
chromomsal segment [31]. Thus the identified QTL was
simulated at a distance of 0.3 cM from the first marker
locus in the segment. In addition to SNP density, the
impact of sample size (500 or 1000) and of variance
explained by the QTL (2% or 5% of the phenotypic var-
iance) on power and precision were studied. Mean abso-
lute error of estimates of QTL location was used as the
statistic to quantify precision of QTL mapping. Power
to detect the QTL was quantified as follows. For the
regression method, the critical value for detecting a
QTL was estimated by simulating data sets with no
QTL and computing the upper 10% quantile F-value
from 1500 replications of F-tests. Power was estimated
by simulating data sets, each with one QTL, and calcu-
lating the percentage of F-values that were larger than
the estimated critical value. For the gene frequency
model, the estimate of QTL variance was used as the
statistic to calculate power. The critical value for this
test was estimated by simulating data sets with no QTL
and computing the upper 10% quantile for the QTL var-
iance from 1500 replications. Power was estimated by
simulating data sets, each with one QTL, and calculating
the percentage of estimates of QTL variance that are
bigger than the estimated critical value. In this study the
simulated true haplotypes were used for 2-SNP BGF
and LSR.

Results
Power
For both 1 and 2-SNP BGF analyses, power to detect
the QTL increased with sample size, QTL variance, and
marker density (table 1). The 2-SNP BGF model seemed
to have slightly higher power than the 1-SNP model.
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For both 1 and 2-SNP LSR analyses, power increased
with sample size and QTL variance (table 1). Power also
increased when marker spacing decreased from 0.1 to
0.05 cM but, in most cases, power decreased when mar-
ker spacing was further reduced to 0.02 cM. As
described earlier, when markers were spaced 0.1, 0.05,
or 0.02 cM apart, the number of markers or marker
pairs in the chromosomal segment was 10, 20 or 50.
The decrease of power when marker spacing dropped
from 0.05 to 0.02 cM may be due to the increase in
number of tests that were done to detect a significant
QTL within the chromosomal segment. In all scenarios
studied 1-SNP LSR had slightly greater power than
2-SNP LSR.
In most scenarios studied, both 1 and 2-SNP BGF had

power close to those of LSR.

Precision
The standard error of the mean absolute error of esti-
mates of QTL location was about 0.003 for the 1 and 2-
SNP BGF analyses. For almost all scenarios the 2-SNP
BGF had almost the same precision as the 1-SNP BGF.
For both analyses precision of estimates of QTL location
increased with sample size and QTL variance (table 2).
However, similar to the LSR, precision decreased when
marker spacing decreased from 0.1 to 0.05 and 0.02 cM,

except when sample size was 500 or the QTL explained
5% of phenotypic variance. The standard error of the
mean absolute error for estimated QTL location of the
1 and 2-SNP LSR method was about 0.004 cM. For
almost all scenarios the 2-SNP LSR had higher or same
precision as 1-SNP LSR. In all scenarios, the 1 and 2-
SNP BGF were consistently better in precision than the
LSR, except for just one scenario when QTL explained
5% of phenotypic variance, marker spacing was 0.05 cM
and sample size was 500, 1-SNP BGF and LSR had
about the same precision. For both analyses, precision
of mapping QTL increased with sample size and QTL
variance (table 2). In most cases precision increased
when marker spacing was reduced from 0.1 to 0.05 cM
but remained unchanged when marker spacing was
further reduced to 0.02 cM, except when sample size
was 500 and the QTL explained 5% of phenotypic
variance.
The fact that precision doesn’t increase with the

decrease of marker spacing for both BGF and LSR ana-
lysis shows that without enough information, higher
marker density does not necessarily result in higher pre-
cision for mapping. If sample size or QTL variance was
sufficiently high, precision increased with the increase of
marker spacing. The reason for this is that, when there
is not sufficient information, the likelihood will not peak
at the location of the QTL, but may have a plateau cen-
tered at the QTL location, as shown in Figure 1. With
the higher marker spacing, four markers are on the pla-
teau of the likelihood, of which two are inside bracket

Table 1 Power

QTL Var
%

marker spacing
(cM)

sample size BGF1 BGF2 LSR1 LSR2

2 0.1 200 0.40 0.40 0.40 0.39

2 0.05 200 0.42 0.42 0.42 0.41

2 0.02 200 0.43 0.43 0.41 0.40

2 0.1 500 0.67 0.72 0.78 0.76

2 0.05 500 0.74 0.76 0.79 0.77

2 0.02 500 0.77 0.77 0.77 0.74

5 0.1 200 0.71 0.74 0.77 0.74

5 0.05 200 0.75 0.76 0.79 0.78

5 0.02 200 0.75 0.77 0.78 0.78

5 0.1 500 0.95 0.97 0.98 0.98

5 0.05 500 0.97 0.98 0.99 0.99

5 0.02 500 0.99 0.99 0.99 0.99

Power to detect a QTL using the gene frequency model (BGF) and the least
squares regression model (LSR) with one marker (BGF1, LSR1) or two flanking
markers (BGF2, LSR2) for different variances explained by the QTL (% of
phenotypic variance), marker spacing, and sample size. For the regression
method, the critical value for detecting a QTL was estimated by simulating
data sets with no QTL and computing the upper 10% quantile F-value from
1500 replications of F-tests. Power was estimated by simulating 1500 data
sets, each with one QTL, and calculating the percentage of F-values that were
larger than the estimated critical value. For the gene frequency model, the
estimate of QTL variance was used as the statistic to calculate power. The
critical value for this test was estimated by simulating data sets with no QTL
and computing the upper 10% quantile for the QTL variance from 1500
replications. Power was estimated by simulating 1500 data sets, each with
one QTL, and calculating the percentage of estimates of QTL variance that are
bigger than the estimated critical value

Table 2 Precision

QTL Var
%

marker spacing
(cM)

sample size BGF1
(cM)

BGF2
(cM)

LSR1
(cM)

LSR2
(cM)

2 0.1 200 0.18a 0.17b 0.23c 0.21d

2 0.05 200 0.19a 0.19b 0.23c 0.23c

2 0.02 200 0.21a 0.21b 0.25c 0.23d

2 0.1 500 0.15a 0.14a 0.19b 0.18b

2 0.05 500 0.15a 0.15b 0.17c 0.17c

2 0.02 500 0.16a 0.16b 0.18c 0.18c

5 0.1 200 0.15a 0.14b 0.19c 0.18c

5 0.05 200 0.16ab 0.15b 0.17ab 0.17ac

5 0.02 200 0.17a 0.16b 0.18c 0.17c

5 0.1 500 0.14a 0.14bc 0.16a 0.15ac

5 0.05 500 0.12a 0.11a 0.12bd 0.12cd

5 0.02 500 0.11a 0.10b 0.12cd 0.12ad

Precision to map a QTL using the gene frequency model (BGF) and the least
squares regression model (LSR) with one marker (BGF1, LSR1) or two flanking
markers (BGF2, LSR2) for different variances explained by the QTL (% of
phenotypic variance), marker spacing, and sample size. Mean absolute error of
estimates of QTL location was used as the statistic to quantify precision of
QTL mapping. Paired t-tests were done to test whether the pairwise
differences between the BGF1, BGF2, LSR1 and LSR2 are significant or not for
all twelve different scenarios. The results are based on 1500 simulating data
sets. a, b, c, dWithin a row, means without a common superscript differ (P <
0.05).
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B. Thus the QTL has probability 0.5 to be mapped
inside bracket B. With lower marker spacing, ten mar-
kers are on the plateau, of which six are outside and
four are inside bracket B. Thus the QTL has a higher
probability to be mapped outside than inside bracket B,
which results in lower precision. However, when there is
sufficient information due to a larger number of obser-
vations or higher QTL variance, the likelihood will be
more peaked. Thus there is less probability that the
QTL will be mapped outside of bracket B, resulting in a
higher precision with a decrease in marker spacing. In
all scenarios studied, both 1 and 2-SNP BGF had preci-
sion higher than LSR.

Discussions
In this study, we have presented a gene frequency model
that combines LD and cosegregation information for use
in fine mapping of QTL. In this method LD information
is captured by modeling the conditional mean of the
QTL given marker information, and cosegregation infor-
mation is captured by modeling the covariance matrix
of the QTL given marker information. This model can
accomodate situations when there is no LD and only

cosegregation information as well as only LD and no
cosegregation information. It should be noted that using
13 leads to an approximation of the covariance matrix
and its inverse when marker data are not complete.
Complete marker data in this situation are the ordered
genotypes at the marker locus. Wang et al. [39] gave a
recursive formula that gives exact results with unor-
dered genotypes at a single locus. The advantage of
using 13 to compute Σv, however, is that this leads to
an efficient algorithm to invert this covariance matrix
[23], and without such an algorithm, genetic evaluation
with large pedigrees may not be possible. Recently, how-
ever, Thallman et al. [40] developed a recursive formula
that gives exact results with missing genotypes for a
pedigree with loops. Implementation of this algorithm
is, however, beyond the scope of this paper.
Least squares regression, which is easy to implement

and computationally efficient, was used to compare to
the gene frequency model in power and precision of
QTL mapping. Besides the regression method, an iden-
tity by descent (IBD) method has been proposed for
QTL mapping by Meuwissen and Goddard [32]. This
method is based on computing IBD probabilities

Figure 1 Likelihood plateau under high and low marker spacing. When there is not sufficient information, the likelihood will not peak at
the location of the QTL, but may have a plateau centered at the QTL location. With the higher marker spacing, four markers are on the plateau
of the likelihood, of which two are inside bracket B. Thus the QTL has probability 0.5 to be mapped inside bracket B. With lower marker spacing,
ten markers are on the plateau, of which six are outside and four are inside bracket B. Thus the QTL has a higher probability to be mapped
outside than inside bracket B, which results in lower precision. However, when there is sufficient information due to a larger number of
observations or higher QTL variance, the likelihood will be more peaked. Thus there is less probability that the QTL will be mapped outside of
bracket B, resulting in a higher precision with a decrease in marker spacing.

He et al. Genetics Selection Evolution 2010, 42:21
http://www.gsejournal.org/content/42/1/21

Page 9 of 12



between QTL alleles on haplotypes of relatives given the
similarity between marker alleles on these haplotypes.
An algorithm was developed to approximate the prob-
ability that the alleles at the QTL are IBD given the
number of marker alleles that are consecutively identical
in state to the left and right of the QTL [41].
Grapes et al. [31] studied the precision of QTL map-

ping using the IBD and regression methods. When mar-
kers were spaced 1, 0.5, or 0.25 cM apart, the IBD
method with 10 markers had higher precision in map-
ping than regression with 10 markers. In a subsequent
study, Grapes et al. [42] showed that the IBD method
with 4-6 markers led to higher precision than with
10 markers. In both these studies, markers were used in
the analysis even if they were fixed after 100 generations
of random mating. Using only markers that are segre-
gating after 100 generations of random mating, Zhao
et al. [43] studied power and precision of the regression
and IBD methods under scenarios with different marker
spacing and percentage of phenotypic variance explained
by QTL. Using four or six markers gave best result for
the IBD method for both power to detect and precision
to map a QTL, but regression with 1 SNP had even
higher precision, except in one scenario where the IBD
method was better. The IBD method had higher power
than regression, except for two scenarios with higher
marker density, where regression had the same or
higher power than the IBD method. Because results
from regression were close to or better than those from
the IBD method, regression was used in this study to
compare with the gene frequency model in power and
precision of QTL mapping. Calus et al. [44] compared
the accuracy of predicting breeding values in genomic
selection for regression with 1 marker haplotypes, 2 mar-
kers haplotypes, IBD with 2 markers haplotypes and IBD
with 10 markers haplotypes. The marker density simu-
lated in their study was 2343, 1166.4, 463.9 232.1 or 119
polymorphic markers across 3 M genome, and heritabil-
ity of the trait was 10 or 50%. Thus marker densities in
their study were much lower than in this paper. At
lower marker densities, IBD with 10 markers always had
the highest accuracy of estimated breeding values, and
regression with one marker had the lowest accuracy. As
marker density increased, the difference in accuracies
decreased. However, at the highest marker density,
when heritability was 10%, regression with 1 marker had
the highest accuracy. Thus, since in this paper, marker
densitites were much higher, it is expected that the dif-
ference between the performance of regression and IBD
method would be negligible.
The least squares regression method with one SNP

had slightly higher power than with two SNPs for most
of the scenarios studied. These results on LSR are con-
sistent with those from Zhao et al. [43], who found that

LSR with one SNP gave similar or higher power than
with two SNPs, especially with high marker density.
Unlike LSR, the gene frequency model with two SNPs
had similar or slightly higher power than the BGF with
one SNP. Both 1- and 2-SNP BGF Models had power
close to the 1- or 2-SNP regression methods.
LSR with two SNPs had similar or slightly higher pre-

cision of mapping QTL than with one SNP. Grapes et
al. [31] found that regression with one SNP had better
precision than two SNPs, except for one scenario where
they had the same precision. In their study, 10 or 20
evenly spaced biallelic markers were simulated within a
2.25-9 cM region in the base population, and all mar-
kers were used for mapping after 100 generations of
random mating. This would result in some markers that
are fixed, which wouldn’t contribute to the analysis.
However, in practice, uninformative SNPs will not be
used in the analysis. In the present study and in that by
Zhao et al. [43], only markers that were segregating
were chosen for analysis. Zhao et al. [43] found that
LSR with one SNP had higher precision than LSR with
two SNPs. This result is not in agreement with our
results, and may be due to the higher marker densities
in our study, with 11, 21, 51 markers in a 1 cM region
compared to 6, 10, 20 markers in an 11 cM region in
the study by Zhao et al [43]. With the higher marker
density, LD would be stronger, thus regression on one
or two SNPs would not be much different, compared to
lower marker density. BGF with two SNPs gave similar
or higher precision than with one SNP. Both 1- or
2-SNP BGF models had higher precision than the 1- or
2-SNP LSR models. When marker density is high, sam-
ple size and QTL variance are large, BGF and LSR mod-
els converge in both power and precision. In the study
by Calus et al. [44], difference in the accuracy of esti-
mated breeding values between IBD and regression
method was lowest at the highest marker density.
The essential difference between the BGF and regres-

sion model is the heterogeneous variance of the BGF
residuals, which can be seen from (18). However, when
π is 0 or 1, as can be seen from (14) and (15) pi

p and
pi

m will also be 0 or 1 when haplotypes are known,
which is always true for one-marker haplotypes and was
also assumed for two-marker haplotypes in this paper.
In this case, there is no heterogeneity of BGF residuals
and the two methods will have the same performance.
When all elements in π are 0 or 1, it implies complete
LD between marker and the QTL. However, analyses of
high-density SNP data in livestock have shown that LD
between adjacent marker loci is not complete [45-48].
One of the advantages of the gene frequency model is

that it can be used to combine linkage disequilibrium
and cosegregation information for QTL mapping. How-
ever, here its performance was studied only for the
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simple case with unrelated founder individuals, where
only LD contributes to the analysis. Thus in this case,
the primary difference between the two models is that
in the gene frequency model residual variances are het-
erogeneous (see equation 18), whereas in the regression
model residual variances are assumed homogeneous.
Another difference between these two models is the

assumption of biallelic QTL in the gene frequency
model. This assumption is often made in Maximum Like-
lihood and Bayesian QTL mapping methods for mixture
models because it is a good approximation, although the
number of QTL alleles is unknown and difficult to infer
in outbred populations [49]. Biallelic QTL methods have
been shown to successfully detect linkage for multiallelic
QTLs [50-53]. A comparison between the performance
of mutiallelic and biallelic analyses under multiallelic
modes of inheritance using the package Loki and the
multiallelic version of Loki (maLoki) was done by
Rosenthal et al. [54] using both simulated and real data.
For simulated data a four-generation pedigree with 98
individuals was simulated to detect the linkage of a six-
allele trait gene. Although the multiallelic analysis had
better mixing and convergence than the biallelic analysis,
the biallelic analysis was better at detecting linkage, and
it had a lower bias in estimating the QTL position and
the number of QTL. For real data 8 pedigrees with 216
individuals were used to detect linkage of APOC3 gene
with QTL for high-density lipoprotein (HDL). Both bial-
lelic and multiallelelic analysis had good mixing. Both the
biallelic and multiallelic analyses fitted one or more QTL
with probability almost one, while the probability of fit-
ting two or more QTL was .27 for multiallelic analysis
and .61 for biallelic analysis. However, the parameter esti-
mates for the larger QTL were very similar. And their
estimates are close or the same in posterior mean, stan-
dard deviation and range of total number of QTLs, and
in posterior mean of QTL. Due to the good performance
of biallelic analysis and increased computational cost of
multiallelic analysis, biallelic analysis can be a good
approximation that computationally easier and more fea-
sible. The BGF model, however, can be extended to
accommodate QTL with any specified or even unspeci-
fied number of alleles. If the number of alleles is not spe-
cified, it can be made to be an unknown parameter in the
model with some prior distribution. But this will lead to
more parameters that need to be estimated, thus will
affect the power and precision of the analysis.
The 2-SNP BGF performed slightly better with regard

to power and precision of QTL mapping than the 1-
SNP BGF. It should be noted that the BGF method
requires knowing the haplotypes for founder individuals.
Haplotypes at a single locus can be determined from the
genotype of the individual at this locus, the haplotypes
for 2 or more loci cannot be inferred from the

genotypes of the individual at these loci. Thus for 2-
SNP BGF in practice haplotypes probabilities have to be
calculated using genotypes of the individual, its ances-
tors and descendents. In this study the simulated true
haplotypes were used for 2-SNP BGF. Thus, in practice,
when haplotype probabilities are used, the slight advan-
tage of 2-SNP BGF may not persist.
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