
HAL Id: hal-01193547
https://hal.science/hal-01193547

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Validation of models for analysis of ranks in horse
breeding evaluation

Anne Ricard, Andres Legarra

To cite this version:
Anne Ricard, Andres Legarra. Validation of models for analysis of ranks in horse breeding evaluation.
Genetics Selection Evolution, 2010, 42, online (january), Non paginé. �10.1186/1297-9686-42-3�. �hal-
01193547�

https://hal.science/hal-01193547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH Open Access

Validation of models for analysis of ranks in horse
breeding evaluation
Anne Ricard1*, Andrés Legarra2

Abstract

Background: Ranks have been used as phenotypes in the genetic evaluation of horses for a long time through
the use of earnings, normal score or raw ranks. A model, ("underlying model” of an unobservable underlying
variable responsible for ranks) exists. Recently, a full Bayesian analysis using this model was developed. In addition,
in reality, competitions are structured into categories according to the technical level of difficulty linked to the
technical ability of horses (horses considered to be the “best” meet their peers). The aim of this article was to
validate the underlying model through simulations and to propose a more appropriate model with a mixture
distribution of horses in the case of a structured competition. The simulations involved 1000 horses with 10 to 50
performances per horse and 4 to 20 horses per event with unstructured and structured competitions.

Results: The underlying model responsible for ranks performed well with unstructured competitions by drawing
liabilities in the Gibbs sampler according to the following rule: the liability of each horse must be drawn in the
interval formed by the liabilities of horses ranked before and after the particular horse. The estimated repeatability
was the simulated one (0.25) and regression between estimated competing ability of horses and true ability was
close to 1. Underestimations of repeatability (0.07 to 0.22) were obtained with other traditional criteria (normal
score or raw ranks), but in the case of a structured competition, repeatability was underestimated (0.18 to 0.22).
Our results show that the effect of an event, or category of event, is irrelevant in such a situation because ranks are
independent of such an effect. The proposed mixture model pools horses according to their participation in
different categories of competition during the period observed. This last model gave better results (repeatability
0.25), in particular, it provided an improved estimation of average values of competing ability of the horses in the
different categories of events.

Conclusions: The underlying model was validated. A correct drawing of liabilities for the Gibbs sampler was
provided. For a structured competition, the mixture model with a group effect assigned to horses gave the best
results.

Background
Ranks in competitions have been used in genetic evalua-
tion of sport and race horses for a long time. Langlois
[1] used transformed ranks to predict breeding values
for jumping horses. Ranks were used through earnings;
these are, roughly, a transcription of ranks into a contin-
uous scale. Later, Tavernier [2,3], inspired by the model
proposed by Henery [4] for races, used a model includ-
ing underlying liabilities (” underlying model” herein-
after). This model explains the ranks as the observable
outcome of a hierarchy of underlying normal perfor-
mances of horses in competition. These underlying

performances serve to estimate breeding values for
jumping horses. The parameters of this model were dif-
ficult to compute (numerical integration has to be used),
and thus simpler models were proposed with different
transformations of ranks, like the squared root of ranks
[5], Snell score [6] or normal scores [7]. These became
the most frequent criteria used in Europe for sport
horse breeding value prediction [8]. These secondary
approaches are similar to the direct use of discrete
numerals instead of underlying liabilities in the analysis
of discrete variables [9]. Still, the model with underlying
liabilities seems to be the most appropriate. In its origi-
nal formulation, variance components [2,3] were esti-
mated by the joint mode of their marginal posterior* Correspondence: anne.ricard@toulouse.inra.fr
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distribution. This might be inappropriate with low num-
bers of data per level of effects, because numerical com-
putations rely on some asymptotic approximations.
Recently, Gianola and Simianier [10] proposed a full
Bayesian approach to estimate variance parameters for
the underlying model for ranks (the so-called Thursto-
nian model), where computations are achieved via
MCMC Gibbs samplers.
In Gianola and Simianer [10], “events” were included

as linear effects underlying the liability. However, it is
easy to see that event effects, even if they are real (say,
some tracks are more difficult than others) do not affect
ranks, just because ranks are relative performances from
one horse to another; this will be argued verbally and
formally later. Thus, for rank analysis, event effects do
not exist. However, it is well known that competitions
are structured, and horses considered to be the “best”
go to the “best” races and meet their peers who are sup-
posed to be the “best”. This causes a disturbance in pre-
dicting breeding values.
The aim of this paper was to validate the performance

for genetic evaluation of the Bayesian approach in finite
samples, and in particular the Gibbs sampler, through
simulations. The criteria that we have considered are
those usually found in horse breeding evaluation: fit to a
normal score, raw ranks, and the proposed underlying
model for ranks. Further, a second aim was to suggest a
better model for structured competitions organised into
different technical levels, as they really exist and is
explained above.

Analysis of ranks
Model with underlying liabilities responsible for ranks
Data from sport competitions or races are the ranks of
the horses in each event. The model used to analyse
these results includes an underlying variable responsible
for ranks. Let yk be the vector of ranking in the race k
(or jumping event) and y the vector of complete data, i.
e. all ranks in all events y y y1 m   ( , , ) with m the
total number of events. Suppose an underlying latent
variable l responsible for ranks, which follows a classical
animal model:

l eik ik        x z a z p w hik ik ik ik (1)

where i is the horse, b fixed effects, a vector of ran-
dom additive genetic effects, p vector of random perma-
nent environmental effects (common to the same horse
for different events), h vector of random event effects, e
vector of residuals and xik, zik, wik incidence vectors.
Let us note:

l eik ik ik  .

The conditional probability of a particular ranking in
one race k is given by:
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where (j) is the subscript of horse ranked j in the race
k, nk the number of horses present in the event k and j
the density of standard normal distribution. For com-
plete data:
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Joint posterior distribution
Define Θ = [b’, a’, p’, h’] a vector of location parameters
and   [ , , , ]   a p h e

2 2 2 2 , a vector of variance para-
meters. The residual variance  e

2 was fixed to 1 to
achieve identifiability, since liabilities were on an unob-
servable scale. The density of the joint prior distribution
of Θ and Λ has the form [10]
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inverted chi-square distribution on νt degrees of free-
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2, Sp

2, Sh
2] is a set of

known hyper-parameters. A is the relationship
matrix. The density of the joint posterior distribution
is then
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The Gibbs sampler
The Bayesian analysis and the Markov chain Monte Carlo
sampling were performed according to Gianola and Simia-
ner [10] except for the drawing of liabilities. The parameter
vector was augmented with the unobserved liabilities, the
location parameters Θ were drawn from multivariate nor-
mal distributions, and conditional posterior distributions
of the dispersion parameters were scale inverted chi-
square. Flat priors were used for fixed effects and variance
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components. The suggested procedure to draw liabilities in
Gianola and Simianer [10] was the following:

1. drawing of the liability l nk( ) of the last horse
ranked from N nk

( , )( ) 1
2. drawing of the liability l nk( )1 of the horse ranked
just before the last one from a truncated normal dis-
tribution T Nl nnk k

: ( , )
( ); ( )  1 1

3. etc.

In fact, this algorithm is not a correct Gibbs sampler,
and indeed did not converge in practice to correct rank
statistics. The reason is that in step (1), for a Gibbs sam-
pler, the liability l nk( ) above has to be conditioned on all
other parameters of the model, including information
from the other horses. At step (1) this information exists
from a previous MCMC cycle and is condensed in the lia-
bility of the previous horse, l nk( )1 so that l ln nk k( ) ( ) 1 .
The correct procedure is thus the following:

1. drawing the liability l nk( ) of the last ranked horse
in the interval] - ∞, l nk( )1 [, i.e. a lower liability
than the liability of the horse ranked just before in
the previous MCMC cycle, so in the truncated Nor-
mal distribution: T N l nnk k

: ( , ); ( )( ) 1
1

2. drawing the liability l nk( )1 of the horse ranked
just before the last one in the interval given by liabil-
ities of the last horse ranked and two before the last:
l l ln n nk k k( ) ( ) ( )  1 2 so in the truncated Normal
distribution: T Nl l nnk nk k

: ( , )
( ) ( ); ( ) 2 1 1

3. etc.

The marginal density of each liability knowing all other
parameters was therefore the probability to be between
the liability of the horse ranked before and the liability of
the horse ranked after the particular horse and not only
the probability to be before the particular horse. These
drawings must be performed several runs to converge to
the joint distribution, i.e. a set of liabilities which corre-
sponds to the overall ranking of the event. The use of a
previous drawing from the preceding iteration accelerates
the convergence. This procedure was validated by check-
ing the distribution of performances obtained: their mean
and variance must correspond to the mean and variance
of order normal statistics when the underlying model
involved the same μi for all horses. These moments are
available in usual statistical libraries.
The core of the program was the TM software devel-

oped by Legarra [11] where drawing of liabilities accord-
ing to ranks were added.

The event effect
Competition in jumping as well as in races is structured
according to the technical level of the event, for example

the height of the obstacles and their positions. A natural
choice to take into account the differences between
events is to include an event effect as in model (1). The
event is conceived as having a true additive effect on the
underlying scale. Whereas this might be true, this is irre-
levant as far as only ranks are analyzed. Consider for
example a race with effect 0 where times to arrival were
20, 10 and 30 s. Rank is of course 2, 1, 3. Now assume
that race had a true effect of 5, everything else being
identical. Times were 25, 15, 35 and ranks were identical.
Therefore, event has no effect on ranks, and there is no
way of estimating an event effect from rank information.
Thus, it might be fixed to zero to achieve identifiability
with no loss of information. This will be demonstrated
now. The probability of the ranks observed in an event
given the parameters (eq. 2) can be rewritten as [12]:
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with tj = l(j) - l(j+1), V the covatiance matrix with
vi, i = 2, vi, i+1 = vi, i-1 = -1 and vi, j = 0 for all other i, j,
and vj = μ(j) - μ(j+1) for j = 1, ..., nk -1. So that, for j = 1,
..., nk - 1:
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Since the event effect is the same for all horses in the
same event, it disappears from νj:
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As a result, the probability of the ranks observed in an
event given the parameters is independent of the event
effect so that the joint posterior distribution only depends
on the prior distribution of the event effect. The event
effect is, as a consequence, not identifiable, whatever the
distribution of other effects (especially genetic effects) in
the event. This is the same for all fixed or random effects
which have the same effect on all horses in the event, for
example a category of event effect. The presence of genetic
effects (as sires) cross classified with events do not change
this fact. So, an equivalent model to (1) is the following:

l eik ik      x z a z pik ik ik . (5)

How to take into account differences between events: the
mixture model
The reasoning that was followed in this work to include
some effect linked to the competition effect is somewhat
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different from the event effect. Since competition is
structured according to the technical level of the event,
several categories of events are defined from the low
level to the high level. Horses participate in the different
categories roughly according to their expected compet-
ing abilities (genetic and environmental ones), with, of
course, incertitude. Thus, the relationship between the
true ability of the horse and category is not complete.
The idea is to attribute a group to those horses that fol-
low more or less the same circuit, i.e. roughly the same
number of events in each category. The group is linked
to the horse rather than to the event and so, in the
same event, horses from different groups may meet.
This makes it possible to estimate the effect, even if
horses of different groups meet less often than horses of
the same group, by definition. Thus, horses belong with
some probability to different groups. This can be applied
to genetic effects as well as permanent environmental
effects. Therefore, the sum of the genetic and perma-
nent environmental effects of a horse has the following
a priori mixture distribution:

a p q N gi i a p

i ng



~ ( , , ).

,

 2 2

1
(6)

where ng is the number of groups with a priori
expected values gi and probabilities of assignment to a
group qi. Performances thus follow a mixture of normal
variables of these different groups with the same var-
iance but different means. So, the group effect has a
genetic interpretation and depends on the horse, not on
the event. Therefore, it is the same for the horse across
all its competing events, which is not the case for the
simple “event” effect. A full analysis would compute
posterior probabilities for qi, by MCMC or Expectation-
Maximization algorithms. For simplicity, in this paper, a
horse was assigned a priori to a group without comput-
ing the qi, according to the frequency of the different
categories performed by the horse during the period
studied. Therefore, because horses in the same event
may have participated in competitions of different levels
of competition and so belong to different groups, the
group effect may be identified in (2) and (3). In the fol-
lowing, this model will be referred to as the mixture
model.

Simulations
The objective of this paper was to check if, by using the
underlying model and computations as in [10], ranks
are suitable phenotypes to estimate the aptitude of the
horse to compete: genetic and environmental abilities.
For this work, and without loss of generality, the dis-

tinction between genetic and environmental effects is
not necessary to verify the model, since all previous

formulas have been derived with the complete model,
showing no influence of distribution of genetic and
environmental effects on the probability of ranking of
an event. Further, the fact that horses have repeated
performances provides the connections across events
and categories and with other horses and, in that sense,
the model with repeatability compares to a sire model
with unrelated sires.
So, for simplicity, we simulated the so-called “compet-

ing ability” c, which can be seen as the sum of random
additive genetic plus permanent environmental effects, ci
= ai + pi. A horse population was simulated. The com-
peting ability of the horse i, ci was drawn from the nor-
mal distribution assuming:

c N 0 I c
2~ ( , )

without any relationship between horses. Several per-
formances were simulated for each horse. Residuals for
each performance were drawn from a normal distribu-
tion with fixed residual variance of 1 ( e

2 = 1). The
repeatability of performances was thus defined as the
following:

r c

c e






 

2

2 2
.

The ranking was obtained by the hierarchy of perfor-
mances in each event.
Two structures of competition were analysed: one

where the distribution of horses among events was ran-
dom and another one where, as it is in reality, different
levels (3), i.e. categories of competition, were simulated.
In the first structure, horses were assigned to events at
random. In the second structure, the higher the simu-
lated ability of the horse, the higher the probability to
participate in the highest level. This pretends to mimic
what happens in reality, where horses with “better”
expected ability compete together in “better” races. To
simulate such a situation, an estimated value of the
competing ability of the horse was simulated with a sup-
posed accuracy of 0 50. from the simulated true com-
peting ability. Then according to these values, the rules
of probability of Table 1 were used to assign horses into
events with 3 different categories.

Table 1 Simulation of structured competition: probability
of competing in the three categories

Estimated competing ability

Category 1/3 Lowest 1/3 Medium 1/3 Highest

1 90% 8% 2%

2 8% 84% 8%

3 2% 8% 90%
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The simulated population included 1000 horses. Dif-
ferent numbers of horses per event and numbers of
events per horse were simulated. For the unstructured
competition, 10 to 40 performances per horse with 4 to
20 horses per event were simulated, with an equal or
variable number for all events. For the structured com-
petition, 10 to 50 events per horse were simulated with
an equal number of horses per event (10). Each scenario
was repeated 20 times except for the scenario with
structured competition and 10 events per horse which
was repeated 50 times.

Model and criteria used in simulations
The first model used to estimate repeatability and com-
peting ability of horses in simulations was the underly-
ing model proposed in (1) in its equivalent form (4).
The model was then:

l eir ir    x z cir ir .

Estimates were obtained with the Gibbs sampler from
the joint posterior distribution in (3). The Gibbs sampler
consisted of 1,000 iterations (with 150 of burn-in) with
sampling of location parameters (b, c) and variance
components ( c

2 ,  e
2 ). Within each iteration, 100 (only

in the first iteration) or 10 iterations were run to draw
liabilities. Autocorrelation between iterations were insig-
nificant for lags greater than 13. Thus, samples were
taken every 15 iterations. Convergence of chain was
checked by the Geweke diagnostic [13]. In addition,
three other models were used to analyse the simulated
data. First, the simulated performances were analysed as
a continuous trait; this provides an upper bound of the
quality of the estimates because it is the best inference
that could ever be done. Second, we included, for com-
parison with the underlying model, traditional measure-
ments attributed to ranks in literature and used in
genetic evaluation: raw ranks and normal scores. Nor-
mal scores are expected values of ordered multiple iden-
tical normal distributions. For these three pseudo-traits,
a mixed linear model was used:

yik     x z c eik ik ik

with yik the normal score of horse i according to its
rank and number nk of horses in the event or raw ranks
(1,2, ..., nk). In the structured competition, normal scores
were used first in a single trait model whatever category
of event, and second, with a multiple trait model, i.e.,
one trait for each category of event. The estimates of
repeatability were obtained with REML using SAS® proc
mixed [14] for the analysis of true underlying perfor-
mances, normal score and ranks and by Gibbs sampling

using one chain with 50,000 iterations for the normal
score with the multiple trait model.
The last model was the mixture model proposed in the

previous section. For the underlying mixture model the
horse group was defined by the rounded mean value of
grades affected to ordered categories of its competing
events. For example: if there were 3 categories of compe-
tition with grades (1, 2, 3), a horse performed 10 events,
3 of grade 1, 2 of grade 2 and 5 of grade 3. This horse
was assigned to the second group of horses because the
mean value of the grades was 2.2. The model, written in
terms of competing abilities, now becomes:

l eir ir    x zir ir 

with � the new vector of “competing ability” of the
horse, a normal distribution defined as the following:
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2 includes extra variation due to equating

a mixture by a linear expectation. The repeatability was
defined as:

r
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
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All parameters were estimated with the same Gibbs
sampler as the first underlying model and g was esti-
mated as a fixed effect.

Results
Validation of drawing of performances
As proposed in the method section, the algorithm used
to draw performances knowing ranks was validated by
comparing results with first and second moment of nor-
mal order statistics. The results are given in Table 2.
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For comparison, moments of normal scores were com-
puted using sub-routines of NAG [15].

Unstructured competition
Table 3 summarizes the results of simulations with dif-
ferent numbers of horses per event and different num-
bers of events per horse. The repeatability estimated was
compared to the one obtained directly on the underlying
performance as data. These results showed that the
model and the procedures used to estimate parameters
performed well: the estimates of repeatabilities were

close to those simulated and regressions of competing
ability of the horses on estimates were close to 1, as
expected.
The same simulations were used to estimate compet-

ing ability of the horses using the other traditional cri-
teria in horse breeding evaluation. All traditional
criteria, (Table 3) underestimated the repeatability, espe-
cially when a variable number of horses per event was
simulated. According to the standard deviation between
replicates, the differences between simulated and esti-
mated repeatability were still significant with 20 horses
per event. Thus, there is a great loss of information by
using normal scores or raw ranks.

Structured competition
The probability law used to construct the structured
competition gave the proportions of horses in the differ-
ent levels of competition reported in Table 4 (averages
over 50 replicates). These proportions were similar to
those obtained in jumping competition in France for
example (if dividing the level of competition into 3
parts). Thus, these simulations mimicked real data well.
In this case (Table 5), with the underlying model for

the ranks, repeatability was clearly underestimated (0.184
versus 0.250 simulated) due to underestimation of the
differences between the average values of competing abil-
ities of horses that participated in different categories of
competitions (Table 6). This is because the assumption

Table 2 Mean and Variance of drawn liabilities and of
normal order statistics

Ranking Mean Variance

Drawing Order Stat. Drawing Order Stat.

1 1.527 1.539 0.352 0.344

2 0.990 1.001 0.220 0.215

3 0.640 0.656 0.172 0.175

4 0.359 0.376 0.151 0.158

5 0.110 0.123 0.148 0.151

6 -0.136 -0.123 0.154 0.151

7 -0.385 -0.376 0.153 0.158

8 -0.665 -0.656 0.171 0.175

9 -1.008 -1.001 0.202 0.215

10 -1.538 -1.539 0.344 0.344

10 “equal” competitors by event, 1000 repetitions, 100 iterations for each
event

Table 3 Estimate of repeatability for unstructured competition

Simulations

Number of horses 1000 1000 1000 1000 1000 1000

Number of events 2500 1000 500 400+400+200 10000 2500

Number of events per horse 10 10 10 10 40 10

Number of horses per event 4 10 20 5/10/20 4 4

Total number of ranks 10000 10000 10000 10000 40000 10000

Simulated repeatability 0.25 0.25 0.25 0.25 0.25 0.10

Repeatability estimated

True underlying performance 0.251 0.249 0.251 0.249 0.251 0.100

Ranks and Underlying model 0.251 0.252 0.253 0.248 0.253 0.099

Normal Score 0.145 0.199 0.222 0.196 0.144 0.057

Raw ranks 0.144 0.197 0.218 0.068 0.144 0.057

Standard deviation of repeatability over replicate

True underlying performance 0.009 0.012 0.012 0.011 0.007 0.007

Ranks and Underlying model 0.010 0.015 0.012 0.011 0.007 0.007

Normal Score 0.007 0.012 0.011 0.008 0.004 0.004

Raw ranks 0.007 0.012 0.011 0.005 0.004 0.004

Regression coefficient between simulated and estimated competing ability

True underlying performance 0.997 1.006 1.004 0.992 1.003 1.014

Ranks and Underlying model 0.998 0.997 1.004 0.996 1.004 1.013

Normal Score 1.406 1.160 1.088 1.157 1.413 1.374

Raw ranks 1.408 1.169 1.101 2.696 1.414 1.374

20 replicates of each simulated scenario
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of normality of competing abilities tends to shrink these
differences towards 0. This bias decreases with more
information, but even with a very large number of events
(50) per horse, the estimates of repeatability are still
biased (0.215). The other criteria also underestimated the
repeatability even more than the underlying model for
ranks and, on the contrary, with no decrease of bias for
increasing number of events per horse. With the multiple
trait model, as in the single trait model, the repeatability
was always underestimated, and the differences of aver-
age values of horses in each level were still underesti-
mated. So, this model is not well suited to a structured
competition.
Estimates with the mixture model are also shown in

Tables 5, 6 and 7. Even with a low number of events per
horse (10), repeatability was close to the value estimated
from true underlying performances (0.253 versus 0.250).
This better estimation was due to a better estimation of
average values of competing ability of horses in each
category of event (Table 6) and thus, in each defined
group of horses (Table 7). This is shown in Figure 1,
where solutions are plotted against true values (75 horses
randomly selected from each group). The model with the
underlying variable responsible for ranks gave a superpo-
sition of values in each group of horses whereas the mix-
ture model gave a hierarchy between groups.

Discussion
Summary of results
The results validate the underlying model responsible
for ranks used to measure performances in competition
[2,3] as long as there is a correct estimation of para-
meters via the MCMC algorithm. The new algorithm
proposed to draw underlying performances in agreement
with ranking gave satisfactory results. Convergence may
be accelerated by best sequences in the successive Gibbs
sampler steps. However, our implementation was suffi-
cient to give correct results for unstructured competi-
tion: correct repeatabilities and regression coefficients of
1 of true or estimated values for horses.
All other criteria for estimating breeding values and

variance components underestimated the repeatabilities,
in particular when the number of horses per event was
variable, because in that case, the supposed variance in

each event is largely conditioned by the trait chosen
(normal score or ranks). All these results were validated
by the repeatability obtained from the true underlying
performance, which is the best possible inference that
could ever be done.
With a structured competition, the underlying model

with no mixture required a very large number of events
per horse in order to have a large enough number of com-
parisons between horses of different levels to converge to
the simulated repeatability, because these meetings are
rare in structured competition, by definition. So, in prac-
tice, the mixture model developed is the best, also because
it does not need a large number of events per horse.

An explanation for the low heritability found in the
literature for the ranking trait
Low heritabilities of traits related to ranking in jumping
can be found in the literature: from 0.05 to 0.11 for
those used in official breeding evaluation [8]. These
values come from various studies. In Germany, for the
squared root of rank, Luhrs-Behnke et al. [16] found
0.03. Higher estimates were obtained with the logarithm
of earning in each event (with an event effect, so corre-
sponding to a linear function of rank): 0.09 [17]. In Ire-
land and Belgium, normal scores were used as different
criteria according to category of event and low heritabil-
ities were also estimated: from 0.06 to 0.10 [18,19]. A
higher heritability was found by Tavernier [20]: 0.16
with an underlying model, but employing a sire model
and an estimation based on the mode of the marginal
posterior distribution of the variances.
These results are in agreement with ours. Criteria

related to ranks, used as raw data, underestimate the
horse variance. The same will happen including a
genetic effect and as a consequence the heritability of
the underlying performance will be underestimated.
This is similar to what happens in the threshold model,
where the heritability in the observed scale is lower than
that in the underlying scale and not invariant to trans-
formation [21]. These results are an illustration of a
scale problem and unsuitable models rather than a low
heritability of jumping ability as often postulated [22]
The most recent proposition to deal with structured
competition was the use of normal scores with multiple
traits according to categories but it did not perform well
in our simulations. With the appropriate model, i.e. the
underlying mixture model, higher heritabilities should
be found in real data analysis.

The mixture model
The sport competition or race programs are always
structured in different categories according to the level
of technical difficulty. So, there have to be differences
between the means of the true underlying performances

Table 4 Mean of the number of horses that participate
almost once in different levels of competition

Level category

Level category 1 2 3

1 604.0 430.4 234.3

2 430.4 724.5 421.6

3 234.3 421.6 578.9

50 replicates, 10 events per horse
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obtained in these different categories, whatever the
ranking. These differences between means of perfor-
mances can not be estimated by an event effect when
ranks are the only phenotype available. We have shown
that this is because such an effect is not involved in the
probability function of the ranking in one event condi-
tional on the parameters in the model. One could
expect that the comparisons between horses in lots of
events would enable to correctly estimate the genetic as
well as the environmental effect and then, that the
averages of genetic and environmental effects in each
event are correct. But in fact, even with 50 events, the
repeatability was underestimated.
Adding genetic effects through the use of the relation-

ship matrix would have the same influence as increasing
the number of events per horse: increasing the number
of comparisons between horses. With a genetic effect,
horses that do not compete in the same events may be
compared through their relationship. However, the pro-
blem still exists: the best genetic values and the best
sires will compete in the highest level of competition. So
even if genetic links allow more comparisons, the pro-
blem of non-random allocation to categories of events

remains. It will never be possible to ascertain that the
number of comparisons will be sufficient to reach the
correct values since this depends on the distribution of
sires across categories of competition.
The aim of this study was not to estimate the level of

connectedness necessary to estimate correctly genetic
values but to correctly implement the model to analyze
the phenotype (ranks) recorded and used to estimate
breeding values. Adding groups of horses in the mixture
model seems to give the suitable response. By adding an
estimable effect, linked to the categories of event but
not confounded with it, representing a summary of pos-
sible comparisons between categories of event, the phe-
notype is correctly modeled. Then, whatever the other
effects are in the model, supposing different levels are
present in at least some events, they will be correctly
estimated, like the genetic effect.
In our simulations, the simplest method used to assign

horses to categories was good enough to obtain good
estimates of repeatability and moreover, good estimates
of mean values of competing ability of horses in the dif-
ferent categories of events. A better model would fit a
true mixture model by computing posterior estimates of

Table 5 Estimates of repeatability for structured competition (3 categories)

10 events/horsea 50 events/horseb

Repeatability Standard Deviation Repeatability Standard Deviation

True underlying performance 0.249 0.012 0.248 0.008

Normal score single trait 0.134 0.008 0.134 0.007

Normal score multiple trait 1 0.151 0.019 0.171 0.009

Normal score multiple trait 2 0.145 0.018 0.171 0.010

Normal score multiple trait 3 0.158 0.017 0.177 0.011

Underlying model 0.184 0.011 0.217 0.009

Underlying mixture model 0.253 0.016 0.247 0.009

simulated repeatability 0.25
a50 replicates, b20 replicates

Table 6 Estimates of competing ability according to category of events: means by category

10 events/horsea 50 events/horseb

Category 1 versus 2 Category 3 versus 2 s.d. Category 1 versus 2 Category 3 versus 2 s.d.

Number of ranks 3388/3314 3298/3314 129 16711/16823 16467/16823 640

Simulated values -0.395 0.384 0.021 -0.380 0.389 0.024

Normal Score -0.041 0.042 0.005 -0.064 0.067 0.004

Normal Score multiple trait 1 -0.070 0.060 0.009 -0.175 0.170 0.033

Normal Score multiple trait 2 -0.065 0.066 0.010 -0.175 0.173 0.034

Normal Score multiple trait 3 -0.056 0.072 0.010 -0.176 0.178 0.034

Underlying model -0.100 0.102 0.012 -0.265 0.272 0.016

Underlying mixture model -0.388 0.394 0.032 -0.377 0.382 0.022
a50 replicates, b20 replicates
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assignment of animals to groups. In any way, this mix-
ture model seems to be a good basis to improve the
underlying model responsible for ranks to correctly
account for the level of competition in the model.

Conclusion
The full Bayesian analysis proposed by Gianola and
Simianer of the Thurstonian model of Tavernier [2,3],
i.e. the model of underlying unobservable liabilities
responsible for ranks of an event, was validated. In
addition, the algorithm in [10] for drawing conditional
liabilities from ranks was corrected. In an unstructured
competition, repeatability of performances was cor-
rectly estimated with this model. All other usual phe-
notypes such as normal score and raw ranks
underestimated repeatability. For the realistic case of a

structured competition, however, the underlying model
model was unable to estimate the correct repeatability
unless there was a cross-classified design of horses and
categories of events. This does not happen in practice.
Rather than trying to estimate an event effect, which
makes no sense since these cannot be estimated, we
suggest to use a mixture model assuming that a priori
the horse population is a mixture. This model per-
formed well, and the repeatability and the average level
of each category of event were correctly estimated.
More work must be done in the modelling of the mix-
ture distribution.
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