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Genetic parameters for social effects on survival
in cannibalistic layers: Combining survival analysis
and a linear animal model
Esther D Ellen1*, Vincent Ducrocq2, Bart J Ducro1, Roel F Veerkamp3, Piter Bijma1

Abstract

Background: Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because
censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual
itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival
data, survival analysis can be used. However, it is not possible to include associative effects in the current software
for survival analysis. A solution could be to combine survival analysis and a linear animal model including
associative effects. This paper presents a two-step approach (2STEP), combining survival analysis and a linear animal
model including associative effects (LAM).

Methods: Data of three purebred White Leghorn layer lines from Institut de Sélection Animale B.V., a Hendrix
Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-
bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were
estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to
estimate genetic parameters for social effects on observed survival days.

Results: Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as
the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when
using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank
correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative
genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.

Conclusion: It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative
effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross
validation showed that social genetic effects contribute to a large difference in survival days between two extreme
groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to
cannibalism in laying hens.

Background
Mortality due to cannibalism in laying hens is a world-
wide economic, health, and welfare problem, occurring
in all types of commercial poultry housing systems [1].
Due to the likely prohibition of beak-trimming in the
European Union in the near future, this problem will
increase if no further actions are taken, and, therefore,
needs to be solved urgently.

One of the possibilities is to use genetic selection
[2,3]. However, selection for lower mortality has not
been very effective in most cases [4]. First, heritabilities
of mortality are low, ranging between 3.2% and 9.9%,
leading to low accuracy [5-9]. Second, censoring is high
(animals still alive at the end of the testing period have
no record on survival time) [9], leading to low accuracy
as well. Third, traditional methods for selection against
mortality can lead to unfavourable response to selection,
because these methods ignore the social effect an indivi-
dual has on it’s group members (so-called social interac-
tions) [2,10-12].
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Heritabilities for survival traits are often estimated
using a linear animal model [8,13]. However, a linear
animal model does not take into account the fact that
some animals are still alive at the end of the testing
period (so-called censored records), for these animals
the true survival days is unknown. Furthermore, linear
models do not properly account for the nature of survi-
val data, because survival data are usually heavily
skewed [14]. Survival analysis [15] appropriately
accounts for both censoring and non-normality in the
data. Survival analysis is used to examine either the
length of time an individual survives or the length of
time until an event occurs. Models for survival analysis
can be built from a hazard function, which measures
the risk of an event to occur, given that the individual
has survived up to time t [14,16].
Social interactions occur when individuals are kept

together in a group. Wolf [17] has mentioned that the
environment provided by group members is often the
most important component of the environment experi-
enced by an individual in that group. There is clear evi-
dence that social interactions contribute to the heritable
variation in traits [2,8,13,17-21]. For instance, social
interactions have a substantial genetic effect on mortal-
ity due to cannibalism [8,13,17,20,22-26]. Bijma et al.
[13] and Ellen et al. [8] have found that 1/3 to 2/3 of the
heritable variation in survival days is due to social inter-
actions. To reduce mortality due to cannibalism, the
classical model for a given genotype must be extended
to consider not only the individuals’ direct effect of its
own genes, but also the associative genetic effect of the
individual on the phenotypes of its group members [10].
Muir [2] has clearly shown that selection methods tar-
geting both direct and associative genetic effects (group
selection) results in a decrease in mortality due to can-
nibalism in laying hens, whereas selection based on only
the direct genetic effect (individual selection) results in
an increase in mortality [27]. Furthermore, Muir [20]
has found that, in Japanese quail, group selection results
in decreased mortality and increased bodyweight. How-
ever, so far associative genetic effects have not been
implemented in existing software for survival analysis.
To analyse data on mortality due to cannibalism, a solu-
tion might be to combine survival analysis and a linear
animal model including associative effects.
Ducrocq et al. [28] have proposed a two-step approach

for multiple trait evaluation of longevity and production
traits in dairy cattle, which faces similar problems. The
two-step approach is a combination of survival analysis
and a linear animal model. In the first step, survival ana-
lysis is performed to compute the so-called pseudo-
records and their associated weights. Pseudo-records can
be regarded as the result in the data of a linearization of
the model. When analysed with a simple linear animal

model, pseudo-records weighted appropriately lead to
the same estimated genetic values as the initial survival
model used to compute them. In the second step, genetic
parameters on pseudo-records with their associated
weights are estimated using a linear animal model.
In this paper, we apply a similar two-step approach to

estimate genetic parameters for direct and associative
effects on survival time in laying hens. In the second
step, we will use the linear animal model including asso-
ciative effects to estimate genetic parameters [8,13,20].
For the remaining part of the paper, we will refer to the
linear animal model including associative effects as
LAM and to the two-step approach as 2STEP. Cross
validation will be used to compare 2STEP with LAM
[8,13]. LAM was applied directly to estimate genetic
parameters for social effects on observed survival days.
For the cross validation, the predicted hazard rate will
be estimated using 2STEP and the predicted phenotype
will be estimated using LAM. To judge the performance
of both methods, predicted phenotypes or hazard rates
will be compared with the observed phenotype.

Methods
For this study, the same data were used as described in
Ellen et al. [8]. The main characteristics are summarized
below and further details are in [8].

Population and housing
Data of three purebred White Leghorn layer lines from
Institut de Sélection Animale B.V., a Hendrix Genetics
company, were used in this study. The three lines were
coded: W1, WB, and WF. For each line, observations on
survival time of a single generation were used. Chickens
of each line were hatched in two batches, each batch
consisting of four age groups, differing by two weeks
each. All chickens had intact beaks.
When the hens were on average 17 weeks old, they

were transported to two laying houses with traditional
four-bird-battery cages. Each batch was placed in
another laying house. In both laying houses, the 17-
week-old hens were allocated to laying cages, with four
birds of the same line and age in a cage. The individuals
making up a cage were combined at random. In both
laying houses, cages were grouped into eight double
rows. Each row consisted of three levels (top, close to
the light; middle; and bottom). A feeding trough was in
front of the cages, and each pair of back-to-back cages
shared two drinking nipples.

Pedigree
Sires used for both laying houses were largely the same
while dams were different. For all three lines, sires and
dams were mated at random. Each sire was mated to
approximately eight dams, and each dam contributed on
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average 12.3 female offspring. Five generations of pedi-
gree were included in the calculation of the relationship
matrix (A). To avoid pedigree errors, hens with
unknown identification or double identification were
coded as having an unknown pedigree (n = 101). The
observations on these hens were included in the analysis
to better estimate fixed effects.

Data
All hens were observed daily. Dead hens were removed
from the cages and not replaced, and wing band num-
ber and cage number were recorded. The study was
ended when hens were on average 75 weeks old. For
each hen, information was collected on survival and
number of survival days. Survival was defined as alive
or dead (0/1) at the end of the study. From these data,
the survival rate was calculated as the percentage of lay-
ing hens still alive at the end of the study. Survival days
were defined as the number of days from the start of
the study (day of transport to laying houses) till either
death or the end of the study. Hens that died before the
end of the study were referred to as a failure (event =
1), whereas hens still alive at the end of the study were
referred to as censored (event = 0). In total, 196 hens
were removed from the study, due to reasons other
than mortality. These hens were referred to as censored
(event = 0). For the statistical analysis, 6,276 records
were used for line W1; 6,916 for line WB; and 3,588 for
line WF.

Data analysis
Data were analysed separately for each line. Two meth-
ods to estimate genetic parameters were compared: 1)
LAM, a linear animal model including direct and asso-
ciative effects applied directly to the observed survival
days; this procedure is described in detail in [8], and 2)
2STEP, a two-step approach [29]. In the first step of
2STEP, data were analysed using survival analysis as
implemented in the survival kit V5 [30], to produce
pseudo-records as defined below. Survival analysis
allows the combination of information from hens still
alive at the end of the study (censored records) as well
as hens that died (uncensored records). In the second
step, genetic parameters for direct and associative effects
on pseudo-records were estimated using a linear animal
model [8,13], implemented in ASReml [31].
Step 1: Survival analysis
Data were analysed using the Cox animal model [32].
The Cox model can deal with non-linearity, censoring,
and non-normal residuals. The model included a fixed
effect for each combination of laying house, row, and
level, and for average survival days in the back cage to
account for a possible effect of the back neighbours [8].
Age was fully confounded with laying house and row

and, therefore, not included as a fixed effect. All the
fixed effects were significant.
Using survival analysis results in a breeding value (ai )

and an associated weight (ωi) for each hen i. It can be
shown that ωi is the estimated cumulative risk of animal
i from time 0 to censoring time or death, and is there-
fore a function of the (possibly censored) length of life
of hen i, her censoring code (δi = 0/1), and the fixed
effects in the model [29]. The pseudo-record for survival
time of animal i was [33]:

y i
i

ai i
* ,= + −


1 (1)

where δi is the censoring code of individual i (δi= 1 if
animal i is uncensored; δi = 0 if animal i is censored); ai
is the estimated direct breeding value of individual i;
and ωi is the associated weight of individual i. Pseudo-
records are functions of the data and of the effects esti-
mated in the survival model, such that when a straight-
forward BLUP animal genetic evaluation is applied on
these pseudo-records, the same estimated breeding
values are obtained as in the initial survival model.
To verify 2STEP, pseudo-records with appropriate

weights were analysed to estimate breeding values with a
univariate BLUP animal model, with a heterogeneous
residual variance 1 /

∧

i
for animal i. The correlation

between the estimated breeding values of 2STEP and the
estimated breeding values of the survival analysis was cal-
culated [29]. As expected, this correlation was one and
the estimated breeding values were the same. Thus the
computation of pseudo-records in 2STEP was correct.
Step 2: Associative effects model
To estimate variances and covariances for direct and
associative effects, using the pseudo-records and asso-
ciated weights from step 1, the model of Muir [20] and
Bijma et al. [13] was used:

y Z a Z a e   D D S S= + + , (2)

where y is a vector of the pseudo-records yi* ; aD is a
vector of direct breeding values, with incidence matrix
ZD linking observations on individuals to their direct
breeding value; aS is a vector of associative breeding
values, with incidence matrix ZS linking observations on
individuals to the associative breeding values of their
group members (i.e., individuals in the same cage); and
e is a vector of residuals, where Var ei ei

( ) = 1 2
  . A

weighted analysis was performed using the associated
weight (ωi) and the !WT statement in ASReml [31] and
fixing  e

2 to one [28].
The covariance structure of genetic terms is

Var D

s

a
a

C A
⎡

⎣
⎢

⎤

⎦
⎥ = ⊗ ,
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where C =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 

A A

A A

D DS

DS S

2

2
, in which  AD

2 is the

direct genetic variance,  AS

2 is the associative genetic
variance, and  ADS is the direct-associative genetic cov-
ariance. Bijma et al. [13] have shown that residuals of
group members are correlated due to non-genetic asso-
ciative effects. The covariance structure of the residual
term, e, is given by Var( )e R=  e

2 , where Rij = 1 when i
= j, Rij = r when i and j are in the same group (i ≠ j),
and Rij is zero otherwise. The value of r was estimated
in the analysis, using a CORU statement in the residual
variance structure in ASReml [31].
Heritable variation
When social interactions exist among individuals, each
individual interacts with n - 1 group members. In this
study, n = 4. The total heritable impact of an indivi-
dual on the population, referred to as its total breeding
value (TBV), equals the sum of its direct breeding
value and n - 1 times its associative breeding value:
TBVi = AD,i + (n - 1) AS,i [20]. The total heritable var-
iation equals the variance of the TBV among indivi-
duals,    TBV A AD ADS S

n n2 2 2 22 1 1= + − + −( ) ( ) [13,34].
With unrelated group members, the phenotypic var-
iance equals    P A A eD S

n2 2 2 21= + − +( ) . The total
heritable variance expressed relative to the phenotypic

variance equals T TBV

P

2
2

2=



. The T2 expresses the total

heritable variance relative to the phenotypic variance
and is, therefore, a generalisation of the conventional
h2 to account for social interactions.
Cross validation
We compared 2STEP to LAM using cross validation
[35]. With cross validation, known phenotypes are set to
missing and their value is predicted and compared with
their observed phenotype. Validation was applied sepa-
rately to each of the three lines. For this purpose, a ran-
dom number was allocated to each cage within a fixed
effect class. For each line, phenotypes of animals from
20% of the cages from each fixed effect class were set to
missing, which resulted in five subsets, each containing
80% of the data. In this way, each cage was once
removed from the total dataset, and each fixed effect
class was present in all five subsets. The phenotypes set
to missing were predicted using a combination of the
direct breeding value of the individual itself and the
associative breeding values of its group members

DSBV = +( )−
A AD i n S j, ,Σ

1
of either 2STEP or LAM.

Comparing the predicted phenotypes of both methods
is difficult for two reasons. First, a scale difference exists
between estimated breeding values (EBV) of 2STEP and
EBV of LAM. EBV of LAM are on the observed scale
for survival days, whereas EBV of 2STEP are on the
hazard rate scale. Transforming EBV of 2STEP into

survival days is somewhat difficult, because the transfor-
mation is non-linear. Therefore, the predicted pheno-
types using 2STEP are on the hazard rate scale, whereas
the predicted phenotypes using LAM are on the
observed scale for survival days. Second, in our dataset
approximately 50-70% of the data were censored (ani-
mals that were still alive at the end of the testing per-
iod). These animals do not have an observed phenotype.
In other words, a large proportion of the “observed”
phenotypes is censored, and cannot be compared
directly to their prediction. However, we know that
their observed phenotypes are larger than those of ani-
mals that are not censored, which is highly relevant
information.
To deal with these two difficulties, we used two

approaches to evaluate both methods. The first
approach is based on using groups of animals rather
than single individuals. In this approach, for each subset
and method, 25% of the animals with the best predicted
phenotypes or hazard rates were selected as the best
groups (best refers to animals with the highest predicted
phenotypes using LAM or lowest predicted hazard rates
using 2STEP), and 25% of the animals with the worst
predicted phenotypes or hazard rates were selected as
the worst groups. The Kaplan-Meier estimate of the sur-
vival curve was plotted for the best and worst groups
based on the observed phenotypes. It was expected that
the best groups would yield the best Kaplan-Meier esti-
mate of the survival curve, whereas the worst groups
would yield the worst one. Moreover, for both methods
the mean observed survival days were calculated for the
best and worst groups. From these, the difference in
survival days between the best and worst group was cal-
culated. For the best groups the percentage of overlap-
ping animals, between 2STEP and LAM, was calculated.
To quantify the contribution of social effects to the

predicted phenotype, phenotypes or hazard rates were
predicted using different EBV: 1) classical BV (CBV); 2)
direct BV of the individual itself (DBV = AD, i ); associa-
tive BV of the group members ( SBV =

−
Σ

n S jA
1 , ) and a

combination of the direct BV of the individual itself
and the associative BV of its group members

DSBV = +( )−
A AD i n S j, ,Σ

1
CBV were estimated using a classi-

cal linear animal model given in [8] or using survival
analysis (first step of 2STEP). DBV, SBV and DSBV
were estimated using LAM or 2STEP.
The second approach is based on using ranks of indi-

viduals rather than their observed phenotypes. In this
approach, the rank correlation between the observed
phenotype and predicted phenotype or hazard rate and
between predicted phenotype and predicted hazard rate
was calculated. Due to the scale difference and censor-
ing, Pearson correlations cannot be used. However, in
both methods animals with the highest predicted
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phenotype (LAM) or lowest predicted hazard rate
(2STEP) have the highest expected value for observed
survival days. Therefore, the rank correlation between
predicted and observed values can be used for both
methods. Hence, the use of rank rather than Pearson
correlation solves the scale issue. The remaining pro-
blem is animals with censored records, which have an
unknown rank for the observed phenotype. However,
the fact that animals were censored, represents an
important information because those animals had the
highest observed survival days. Animals with known
phenotypes have a rank 1 through n, whereas censored
animals have rank n+1 through N, but with an unknown
order. For the censored animals, we assumed that their
ranks are in random order between n+1 and N, so that
the rank among the censored animals does not contri-
bute to the estimated rank correlation. In this case, the
rank correlation can be calculated by giving censored
animals the average rank of all the censored animals
[see Additional file 1]. In this way, we use the informa-
tion that animals were censored, but make as little
assumptions as possible about their order.
Before calculating rank correlations, observed pheno-

types were corrected for the fixed effects [8], ( )P Pi − .
Next, for the 20% missing data, the correlation was cal-
culated between the rank of the observed phenotypes
corrected for the fixed effects, accounting for censoring
as described above, and the rank of the predicted phe-
notypes or hazard rate: corr rank P P rank Pi i i⎣ ⎦( ) , ( )−

∧ . In this
expression, P i

∧ denotes the predicted phenotype in case
of LAM and the predicted hazard rate times -1 in case
of 2STEP. Note, the P i

∧ of individual i is the sum of the
estimated direct breeding value (or hazard rate) of hen

i AD i( ),
∧ and the estimated associative breeding values (or

hazard rates) of its group members j AS j
n

∧

−
∑⎛

⎝
⎜

⎞

⎠
⎟,

1
. Further-

more, to quantify similarity of both methods, the rank
correlation between the P i

∧ of 2STEP and the P i
∧ of

LAM was calculated.
The rank correlation between predicted and observed

phenotypes depends not only on the accuracy of the
estimated breeding values underlying the predictions,
but is also affected by non-genetic components of the
observed phenotype. If breeding values underlying pre-
dicted phenotypes were estimated with full accuracy, the
correlation between predicted and observed phenotypes
would be equal to the square root of the proportion of
phenotypic variance explained by breeding values,

r nA AS pD

2 2 2 21= + −[ ( ) ] /   . For any accuracy of

predicted breeding values (rIH), the expected correlation
between predicted and observed phenotypes would be
equal to corr r rlH= 2 (Figure 1), where rIH is the

accuracy of A AD i S j
n

∧ ∧
+

−
∑, ,

1
. Because animal breeders are

interested in predicting breeding values rather than phe-
notypes, we calculated an approximate accuracy as

r corr rank P P rank P rlH i i i
∧ ∧

= −[ ( ) , ( )] / 2 . Hence, r lH
∧

represents the approximate accuracy with which the
genetic components underlying the observed phenotype,

A AD i S j
n

, ,+
−

∑
1

, were predicted. This accuracy is only
approximate because it refers to the ranks rather than
the phenotypes, and because the prediction from 2STEP
refers to the scale of the hazard rate rather than the
observed phenotype. For line W1 r 2 = 0.32, for line
WB r 2 = 0.37, and for line WF r 2 = 0.17, when
using the genetic parameters (see Table 1) given in
Ellen et al. [8].

Results
Survival
The Kaplan-Meier estimate of the survival function [36]
was plotted for the survival of the three layer lines
(Figure 2). The survival function represents the propor-
tion of laying hens that survived up to time t. The survi-
val rate differed significantly between lines in both
laying houses (p < 0.01). Line WF showed the highest
survival rate i.e. 74.6%, whereas line WB showed the
lowest survival rate i.e. 52.9%.

Genetic parameters
The estimated genetic parameters for direct and associa-
tive effects using 2STEP are given in Table 1. For all
three lines, both the direct genetic variance ( ) AD

2 and
the associative genetic variance ( ) AS

2 were significantly
different from zero. The  AD

2 was lowest in line WF and
highest in line W1, ranging from 0.12 through 0.31,
whereas the  AS

2 was lowest in line WB and highest in
line WF, ranging from 0.028 through 0.049. The total
heritable variance  TBV

2 ranged from 0.44 (WB) through
0.81 (WF) and was significantly different from zero. Line
WB showed the lowest total heritable variance in survi-
val days expressed relative to the phenotypic variance
(T2 ), whereas line WF showed the highest T2 , ranging
from 32% through 64%. The estimated genetic

Figure 1 Approximate accuracy.
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correlation between direct breeding value and associa-
tive breeding value (rA ) was positive but not signifi-
cantly different from zero in line W1 (0.13) and A line
WF (0.55), and negative and not significantly different
from zero in line WB (- 0.20). Table 1 shows also the
genetic parameters using LAM [8].

Cross validation
Figure 3 shows the Kaplan-Meier estimate of the survi-
val curves for the groups with the best and worst

predicted phenotypes, using either 2STEP or LAM. As
expected, for all three layer lines, groups with the best
predicted phenotypes or hazard rates yielded the best
observed survival curves, whereas groups with the worst
predicted phenotypes or hazard rates yielded the worst
observed survival curves. Both line W1 and WB showed
a large difference in survival curves between the best
and worst groups, whereas this difference was smaller in
line WF. For all three lines, there was hardly any differ-
ence in survival curves between 2STEP and LAM.
Meaning that both predicted phenotypes or hazard rates
are good indicators for observed survival days. Table 2
shows the average survival days of the best and worst
group for both methods and each line. Again, there was
hardly any difference in average survival days between
2STEP and LAM. Furthermore, Table 2 shows the dif-
ference in survival days between the best and worst
group. The difference was largest in line WB (67 days,
for both methods) and smallest in line WF (16 days, for
both methods). These results are in accordance with the
difference in survival curves (Figure 3).
To quantify the contribution of social effects to the

predicted phenotype or hazard rate, the phenotype or
hazard rate is predicted using different breeding values,
CBV, DBV, SBV and DSBV. Again, for each of the three
lines, 25% of the animals with best predicted phenotypes
or hazard rates were selected as the best group, and
25% of the animals with the worst predicted phenotypes
or hazard rates were selected as the worst group. Table
3 shows the difference in survival days between the best
and worst groups for both methods and each line.
Besides, the Kaplan-Meier estimate of the survival
curves for the groups with the best and worst predicted
phenotypes based on CBV, using the two methods, is
given in Figure 4. For both lines WB and W1, animals
selected on predicted phenotypes or hazard rates using
DSBV gave the largest difference in survival days
between the best and worst group. Furthermore, for
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Figure 2 Survival curve of the three layer lines. Survival curve is
shown for the three lines W1, WB, and WF housed in laying house
1 (a) and laying house 2 (b).

Table 1 Estimates of genetic parameters for direct and associative effects on survival time in three layer lines using
2STEP or LAM [8]

W1 WB WF

2STEP LAM 2STEP LAM 2STEP LAM

 AD

2 0.31 ± 0.05 915 0.30 ± 0.05 1,917 0.12 ± 0.06 246

 AS

2 0.041 ± 0.01 134 0.028 ± 0.01 273 0.049 ± 0.02 60

 TBV
2 0.77 ± 0.13 2,490 0.44 ± 0.09 3,007 0.81 ± 0.26 910

 P
2 1.44 ± 0.06 12,847 1.38 ± 0.05 20,111 1.27 ± 0.08 13,999

T2 0.53 ± 0.08 0.19 0.32 ± 0.06 0.15 0.64 ± 0.17 0.06

rA 0.13 ± 0.15 0.18 -0.20 ± 0.14 -0.31 0.55 ± 0.28 0.11

r -0.003 ± 0.0003 0.08 -0.005 ± 0.0001 0.08 -0.004 ± 0.0003 0.10

 AD

2 and  AS

2 are estimates of direct genetic variance and associative genetic variance;  TBV
2 is the total heritable variance:    TBV A A AD DS S

n n2 2 2 22 1 1= + − + −( ) ( ) ;
 P

2 is the phenotypic variance:    P A A eD S
n2 2 2 21= + − +( ) , where  e

2 = 1; T2 expresses the total heritable variance relative to the phenotypic variance:
T TBV P

2 2 2=  / ; rA is the genetic correlation between direct breeding value and associative breeding value; r is the correlation between the residuals of group
members
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both lines, using CBV to predict the phenotype or
hazard rate gave similar difference in survival days as
the DBV (approximately 45 days for line W1 and 58
days for line WB). For line WF, the difference in survi-
val days depends on the method used. For 2STEP, the
difference was largest when CBV was used, whereas for
LAM the difference was largest when DSBV was used.
Furthermore, for each layer line, the overlap of animals
in the best group between 2STEP and LAM was calcu-
lated. The average overlap was 85% for both lines W1
and WB, and 74% for line WF. These results show that
a large proportion of the animals selected for the best
group, using either 2STEP or LAM, are the same.
The rank correlations between the observed pheno-

type, adjusted for fixed effects and censoring, and the
predicted phenotype, corr rank P P rank Pi i⎣ ⎦( ) , ( )− , are
given in Table 4. The rank correlations were low and
approximately the same for both methods. For line W1
(0.149 vs. 0.144) and WB (0.174 vs. 0.170), they were
slightly, but not significantly, better for 2STEP, whereas
for line WF (0.039 vs. 0.042) it was slightly, but not sig-
nificantly, better for LAM. The rank correlations
between the predicted phenotype using 2STEP and
LAM were high and ranged from 0.879 (line WF)
through 0.962 (line WB). These results are in line with
the survival curves (Figure 3). Furthermore, approximate

Table 2 Mean survival days of best and worst groups
using 2STEP or LAM for three layer lines

W1 WB WF

2STEP LAM 2STEP LAM 2STEP LAM

Mean 354 ± 2 326 ± 2 375 ± 2

Best 377 ± 3 377 ± 3 359 ± 2 357 ± 3 384 ± 3 383 ± 5

Worst 327 ± 2 327 ± 3 292 ± 6 290 ± 6 368 ± 7 367 ± 5

Difference 50 50 67 67 16 16

Best group = 25% of the animals with best predicted phenotypes (LAM) or
hazard rates (2STEP); worst group = 25% of the animals with worst predicted
phenotypes or hazard rates; difference = mean survival days of best group -
mean survival days of worst group; results are averages of five subsets, each
containing 20% of the data

Table 3 Difference in survival days between best and
worst groups using 2STEP or LAM for three layer lines

W1 WB WF

2STEP LAM 2STEP LAM 2STEP LAM

CBV 46 43 58 57 19 14

DBV 45 43 59 57 15 11

SBV 25 26 32 33 12 9

DSBV 50 50 67 67 16 16

Best group = 25% of the animals with best predicted phenotypes or hazard
rates; worst group = 25% of the animals with worst predicted phenotypes or
hazard rates; phenotypes or hazard rates are predicted using CBV, DBV (AD, i),
SBV AS j

n
( ),

−
∑

1
, or DSBV A AD i S j

n
( ), ,+

−
∑

1
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Figure 3 Survival curves using 2STEP or LAM. Kaplan-Meier non-
parametric estimate of the observed survival curve of two extreme
groups, based on the predicted phenotypes (LAM) or predicted
hazard rates (2STEP). For each subset and method, phenotypes or
hazard rates were predicted based on DSBV. 25% of the animals
with best predicted phenotypes or hazard rates were selected as
the best groups (best refers to animals with the highest predicted
phenotypes using LAM or lowest predicted hazard rates using
2STEP), and 25% of the animals with the worst predicted
phenotypes or hazard rates were selected as the worst groups.
Black solid line: best group using 2STEP; black dotted line: best
group using LAM; gray solid line: worst group using 2STEP; gray
dotted line: worst group using LAM. Results are averages of five
subsets, each containing 20% of the data. Figures represent line W1
(a), WB (b), and WF (c).
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accuracies were calculated (Table 4) and were moderate,
and approximately the same for both methods.

Discussion
We have estimated genetic parameters for direct and
associative effects using 2STEP, combining survival ana-
lysis and a linear animal model including associative
effects. Using 2STEP, the total heritable variance, includ-
ing both direct and associative genetic effects, expressed
as the proportion of phenotypic variance (T2 ), ranged
from 32% (line WB) through 64% (line WF). Using
2STEP, T2 is substantially larger than using LAM. How-
ever, results of the cross validation do not show any dif-
ference between the two methods. Using cross validation,
we showed that the difference in survival days between
two extreme groups is largest when selecting on DSBV.
Furthermore, we showed that social genetic effects con-
tribute substantially to the difference in survival days
(Table 3). These results indicate that there could be quite
some gain in survival days when selecting on the combi-
nation of the direct breeding value and the associative
breeding values of the group members (DSBV). Compar-
ing genetic parameters of 2STEP and LAM is not
straightforward. For 2STEP, genetic parameters are given
on the hazard rate scale, the probability that an animal
has a failure at a given time t, whereas genetic parameters
of LAM are on the observed scale for survival days. The
difference in genetic parameters between 2STEP and
LAM originates from the fact that there is a scale differ-
ence, just like the difference in heritabilities for a 0/1-
trait between linear and threshold models [37]. Using
2STEP, the total heritable variance is 1.5 to 7-fold greater
than the classical direct genetic variance using survival
analysis. For both lines W1 and WB, this increase in total
heritable variance is comparable with results found using
LAM [8,13] (1.5 to 3-fold). For line WF, the increase is
much larger using 2STEP (7-fold) than using LAM (3-
fold), which could be due to the fact that censoring is
higher in line WF and 2STEP takes this better into
account.
Theoretically, 2STEP would be a better method to

analyse survival data, based on fewer assumptions
known to be incorrect. We used two approaches to
compare the two methods; selection of animals with the
best and worst predicted phenotypes or hazard rates
and the rank correlation between the predicted pheno-
types or hazard rates and observed phenotypes. Both
approaches show that there is hardly any difference
between 2STEP and LAM. This applies to all three
lines. At first glance, the difference in T2 between both
methods might suggest that using 2STEP would yield
greater genetic improvement than using LAM [38].
However, as explained above, this difference arises from
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c

Figure 4 Survival curves based on CBV, using survival analysis
or classical linear animal model. Kaplan-Meier non-parametric
estimate of the observed survival curve of two extreme groups,
based on the predicted phenotypes (classical linear animal model)
or predicted hazard rates (survival analysis). For each subset and
method, phenotypes or hazard rates were predicted based on CBV.
25% of the animals with best predicted phenotypes or hazard rates
were selected as the best groups (best refers to animals with the
highest predicted phenotypes using classical linear animal model or
lowest predicted hazard rates using survival analysis), and 25% of
the animals with the worst predicted phenotypes or hazard rates
were selected as the worst groups. Black solid line: best group using
survival analysis; black dotted line: best group using classical linear
animal model; gray solid line: worst group using survival analysis;
gray dotted line: worst group using classical linear animal model.
Results are averages of five subsets, each containing 20% of the
data. Figures represent line W1 (a), WB (b), and WF (c).
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a difference in scale. The cross validation clearly demon-
strates that both methods yield very similar rates of
genetic improvement.
Note that the rank correlation is low for all three

lines, whereas the approximate accuracy is moderate for
lines W1 and WB and low to moderate for line WF.
Even though the approximate accuracy seems low, it is
in accordance with the accuracy for methods that con-
tain only half- or full-sib information (at least for lines
W1 and WB) [11,39]. Furthermore, a high rank correla-
tion was found between the predicted hazard rates of
2STEP and the predicted phenotypes of LAM. Using
selection of the best and worst predicted phenotypes or
hazard rates, approximately 80% of the animals selected
for the best predicted phenotypes were overlapping
between 2STEP and LAM. Based on the high overlap of
animals between 2STEP and LAM and the similar rank
correlation, it implies that, for both methods, a similar
genetic progress will be achieved.
We made a number of assumptions in the cross vali-

dation, when using the rank correlation, that may have
affected the results. First, observed phenotypes were cor-
rected for fixed effects using LAM, which may have
favoured LAM compared to 2STEP. Second, when cal-
culating the rank correlation, we assumed that ranks of
censored records were in random order. This will prob-
ably not be true if censored animals were given the
opportunity to actually produce a record. Alternatively,
we could have used the ranks of the uncensored records
only. However, in that case we would have ignored the
information that the censored records are actually the
“best records”.
For all three layer lines, censoring occurred at the same

time, at the end of the study. It could be that when cen-
soring occurs at different times during the study period,
differences may occur between the two methods. To
investigate this, 50% of the censored records of line W1
were censored half way the study period (at 200 days).
Again cross validation was used to compare the two
methods. For both methods, the difference in survival

days between the group with best predicted phenotypes
or hazard rates and the group with the worst predicted
phenotypes or hazard rates was calculated. For 2STEP
the difference was 25.9 days, whereas for LAM the differ-
ence was 15.7 days. This indicates that, when the censor-
ing times differ between individuals, 2STEP can better
identify the genetically superior individuals than LAM.
Thus both methods are practically equivalent when all
animals are censored at the same survival time; with var-
iation in censoring time, the 2STEP is superior.

Conclusion
This study shows that it is possible to use 2STEP, a com-
bination of survival analysis and a linear animal model
including associative effects, to estimate genetic para-
meters for the direct and associative effects on survival
time in laying hens. We used cross validation to compare
2STEP with LAM. Based on the results in this paper, we
can conclude that both 2STEP and LAM are practically
equivalent when all animals are censored at the same sur-
vival time. Cross validation showed that selecting on a
combination of the direct BV and the associative BV of
the group members (DSBV) gave the largest difference in
survival days between two extreme groups.
Furthermore, this study showed that social genetic

effects contribute substantial to the difference in survival
days between two extreme groups, which means that
social genetic effects do exist.

Additional material

Additional file 1: Example and mathematical proof of rank
correlation with censoring.

List of abbreviations
2STEP: two-step approach; LAM: linear animal model including direct and
associative effects; CBV: classical breeding value; DBV: direct breeding value:
SBV: associative breeding value; DSBV: combination of the direct breeding
value of the individual itself and the associative breeding value of its group
members.

Table 4 Rank correlation and approximate accuracy based on 2STEP or LAM for three layer lines

Rank correlation Approximate accuracy

W1 WB WF W1 WB WF

2STEP 0.149 ± 0.011 0.174 ± 0.020 0.039 ± 0.017 0.47 0.47 0.22

LAM 0.144 ± 0.010 0.170 ± 0.020 0.042 ± 0.012 0.45 0.46 0.24

2STEP; LAM 0.954 ± 0.003 0.962 ± 0.004 0.879 ± 0.007 - - -

Rank correlation is calculated between observed phenotypes and predicted hazard rates of 2STEP, between observed phenotypes and predicted phenotypes of
LAM, and between predicted phenotypes and predicted hazard rates (2STEP; LAM); observed phenotype = phenotype corrected for fixed effects ( )P Pi − ;
predicted phenotype or hazard rate ( P i

∧ ) = sum of estimated direct breeding value of hen i AD i( ),
∧ and estimated associative breeding values of its group

members j A P A AS j
n

i D i S j
n

( ),, , ,

∧ ∧

− −
∑ ∑= +

1 1
; approximate accuracy = rIH = corr r/ 2 , where corr is the rank correlation between observed phenotypes and predicted

phenotypes or hazard rates, and r 2 = 0.32 for line W1, 0.37 for line WB, and 0.17 for line WF, when using the genetic parameters given in Ellen et al. [8];

results are averages of five subsets, each containing 20% of the data
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