
HAL Id: hal-01193427
https://hal.science/hal-01193427

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Genetic variation for carcass quality traits in cultured
sea bass (Dicentrarchus labrax)

Eric Saillant, Mathilde Dupont-Nivet, Marie Sabourault, Pierrick Haffray,
Stanislas Laureau, Marie-Odile Vidal, Beatrice Chatain

To cite this version:
Eric Saillant, Mathilde Dupont-Nivet, Marie Sabourault, Pierrick Haffray, Stanislas Laureau, et al..
Genetic variation for carcass quality traits in cultured sea bass (Dicentrarchus labrax). Aquatic Living
Resources, 2009, 22 (1), pp.105-112. �10.1051/alr/2009010�. �hal-01193427�

https://hal.science/hal-01193427
https://hal.archives-ouvertes.fr


Aquat. Living Resour. 22, 105–112 (2009)
c© EDP Sciences, IFREMER, IRD 2009
DOI: 10.1051/alr/2009010
www.alr-journal.org

Aquatic
Living
Resources

Note

Genetic variation for carcass quality traits in cultured sea bass
(Dicentrarchus labrax)

Eric Saillant1,2,a,b, Mathilde Dupont-Nivet3, Marie Sabourault1, Pierrick Haffray4, Stanislas Laureau2,
Marie-Odile Vidal1 and Béatrice Chatain1

1 IFREMER, Laboratoire de Recherche en Pisciculture marine, chemin de Maguelonne, 34250 Palavas-les-Flots, France
2 Ecloserie marine de Gravelines, voie des Enrochements, 59820 Gravelines, France
3 INRA, UMR 1313, Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
4 SYSAAF, Section aquacole, Station SCRIBE, Campus de Beaulieu, 35042 Rennes, France

Received 29 August 2008; Accepted 6 February 2009

Abstract – Genetic parameters for carcass quality traits were estimated in 27 families of sea bass (3 dams × 9 sires
factorial mating design), raised mixed in the same tanks starting before hatching. Offspring parentage was determined a
posteriori using 6 microsatellite loci. Carcass quality traits were recorded at 818 days post fertilization (mean standard
length: 32.6 ± 3.1 cm). Genetic parameters were estimated from the sire half sib variance and covariance components.
Heritability of body weight (BW) and carcass processing traits (standardized to body weight) percent head weight
(Head%), percent viscera weight (Viscera%) and percent visceral fat weight (VisceFat%) were relatively high ranging
from 0.48 ± 0.15 (Viscera%) to 0.87 ± 0.23 (Head%); the estimate of heritability for fillet yield (Fillet%) was lower
(0.25 ± 0.10) but was significantly greater than zero. Body weight was positively correlated to Fillet%, Viscera%, and
VisceFat%, and negatively correlated to Head%. These results indicate that these carcass processing traits can be mod-
ified by directional selection and that selection for greater BW would lead to an increase of Fillet%, Viscera% and
VisceFat% and a decrease of Head%.
Muscle lipid content (MuscleLipid%) was determined using two indirect methods: measurements with a Torry Fish
Fatmeter� (TorryLipid) and determination of the percentage of dry matter content (MuscleDry%) via desiccation. Both
measures were highly correlated to chemical measurements of MuscleLipid%. Regression analysis indicated a superior
predictive value of TorryLipid suggesting that MuscleLipid% may be evaluated via rapid, non lethal measurements
with a Torry Fish Fatmeter. Heritability estimates of TorryLipid and MuscleDry% differed significantly from zero (Tor-
ryLipid: 0.28±0.12, MuscleDry%: 0.36±0.14) indicating that MuscleLipid% could be lowered by directional selection.
TorryLipid and MuscleDry% were weakly correlated to body weight and carcass processing traits suggesting that simul-
taneous improvement of MuscleLipid% and other carcass quality traits may require definition of multi-trait selection
indices.
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1 Introduction

The European sea bass, Dicentrarchus labrax (L.), is a ma-
jor species for marine aquaculture in the Mediterranean re-
gion. Initial aquaculture developments in this species relied
on undomesticated breeders caught in the wild and condi-
tioned for spawning in captivity (Garcia de Leon et al. 1998).
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Development of breeding programs in order to improve pheno-
typic characters of interest for aquaculture production is now
in progress in several aquaculture farms. Growth rate is usually
of primary interest in those programs, as development of fast
growing strains via selective breeding would allow lowering
production costs significantly by reducing the duration of the
rearing cycle. Carcass processing traits and body composition
traits also are essential ingredients of economic profitableness
as they influence the yield of final product, its quality, and its
acceptance by the consumer (Neira et al. 2004; Kause et al.
2002). For example, fillet yield and gutted yield are primary
components of economic gain when fish are marketed as pan
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fish or as gutted fish. The level of fat deposition in the flesh
or in the visceral cavity also impacts carcass quality, including
texture (Andersen et al. 1997) and storage characteristics of
the fillet (Lie 2001), and ultimately acceptance of the product
by the consumer. Thus, additional objectives for aquaculture
production in sea bass may include increased gutted and fil-
let yields, lowered proportion of carcass waste products, and
lowered fat deposition.

The design of efficient selective breeding programs aiming
at improving multiple traits requires knowledge of the mag-
nitude of heritability of individual traits and genetic correla-
tions between traits (Falconer and McKay 1989). To date, es-
timates of genetic parameters in sea bass have been reported
for growth (Saillant et al. 2006; Dupont-Nivet et al. 2008) but
there is no published data on genetic parameters for additional
carcass quality traits.

Here we report genetic parameters for carcass process-
ing traits and fat deposition traits in 27 families of sea bass
raised mixed in the same tanks from fertilization and using
a posteriori parentage assignment with microsatellites. Using
this approach, multiple families were tested under identical
conditions (in the same tank) during the entire rearing cycle
(Herbinger et al. 1995; Estoup et al. 1998; Garcia de Leon et al.
1998). Genetic parameters were thus estimated using a limited
number of tanks and without confounding genetic effects with
early common environment effects (Vandeputte et al. 2001).
Heritability was estimated based on sire half sib families and
using a restricted maximum likelihood algorithm. We also ex-
amined genetic correlation among traits in order to provide a
first assessment of potential correlated responses to selective
breeding for fast growth rate and evaluate potential for simul-
taneous improvement of multiple traits.

2 Materials and methods

2.1 Experimental groups

The studied groups included 27 families of sea bass raised
mixed in the same tank beginning 48 h post fertilization (i.e.
shortly before hatching) until sampling. The families were
generated according to a full factorial mating design that in-
volved 3 dams × 9 sires. All breeders had been caught in the
wild (West Mediterranean) with the exception of two females
of uncertain origin: the two females were either wild fish from
West Mediterranean or cultured offspring from wild parents
caught in this region. Embryos from each family were pro-
duced at the beginning of the natural spawning season (Febru-
ary): eggs were obtained from the three females by manual
stripping following hormonal induction of ovulation, and in-
dividually fertilized with sperm from each of the 9 sires as
described in Saillant et al. (2001a). All fertilizations were car-
ried out within a three hours period. Floating (alive) and sink-
ing (dead) eggs were separated at 48 h post fertilization by
decanting at a salinity of 38%� (Chatain 1994a). Three repli-
cate groups were constituted at that stage. Each group received
an equal volume of living eggs from each dam × sire combi-
nation as described in Saillant et al. (2002), thus resulting in
an equal initial representation of the 27 families. Broodstock

management and protocols for hormonal induction of spawn-
ing, artificial fertilization and incubation of eggs are described
in detail in Saillant et al. (2002).

Detailed protocols for subsequent rearing phases may also
be found in Saillant et al. (2002) i.e. groups high temperature
(HT). The three replicate groups (HT1, HT2, HT3) were main-
tained in separate tanks connected to the same water recircu-
lating system and were treated identically throughout the ex-
periment. Fish density was lowered on four occasions during
fish growth by randomly discarding fish in each replicate. All
the fish in replicate group HT1 died accidentally at 468 days
post fertilization (dpf) due to accidental cut off of oxygen in-
put in the tank. Replicate group HT1 was replaced by surplus
fish from replicate tank HT2 obtained during the following
density adjustment (at 504 dpf). The generated group (HT2b)
was kept under the same conditions as the other two replicates
(HT2, HT3) as indicated above until the end of the experiment.
Fish were fed a commercial diet using an on-demand feed-
ing system: Le Gouessant (Lamballe, France) for particles of a
mean diameter< 2.5 mm and Biomar Ecolife (Biomar, Nersac,
France) for larger pellets.

2.2 Samplings and measurements

Carcass quality traits were recorded when the fish reached
the age of 818 dpf. A total of 709 fish were randomly sampled
for genetic analysis. Sample sizes in individual replicates were
270, 284 and 155 in HT2, HT3 and HT2b, respectively.

Fish were killed a few at a time by immersion in a
400 μl L−1 solution of phenoxy-2-ethanol. Muscular fat con-
tent measurements were immediately taken with a Torry Fish
Fat meter (see below). Fish were then weighed (body weight,
BW) to the nearest g and measured (standard length, SL) to the
nearest mm and dissected. All viscera (including visceral fact)
were extracted and weighed. Visceral fat was separated from
other visceral tissue and weighed individually. The phenotypic
sex was identified by visual inspection of gonads as described
in Saillant et al. (2002). No sign of active gametogenesis was
observed at the time of sampling. Gonads and liver were also
weighed separately but contributed a very small fraction of
body weight (average 0.23 and 1.45% BW, respectively) and
were not analyzed further. All gutted carcasses were then pro-
cessed by the same experienced operator as follows: fillets
were obtained by cutting along the rib cage and removing the
skin from the flesh; the two fillets were weighed to the near-
est gram and frozen for further analysis. The carcass was be-
headed and fish head weighed individually. The other remains
of the gutted carcasses (“filleting waste products” including
skin, bones and fins) were pooled and weighed for each fish.

Muscle lipid content (MuscleLipid%) was evaluated by
two indirect methods. Both methods exploit the approximately
linear (negative) relationship between lipid and water content
of fish tissues (Vogt et al. 2002). Determination of tissue wa-
ter content (or dry matter content) thus provides an indirect
measure of lipid content. MuscleLipid% was first measured on
the carcass immediately after death with a Torry Fish Fatmeter
692 (Distell, Fauldhouse, UK). Measurement procedures fol-
lowed directions from the manufacturer. Mean MuscleLipid%
was estimated from the average of measurements implemented
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at 5 different locations on the fillet as described in Douirin
et al. (1998): three measurements were implemented along the
longitudinal axis of the fish, 3 mm above the lateral line. The
first one was located behind the gills, the second beneath the
dorsal fins, and the third just behind the dorsal fins. The two
additional measurements were located below the lateral line
and were also taken along the longitudinal axis of the fish, one
was just behind the pectoral fin and the second one above the
anal fin. The percentage of dry matter content in the fillet flesh
was also determined via direct desiccation of tissue samples.
Frozen fillets obtained as above were thawed and ground in or-
der to obtain a homogeneous mixture. Three aliquots (1–3 g)
were sub-sampled from the mixture and weighed to the near-
est 10−2 g (wet weight, WW). The aliquots were then dried at
105 ◦C for 24 hours and weighed to determine the dry weight
(DW). The percent dry matter (MuscleDry%) was calculated
as MuscleDry% = 100 × DW

WW and averaged over the three sub-
samples.

In order to evaluate the reliability of estimation of lipid
content of the muscle by the two indirect methods imple-
mented during the study, MuscleLipid% was measured di-
rectly by a biochemical method for a sub-sample of 30 ran-
domly chosen individuals. Biochemical measurements were
performed at the “Centre d’évaluation et de valorisation des
produits de la mer” (Boulogne-sur-Mer, France). Total lipids
were extracted by the Folch method (Folch et al. 1957), and
pre- and post-extraction weights were used to derive lipid
content.

A small piece of fin (ca. 25 mm2) was sampled and kept in
95% ethyl alcohol for further genotyping. Fin clips had been
taken from the three dams and the nine sires previously.

2.3 Genotyping and pedigree analysis

Deoxyribonucleic acid (DNA) isolations and microsatel-
lite assays were performed at LABOGENA laboratory
(Jouy-en-Josas, France). Nuclear DNA was extracted from the
fin clips using an alkaline lysis protocol as described in Sail-
lant et al. (2002). Parents and offspring were assayed at 3 or 6
microsatellite loci described by Garcia de Leon et al. (1995).
The loci were combined in two multiplex panels (multiplex-1:
Labrax 3, Labrax 13 and Labrax 29; multiplex-2: Labrax 6,
Labrax 8 and Labrax 17) for polymerase chain reaction (PCR)
amplification and electrophoresis on an automatic sequencer
ABI 377 (Perkins Elmer, Courtaboeuf, France). Primer la-
beling, multiplex PCR amplification and electrophoresis, and
analysis of electrophoregrams followed procedures detailed
in Saillant et al. (2002). Multilocus genotypes were used to
assign offspring to parents based on Mendelian principles
and using a personal Excel macro (Microsoft, Redmond CA,
USA): based on genotypes at multiplex-1 or the combination
of multiplex-1 and multiplex-2, parental origin could be traced
unambiguously for 98.1% of the fish sampled.

2.4 Data analysis

The following carcass quality traits derived from the mea-
surements taken on the fish were evaluated in statistical analy-
sis: body weight (BW), body standard length (SL), total viscera

weight (Viscera), visceral fat weight (VisceFat), overall fil-
let (both fillets summed) weight (Fillet), head weight (Head),
filleting waste products weight (FilletWaste), mean Muscle-
Lipid% as evaluated from Torry Fish Fatmeter measurements
(TorryLipid), and mean muscle dry matter content (Muscle-
Dry%). Weights of total viscera, visceral fat, fillets, head and
filleting waste products were also standardized to body weight
resulting in the following traits: Viscera%, VisceFat%, Fillet%,
Head%, FilletWaste%.

Fish condition coefficient (K) was estimated as described
in Blanc and Poisson (2006); principal component analysis
(PCA) was applied to the bivariate distribution of Naperian
logarithms of weight and length, and individual fish coordi-
nates along the second principal component were taken as a
measure of K. PCA computations were implemented in PROC
FACTOR of SAS� (SAS Institute Inc., Cary, NC, USA).

Correlation between the direct measure of MuscleLipid%
and TorryLipid or MuscleDry% was estimated using Pearson’s
linear correlation coefficient as implemented in PROC CORR
of SAS�. The quality of the prediction of MuscleLipid% by
the two indirect measures was assessed by regression analysis
as implemented in PROC CORR of SAS�.

Transformation was necessary to stabilize heterogeneity of
variances for some of the traits examined. However, analysis
of transformed and untransformed data yielded nearly iden-
tical results for all traits. Therefore only results obtained on
untransformed data are presented.

Variance and covariance components and their standard er-
rors for all traits were estimated using the restricted maximum
likelihood method (REML) as implemented in VCE 5.0�

(Neumaier and Groeneveld 1998). Both univariate and bivari-
ate analyses were implemented using the following mixed
model:

yijklm = μ + Sei + s j + dk + Tl + eijklm (1)

where yijklm is an observation on individual m, μ is the overall
mean, Sei is the fixed effect of phenotypic sex i, s j is the ran-
dom additive effect of sire j, dk is the random additive effect of
dam k, Tl is the fixed effect of replicate tank l, and eijklm is the
residual random error term associated with yijklm.

Preliminary analysis revealed that the dam × sire interac-
tion was not significant for any of the traits studied. This effect
was therefore not included in the final model (1) employed to
estimate genetic parameters.

The additive genetic variance (σ2
A) was estimated from

the sire component of variance (σ2
s) through the relationship

σ2
A = 4σ2

s (Becker 1984), and heritability was calculated as
the ratio h2 = σ2

A/σ
2
P. Phenotypic (rp) and additive genetic

correlations (ra) between traits were estimated as the ratio of
the phenotypic or genetic (sire) covariance to the product of
the square root of the estimated phenotypic or sire variances
as obtained during bivariate analyses.

The magnitude of the effect of sex on all traits was esti-
mated as the difference between the best linear unbiased esti-
mator (BLUE) of the mean trait value for male offspring and
the BLUE of the mean trait value for female offspring; BLUE
values and their standard errors were generated in PEST 4.2.6
(Groeneveld and Kovac 1990) and were based on (1).
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Table 1. Phenotypic mean (± standard deviation) and heritability estimates (h2± standard error, SE) for carcass quality traits recorded in 694
sea bass Dicentrarchus labrax. See text for detailed trait definitions.

Trait Tank 1 Tank 2 Tank 3 Overall h2 (± SE)
n 269 273 152 694
BW (g) 727.1 ± 233.6 744.2 ± 225.4 741.9 ± 247.5 741.9 ± 233.4 0.63 ± 0.23
SL (cm) 32.6 ± 3.2 32.6 ± 2.8 32.6 ± 3.2 32.6 ± 3.1 0.40 ± 0.16
Viscera (g) 78.2 ± 33.1 77.1 ± 28.5 80.9 ± 34.4 78.3 ± 31.7 0.86 ± 0.25
Viscera% 10.6 ± 2.3 10.3 ± 2.0 10.8 ± 2.6 10.5 ± 2.3 0.48 ± 0.15
VisceFat (g) 50.1 ± 25.7 51.5 ± 23.0 55.2 ± 27.6 51.8 ± 25.2 0.91 ± 0.27
VisceFat% 6.7 ± 2.1 6.8 ± 1.9 7.2 ± 2.1 6.9 ± 2.0 0.68 ± 0.19
Fillet (g) 247.7 ± 80.2 247.5 ± 77.7 247.8 ± 87.0 247.6 ± 80.7 0.63 ± 0.23
Fillet% 34.1 ± 2.2 33.4 ± 2.4 33.3 ± 2.5 33.7 ± 2.4 0.25 ± 0.10
Head (g) 149.5 ± 47.5 153.9 ± 46.5 151.6 ± 49.6 151.7 ± 47.6 0.36 ± 0.15
Head% 20.7 ± 1.9 20.8 ± 2.1 20.6 ± 1.6 20.7 ± 1.9 0.87 ± 0.23
FilletWaste (g) 242.5 ± 78.9 258.2 ± 77.1 254.1 ± 82.6 251.2 ± 79.3 0.54 ± 0.20
FilletWaste% 33.9 ± 2.0 34.6 ± 1.9 34.4 ± 2.1 34.3 ± 2.0 0.18 ± 0.08
K –0.1 ± 1.0 0.1 ± 1.0 0.0 ± 1.0 0.0 ± 1.0 0.10 ± 0.05
MuscleDry% 29.2 ± 2.3 29.7 ± 2.2 29.6 ± 2.2 29.5 ± 2.3 0.36 ± 0.14
TorryLipid (%) 5.9 ± 1.8 6.1 ± 1.8 6.2 ± 1.8 6.0 ± 1.8 0.28 ± 0.12

3 Results

Thirteen individuals (1.9%) could not be assigned to dam
or sire due to unsuccessful PCR amplification. Phenotypic sex
was not available for another two individuals. The 15 individ-
uals were discarded from further analysis. Ultimately records
were available for 694 fish. A significant excess of males was
found in all three replicate groups (average 65%, contingency
G test of association: G = 26.44, d f = 1, p < 0.001). Detailed
contributions of individual families to each group are available
from the authors upon request. Offspring from one of the three
dams was underrepresented in all three replicate groups (16%
of the offspring sampled) whereas 47 and 37% of the offspring
were assigned to the other two dams. The proportions of off-
spring assigned to individual sires varied from 2- to 16%.

Summary statistics for all phenotypic traits recorded are
reported in Table 1. Mean body weight and standard length
(±SE) were 737.0 ± 233.4 g and 32.6 ± 3.1 cm, respectively.
The weight of total viscera, visceral fat, fillets, fish head and
filleting waste products represented on average 10.5, 6.9, 33.7,
20.7, and 34.3 percent of body weight respectively (Table 1).
Variations among the three replicate tanks were low for all
traits (range 0–2%). Both indirect measures of MuscleLipid%
were significantly correlated to the direct biochemical mea-
surement (r = 0.73, p < 0.0001 for MuscleDry%; r = 0.82,
p < 0.0001 for TorryLipid). The regression parameters for the
prediction of MuscleLipid% by the two indirect measurements
were

MuscleLipid% = 1.475TorryLipid + 0.493 (R2 = 0.72)

MuscleLipid% = 0.776MuscleDry%− 13.515 (R2 = 0.53)

3.1 Heritability estimates

Heritability estimates for non standardized carcass pro-
cessing traits (BW, SL, Viscera, VisceFat, Fillet, Head, Fillet-
Waste) ranged between 0.36 ± 0.15 (Head) and 0.91 ± 0.27

(VisceFat). All estimates differed significantly (>1.65 SE)
from zero (Table 1).

Estimates of heritability for standardized traits also dif-
fered significantly from zero (Table 1). The highest heritabil-
ity estimate was obtained for Head% (0.87 ± 0.23) followed
by VisceFat% (0.68 ± 0.19) and Viscera% (0.48 ± 0.15). Es-
timates of h2 for Fillet% (0.25 ± 0.10), K (0.10 ± 0.05), and
FilletWaste% (0.18 ± 0.08) were lower but were significantly
greater than zero (Table 1).

Both indirect measures of MuscleLipid% gave significant
h2 estimates. Estimates (0.36 ± 0.14 for MuscleDry% versus
0.28±0.12 for TorryLipid) were very similar and did not differ
significantly (difference < 1.96 SE) from one another.

Estimates of the dam component of variance represented
on average 14.6% of the phenotypic variance and ranged be-
tween 0% (FilletWaste) and 29% (Head). The difference be-
tween estimates of the dam and sire components of variance
(in % of the phenotypic variance) ranged between 0.1% (K)
and 20.6% (TorryLipid) and averaged 11.1%. The estimate
of the sire component of variance was greater for BW, SL,
Fillet, Head, FilletWaste, MuscleDry% and TorryLipid and
lower for the remaining traits. Because estimates of the dam
(co)variance components were based on three dams only, they
are not detailed further.

3.2 Correlations among traits

All non standardized carcass processing traits were highly
correlated to body weight (phenotypic correlations 0.78 <
rp < 0.98, genetic correlations 0.95 < rg < 1.00), suggest-
ing that response to selection for those traits would essentially
parallel response to selection observed in body weight. Be-
cause selective breeding programs for sea bass would likely
include growth rate (e.g. body weight at a given age) as a pri-
mary selection criterion, we focused description of genetic and
phenotypic correlations on traits standardized to body weight
in order to evaluate potential for simultaneous improvement of
body weight and those quality traits.
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Table 2. Genetic (above diagonal) and phenotypic (below diagonal) correlations between body weight (BW), standardized carcass traits, and
measures of muscle lipid content. See text for detailed trait definitions.

BW Viscera% VisceFat% Fillet% Head% FilletWaste% K MuscleDry% TorryLipid
BW 0.83 ± 0.09 0.83 ± 0.08 0.47 ± 0.25 –0.83 ± 0.09 –0.82 ± 0.14 1.00* 0.37 ± 0.23 0.30 ± 0.25
Viscera% 0.26 1.00 ± 0.00 0.50 ± 0.22 –0.95 ± 0.04 –0.84 ± 0.13 0.80 ± 0.16 0.09 ± 0.26 –0.05 ± 0.28
VisceFat% 0.34 0.92 0.58 ± 0.21 –0.96 ± 0.03 –0.92* 0.87* 0.08 ± 0.26 –0.02 ± 0.27
Fillet% 0.17 –0.08 –0.04 –0.73 ± 0.15 –0.89 ± 0.08 0.82 ± 0.20 –0.15 ± 0.29 0.14 ± 0.27
Head% –0.41 –0.62 –0.65 –0.29 0.90 ± 0.1 –0.96 ± 0.16 0.14 ± 0.26 0.18 ± 0.26
FilletWaste% –0.17 –0.31 –0.30 –0.62 0.23 –1.00* –0.32* –0.54 ± 0.21
K 0.12 0.27 0.25 –0.19 –0.14 0.04 0.51 ± 0.26 0.59 ± 0.24
MuscleDry% 0.31 0.35 0.34 0.17 –0.40 –0.17 0.07 0.94 ± 0.04
TorryLipid 0.31 0.34 0.36 0.13 –0.41 –0.12 0.09 0.79

* Standard error could not be estimated during optimization of the bivariate model.

Viscera% and VisceFat% were highly correlated to each
other (rp = 0.92, rg = 1) and the two traits were positively
correlated to body weight (rp = 0.26−0.34, rg = 0.83,
Table 2). Phenotypic correlations between Fillet% and BW,
Viscera%, and VisceFat% were close to zero. Corresponding
genetic correlations however were positive (range 0.47–0.58)
and significantly greater than zero.

Head% was positively correlated to FilletWaste% (rp =
0.23, rg = 0.90) and the two traits were negatively correlated
to BW, Viscera%, VisceFat%, and Fillet% with genetic corre-
lations approaching –1 (Table 2).

Phenotypic correlations between K and other traits were
low (range –0.19–0.27). However, genetic correlations be-
tween K and BW, Viscera%, VisceFat%, and Fillet% were
close to 1 and those betweenK and Head% and FilletWaste%
approached –1.

Both phenotypic and genetic correlations between the two
indirect measures of MuscleLipid% were high (rp = 0.79;
rg = 0.94). Both traits were positively correlated (pheno-
typic correlations rp) with BW, Viscera%, VisceFat%, Fillet%,
and K and negatively correlated to Head% and FilletWaste%;
however corresponding genetic correlation estimates did not
differ significantly from zero except for the correlations be-
tween TorryLipid and K (0.59 ± 0.24), and TorryLipid and
FilletWaste% (−0.54 ± 0.21) (Table 2).

3.3 Effect of phenotypic sex

Females were significantly larger than males (BLUE of
body weight of 840.3± 68.5 and 627.8± 67.9 for females and
males respectively). The dimorphism in body weight (100 ×
[BLUE females – BLUE males]/BLUE males) was 33.8%.
The sexual dimorphism was significant for all non standard-
ized carcass processing traits and was similar in magnitude to
the dimorphism in body weight (range 29.6–37.9%).

The effect of sex was significant on Fillet%: fillet yield
in Females was lower than in Males (–2.4%, BLUE estimates
32.7 ± 0.4 in females and 33.5 ± 0.4 in males). Females also
tended to have greater condition coefficient (0.20±0.17 versus
−0.03±0.16), higher standardized head weight (21.0±0.4 ver-
sus 20.5±0.4,+2.4%) and lower MuscleLipid% (MuscleDry%:
28.8±0.7 versus 29.7±0.7, –3.0%; TorryLipid: 5.2 ± 0.7 ver-
sus 6.4±0.6, –18.8%). BLUE estimates for males and females

differed by less than one standard error for Viscera%, Visce-
Fat% and FilletWaste%.

4 Discussion

The objective of this work was to evaluate genetic effects
on a panel of carcass quality traits important for aquaculture
production. Estimates of additive genetic variance and heri-
tability were derived from the variance among paternal half
sibs in a mixture of 27 families raised mixed in the same tanks
(i.e. in a common environment) throughout the rearing cycle.

The estimate of heritability of body weight (0.63 ± 0.22)
was in the upper range of estimates reported in cultured fishes
(Saillant et al. 2006) and was significantly greater than zero in-
dicating that selection for increased body weight would be suc-
cessful as previously reported in sea bass (Saillant et al. 2006;
Dupont-Nivet et al. 2008). Non standardized carcass process-
ing traits (Viscera, VisceFat, Head, Fillet, FilletWaste) were
highly correlated to BW and showed similar heritability es-
timates, suggesting that response to selection in those traits
would essentially parallel response observed on body weight.
We therefore focus further discussion below on carcass pro-
cessing traits standardized to body weight.

Heritability estimates were significantly greater than zero
for the standardized carcass processing traits Fillet%, Vis-
cera%, VisceFat%, Head%, and FilletWaste% indicating that
genetic progress towards desirable phenotypes could be
achieved via directional selection for each of these traits.
The estimate of heritability for Viscera% and VisceFat% were
0.48 ± 0.15 and 0.68 ± 0.19 respectively and were in the up-
per range of heritability values reported for these two traits in
other fishes, e.g. Viscera%: 0.20–0.38 in Cyprinus carpio (Ko-
cour et al. 2007); 0.33–0.45 in Oncorhynchus mykiss (Gjerde
and Schaeffer 1989; Kause et al. 2002); 0.33 in Oncorhynchus
kisutch (Neira et al. 2004), VisceFat%: 0.03–0.47 in various
salmonids (Gjedrem 2000; Kause et al. 2002; Neira et al.
2004); 0.42 in Ictalurus punctatus (Bosworth et al. 2007). The
relatively high estimated heritability values suggest that rapid
reduction of the proportion of viscera (i.e. increase in gutted
yield), and reduction of percent visceral fat could be achieved
via directional selection. In addition, both genetic and phe-
notypic correlations between Viscera% and VisceFat% were
close to one, indicating that higher Viscera% was essentially
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due to greater amount of fat deposition in the viscera. A high
correlation between the two traits was also reported in channel
catfish (Bosworth et al. 2007) and rainbow trout (Kause et al.
2007a) and is likely due, for a large part, to occurrence of very
large amounts of visceral fat in farmed sea bass (6.9% of the
overall body weight, 66% of the overall viscera weight in our
study). The positive correlation between Viscera% and BW,
and VisceFat% and BW also suggests that Viscera% and Visce-
Fat% would increase relatively rapidly following selection for
fast growth rate (i.e. for a greater BW at the age of sampling)
leading to decreased gutted yield. Similar observations were
made in salmonids (Kause et al. 2007b; Powell et al. 2008).
An increase in VisceFat%, in addition to contributing to de-
creasing gutted yield, may also impact negatively acceptance
of farmed sea bass by consumers if sold as whole fish.

The estimate of heritability for Fillet% was 0.25 ± 0.10
and was in the range of estimates reported in other species in-
cluding Oreochromis niloticus (0.12, Rutten et al. 2005), C.
carpio (0.28, Kocour et al. 2007), or O. mykiss (0.33, Kause
et al. 2002). The moderate h2 value for Fillet% suggests that
response to selection for increased fillet yield would be slow, a
prediction that is consistent with observations reported during
studies on pedigreed farmed populations of salmonids (Kause
et al. 2007a; Powell et al. 2008). However, genetic and pheno-
typic correlations between Fillet% and BW were positive in-
dicating that selection for increased BW would not lead to an
unfavorable response in Fillet% but rather may lead to a slight
increase in this trait.

The estimate of heritability for Head% was high (0.87 ±
0.23) and indicates occurrence of significant genetic varia-
tion for the relative size of fish head. Estimates of heritabil-
ity for this trait in other species are generally significantly
greater than zero and range from moderate (0.15 in O. niloti-
cus, Rutten et al. 2005) to high (e.g. 0.52 for h2 of relative head
length in C. carpio, Kocour et al. 2007). Head% was strongly
negatively correlated to BW and the carcass processing traits
discussed above suggesting that selection for increased body
weight would lead to a rapid decrease of the relative size of fish
head together with an increase of viscera and fillet yields. Her-
itability of the relative weight of the remaining carcass waste
product (FilletWaste%) differed significantly from zero but
was moderate (0.18 ± 0.08). However FilletWaste% was pos-
itively correlated to Head% (genetic correlation 0.90 ± 0.10)
and negatively correlated to body weight, Fillet%, Viscera%
and VisceFat%. These correlation estimates suggest that se-
lection for increased body weight may lead to a reduction
of Head% and FilletWaste%; reduction of the contribution of
these two carcass waste products to the overall carcass weight
may in turn contribute to the overall expected increase in fillet
yield discussed above. The negative correlation between Fil-
letWaste% and Fillet% likely reflects in part easier filleting of
larger fish leading to lower filleting waste products for those
fish. However, the occurrence of a significant genetic correla-
tion between Head% and Fillet% also suggests that confor-
mation traits contribute to increasing fillet yield. Identifica-
tion of such conformation traits would be useful in sea bass as
they would allow indirect, non lethal evaluation of genetic val-
ues for fillet yield (see Rutten et al. 2004). Fish conformation
was also evaluated using the condition coefficient (K) in our

study. Estimates of genetic correlations between K and BW,
Viscera, VisceFat% and Fillet% were close to 1 while corre-
lations between K and Head% or FilletWaste% were close to
–1 suggesting that condition may be used as a (non invasive)
predictor of genetic values for these carcass quality traits. The
estimate of h2 for K was however low (0.10 ± 0.05), predict-
ing a slow response to selection and likely reflecting the fact
that K is a relatively poor indicator of body shape that poten-
tially integrates the effects of several variables including skele-
tal deformities which are frequently reported in cultured sea
bass (Chatain 1994b). Further assessment of genetic variation
in conformation and skeletal deformities, using more reliable
descriptors, and correlations of these characters with carcass
processing traits is warranted. We note that our standardiza-
tion of the weight of body compartments was calculated as a
simple ratio to BW. Issues associated with selective breeding
for ratio traits were discussed by Gjerde and Schaeffer (1989)
and Rutten et al. (2005) and include potentially low and er-
ratic response to selection. This potential problem may be in
part mitigated by improving trait standardization to BW (e.g.
by including BW as a covariate in analysis models and apply-
ing an allometric transformation). The efficiency of such ap-
proaches in sea bass may be evaluated in future studies when
larger datasets will become available.

MuscleDry% and TorryLipid both were highly correlated
to direct measurement of MuscleLipid% suggesting that both
traits could be used as indirect selection criteria in a breeding
program aiming at lowering MuscleLipid% in sea bass. The
quality of the prediction of MuscleLipid% was however greater
with TorryLipid as indicated by regression analysis suggesting
increased efficiency in the evaluation of phenotypic and ge-
netic values. Overall, use of TorryLipid seems therefore the
most cost effective approach for practical field genetic eval-
uation given that this method is non lethal and provides an
instantaneous measure of MuscleLipid%, while invasive and
likely lethal sampling of muscle tissue coupled with significant
laboratory work are needed to estimate MuscleDry%. The her-
itability estimates for TorryLipid and MuscleDry% were inter-
mediate and differed significantly from zero (h2 = 0.28 ± 0.12
for TorryLipid, 0.36 ± 0.14 for MuscleDry%) indicating that
both traits and MuscleLipid% could be improved via direc-
tional selection. Significant heritability of MuscleLipid% is in
accordance with observations in other species, e.g. 0.25–0.72
in O. mykiss (Quillet et al. 2005; Tobin et al. 2006); 0.17–0.26
in O. kisutch (Neira et al. 2004); 0.58 in C. carpio (Kocour
et al. 2007). Phenotypic and genetic correlations between Tor-
ryLipid or MuscleDry% and other carcass quality traits were
low and the estimates of genetic correlations did not differ
significantly from zero except for a significant negative cor-
relation between TorryLipid and FilletWaste% and a signifi-
cant positive correlation between TorryLipid and K; the lat-
ter two genetic correlations were intermediate in magnitude
(−0.54 ± 0.21 and 0.59 ± 0.24 respectively). Altogether these
results indicate that selection for increased body weight would
not impact negatively MuscleLipid% and that simultaneous
improvement of the latter trait and other carcass processing
traits in a multi-trait selection approach would require sepa-
rate genetic evaluation of breeders for MuscleLipid%. In addi-
tion, we observed a weak correlation between MuscleLipid%
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and VisceFat% (rp between 0.34–0.36, rg between 0.02–0.08).
VisceFat% shows a strong positive correlation to BW as dis-
cussed above that was not found for MuscleLipid%. These re-
sults highlight that VisceFat% and MuscleLipid% are different
lipid traits that would both need to be accounted for in a breed-
ing program in order to control lipid deposition in selected
strains. Similar findings were recently reported in O. mykiss
by Tobin et al. (2006) and Kause et al. (2007b).

Design of optimal selection strategies in order to improve
simultaneously multiple carcass quality traits in sea bass will
require accurate estimates of genetic parameter (heritability
and genetic correlations) in order to define efficient selection
indices. Our estimates are based on a relatively limited number
of families (27 families and 9 sires) leading to a low precision
as indicated by the relatively large standard errors obtained;
further study using a more robust experimental design is war-
ranted and in progress. We also note that our results suggest
that the relative weight of the various body parts examined
during this work may evolve rapidly as responses to direct
selection on these traits, or simply as the result of correlated
responses to selection for fast growth rate. Potential conse-
quences of these modifications (e.g. reduction of gutted yield
and fish head size) on physiological integrity of selected fish
will require further evaluation.

Finally the effect of phenotypic sex on body size was sig-
nificant as previously documented in sea bass (Carillo et al.
1993; Saillant et al. 2001b; Saillant et al. 2003). The sexual
dimorphism in weight was 33.8% and translated in a sim-
ilar (29.6–37.9%) relative advantage for females in all non
standardized carcass processing traits. Females also had a
lower fillet yield as reported previously in sea bass (Peruzzi
et al. 2004) and tended to exhibit greater condition coefficient,
greater relative weight of the head, and lower MuscleLipid%.
Greater condition coefficient and relative size of the head sug-
gest occurrence of differences in conformation between sexes
as previously reported in sea bass (Barnabé 1976; Peruzzi et al.
2004); differences in conformation between sexes might thus
be involved in the lower fillet yield reported for females. Lower
MuscleLipid% in females was also reported previously in sea
bass (Saillant et al. 2001) and would be a favorable response
to breeding monosex female populations
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