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Abstract

Background: The recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for
population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans
for adaptive differentiation, has emerged.

Methodology/Principal Findings: The purpose of this study is to develop an efficient model-based approach to perform
Bayesian exploratory analyses for adaptive differentiation in very large SNP data sets. The basic idea is to start with a very
simple model for neutral loci that is easy to implement under a Bayesian framework and to identify selected loci as outliers
via Posterior Predictive P-values (PPP-values). Applications of this strategy are considered using two different statistical
models. The first one was initially interpreted in the context of populations evolving respectively under pure genetic drift
from a common ancestral population while the second one relies on populations under migration-drift equilibrium.
Robustness and power of the two resulting Bayesian model-based approaches to detect SNP under selection are further
evaluated through extensive simulations. An application to a cattle data set is also provided.

Conclusions/Significance: The procedure described turns out to be much faster than former Bayesian approaches and also
reasonably efficient especially to detect loci under positive selection.
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Introduction

The recent advent of high-throughput Single Nucleotide

Polymorphism (SNP) genotyping technologies has opened new

avenues of research for population genetics. In particular, a growing

interest in the identification of footprints of selection, based on

genome scans for adaptive differentiation, has emerged. Indeed,

such approaches early proposed in the population genetics literature

[1–5], look particularly relevant when studying populations

belonging to a same species but adapted to different environmental

conditions. However, their application to whole genome scan data

mainly relied on the analysis of simple descriptive summary

statistics, generally related to standard estimators of marker-specific

FST, used to investigate the variability of allele frequencies at

different loci across and within populations. Markers affected by

selection are then expected to display an unexpectedly high or low

value relative to the null distribution of FST for markers not under

selection. This null distribution typically depends on the (usually

unknown) demographic history of the populations surveyed and two

main types of strategies have been reported to estimate it, using

either i) data simulated under demographic models [6] which are

generally simple and restrictive or ii) directly from the observed data

under the assumption that most of the analyzed markers are neutral

[7–9]. This latter empirical approach has become very popular

because it is easy and fast to implement. However, its robustness and

its power are difficult, if not impossible, to evaluate.

Alternatively, using simple demographic models, likelihood-based

approaches allowing a full use of the information contained in the

data sets have also been developed to distinguish, among the

evolutionary forces shaping differences in allele frequency, those

pertaining to population-specific factors (e.g. migration or drift) from

those due to locus-specific factors (such as selection). Hence, relying

on an infinite Wright island model with drift and migration at

equilibrium, Beaumont and Balding [10] proposed a Bayesian

modeling of allele frequencies involving both a ‘‘locus’’ and a

‘‘population’’ effects on genetic differentiation. Using this model, the

efficiency to detect non-neutral loci has recently been further

investigated through model choice strategies via Reversible Jump

Markov Chain Monte Carlo (RJ-MCMC) algorithms [11], or by

introducing locus-specific selection variables [12,13]. Although the

application of the latter approach to a large data set comprising

36,320 SNPs genotyped on 9 West African cattle populations

illustrated its feasibility [12], the estimation of the posterior

distributions for the parameters of interest remains computationally

intensive due to model complexity and to no parallelizable Markov

Chain Monte Carlo (MCMC) algorithms. Similarly and more

recently, Guo et al. [14] investigated Bayesian hierarchical models to

estimate locus-specific effects on FST, statistical outliers being detected

based on the Kullback-Leibler divergence measure between the

posterior distributions of locus-specific effects and the common FST.

The purpose of this study is to develop an efficient likelihood-

based approach to perform Bayesian exploratory analyses for
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adaptive differentiation for very large SNP data sets. The basic

idea is to start from a very simple model for neutral loci that will be

easy to implement under a Bayesian framework and to identify

selected loci as outliers via posterior predictive P-values (PPP-

values) [15,16]. We investigate two different statistical models: i) a

model interpreted in the context of populations evolving under

pure genetic drift from a common ancestral population [17] and ii)

a model interpreted in the context of populations under migration-

drift equilibrium [10,18]. Robustness and power of both resulting

classifiers are further evaluated and compared to a previous well

described classifier [10–13] through extensive simulations and an

application to the cattle data set mentioned previously.

Methods

The models
Let xij be the observed reference allele (defined arbitrarily for

instance by randomly choosing it as the ancestral or derived allele)

count in population j (1#j#J) at the (bi-allelic) SNP i (1#i#I). The

conditional distribution of xij given the true allele frequency aij is

assumed to be binomial with parameters nij (twice the number of

genotyped individuals in population j at locus i) and aij:

xij Daij ,nij*idB nij ,aij

� �
ð1Þ

Note that 1) implicitly assumes that populations are in Hardy-

Weinberg Equilibrium (HWE) or equivalently their respective

inbreeding coefficients (FIS) are null. Non null FIS could be taken

into account in the model by considering instead that the three

possible genotypes are drawn from a multinomial distribution with

parameters corresponding to the number of individuals genotyped

and genotype probabilities [19]. Nevertheless, for co-dominant

markers such as SNPs and given the usual range of FIS values, the

binomial distribution is fairly reasonable [12,19].

In the first model considered (denoted model 1 hereafter) and

according to Nicholson et al. [17], the second step assumes that the

aij are sampled from a truncated Gaussian distribution on the (0,1)

segment

aij Dcj ,pi*iid NT pi,cjpi 1{pið Þ
� �

ð2Þ

plus additional probability masses at 0 and 1.

This distribution was proposed by Nicholson et al. [17] in the

context of a pure-drift demographic model. In (2), the parameter

pi stands for the allele frequency in the population ancestral to the

J surveyed populations (assuming a star shaped phylogeny) and cj is

a measure of differentiation of population j. The probability

masses at 0 and 1 aim at taking into account possible allele fixation

due to genetic drift within a population. In Nicholson et al.’s

model, these masses are conveniently defined as the lower (below

0) and upper (larger than 1) tail areas under the untruncated form

of the Gaussian in (2) i.e.

Pr aij~0
� �

~

ð0

{?
s{1

ij w s{1
ij t{pið Þ

h i
dt, ð3Þ

Pr aij~1
� �

~

ðz?

1

s{1
ij w s{1

ij t{pið Þ
h i

dt, ð4Þ

where s2
ij~cjpi 1{pið Þ and w :ð Þ is the density of the N 0,1ð Þ

standard Gaussian.

The last level of the hierarchy corresponds to the distributions of

pi and cj . These two hyper-parameters are classically assumed to

be sampled from Beta distributions:

pi*iid Beta ap,bpð Þ ð5Þ

cj*iid Beta ac,bcð Þ: ð6Þ

In practice, the model was found to be robust to the parameter

values of these Beta distributions [17]. We thus chose ap = bp = 0.7

and ac = bc = 1, leading to uniform prior distributions on 0,1ð Þ
for cj.

Note that the introduction of the truncation (equations 2, 3 and

4) leads to some difficulty in the implementation of a MCMC

algorithm in particular when defining the proposal distribution for

the aij. As suggested by G. Nicholson (personal communication)

model 1 was considered as equivalent to the following one in

which the first two levels are modified as

xij Daij ,nij*idB nij , max 0, min 1,aij

� �� �� �
ð7Þ

aij Dcj ,pi*idN pi,cjpi 1{pið Þ
� �

: ð8Þ

In fact, the hierarchical model in (7) and (8) can be implemented

equivalently by using a proxy variable bij distributed as a regular

Gaussian distribution bij Dcj ,pi*idN pi,cjpi 1{pið Þ
� �

with the

relationship aij~ max 0, min 1,bij

� �� �
.

The second model considered (model 2 hereafter) is similar to

model 1 except that it assumes the aij are sampled from a Beta

distribution:

aij Dcj ,pi*idBeta tjpi,tj 1{pið Þ
� �

ð9Þ

where tj~ 1{cj

� �
=cj .

Note that model 2 does not consider the possibility of allele

fixation since the Beta probability density function is either null or

not defined in 0 and 1. Hence, alleles fixed in some (or all)

populations are interpreted as being the result of a binomial

sampling with a probability parameter close (but not equal) to 0 or

1. Demographic interpretation of this distribution on allele

frequencies relies on an infinite Wright island model involving

drift and migration at its equilibrium state [10,18]. Under both

model 1 (if we neglect truncature) and model 2, cj represents a scale

parameter of the allele frequency variance and might thus be

interpreted as a population specific FST [17,18].

For each model, we implemented a Metropolis-Hastings within

Gibbs sampler to estimate the posterior distributions of the

parameters of interest (Text S1). Program executables are

available upon request from the first author. To check each

program, we initially analyzed data sets simulated under the

corresponding inference model (Figure S1). In addition, several

data sets (including a real one) were also analyzed using a mirror

version of the algorithms programmed in BUGS code and

implemented in the OpenBUGS software [20]. For each model,

results obtained with the two implementations were found in

almost perfect agreement (data not shown).

Decision criteria
Under the assumption of exchangeability among SNPs (i.e.

neutrality), cj parameters are expected to be the same over SNPs
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within each population. Therefore, non neutral loci might be

viewed as outliers with respect to the null model. One simple way

to identify such loci thus consists of evaluating a local assessment of

the null model (either model 1 or model 2) at each locus using

Posterior Predictive Check tools. This can be easily accomplished

by computing PPP-values which are the Bayesian counterparts of

the frequentist P-values [15].

The PPP value for SNP i over the J populations is defined as

PPPi~Pr Ti f
rep
i ,hi

� �
§Ti fobs

i ,hi

� �
Dfobs

� �
, ð10Þ

where f
(:)
i ~ fij

� �
1ƒjƒJ

with fij~xij=nij is the (reference) allele

frequency of SNP i in population j and Ti f
(:)
i ,h

� �
is a discrepancy

criterion applied to replicated (rep) and observed (obs) data

respectively given the values of model parameters hi~ hij

� �
1ƒjƒJ

with hij~ pi,cj

� �
. Notice that the probability that Ti f

(rep)
i ,hi

� �
§

Ti f
(obs)
i ,hi

� �
takes into account both variability in the replicates

and uncertainty in the unknown parameters by integrating out

with respect to these two sources of the variation via the

distributions of f
(rep)
i Dhi and of hi Dfobs given all data fobs observed.

A first issue is to choose the discrepancy criterion which,

contrarily to usual statistics, depends generally both on data and

parameters. Here, we relied on a Chi-square type criterion ([21],

formula 6.4, page 175)

Tij~ fij{E fij Dhij

� �� �2
=Var fij Dhij

� �
ð11Þ

with Ti~
PJ

j~1 Tij .

It can be shown (Text S2) that for both models: E fij Dhij

� �
~pi

and Var fij Dhij

� �
&pi 1{pið Þ 1z nij{1

� �
cj

� �
=nij . The null hypoth-

esis being primarily based on the exchangeability assumptions

between loci made at the second level of the hierarchy (formulae 2

and 9), we used here the moments of the marginal distribution of

the fij ’s as our measure of discrepancy between the data and the

model. Letting the indicator variable Ii be equal to 1 if

T
(rep)
i §T

(obs)
i and 0 otherwise, then the corresponding PPPi is

simply the posterior expectations of Ii and can be easily computed

from the Gibbs sampling outputs. The replicated data f
(rep)

ij are

generated at each iteration from the predictive distribution of fij

given each current values of hij .

Extreme probabilities at a given locus will indicate that the data

at this locus are inconsistent with the model. Actually, small values

correspond to positive selection and large values to balancing

selection.

Analyses under the Beaumont and Balding model
Under this model, referred hereafter as model 3, allele count

data are modeled according to the reparameterized extension,

recently proposed by Riebler et al. [13], of the Bayesian

hierarchical model developed by Beaumont and Balding [10].

Model 3 is actually identical in its first levels to model 2 described

above. Nevertheless, the differentiation parameter (cij) is consid-

ered as both locus and population specific. In that respect, model 2

might be viewed as model 3 under the null hypothesis of neutrality

(locus exchangeability). Hence, model 3 assumes the aij are

sampled from a Beta distribution:

aij Dcij ,pi*idBeta tijpi,tij 1{pið Þ
� �

where tij~ 1{cij

� �
=cij :

The tij’s are subsequently modeled via a linear model on the

logistic transformation of the cij. Since cij/(12cij) = 1/tij, we can

write this model in terms of:

gij~ log
cij

1{cij

� 	
~{ log tij

� �
~aizbjzcij

where ai is a locus effect, bj is a population effect and cij an error

term corresponding to a departure of the logit of cij from the additive

decomposition. Following the Bayesian hierarchical structure of

this model, additional levels of the model 3 are implemented

as follows [10,12,13]: gij Dai,bj ,s
2
c,iidN aizbj ,s

2
c~0:25

� �
with

bj Dm,s2
b,iidN m~{2:0,s2

b~3:24
� �

and ai Ds2
a,iidN 0,s2

a~1
� �

. Re-

cently, Riebler et al. [13] introduced in the above logistic model an

auxiliary indicator variable di attached to each locus specifying

whether it can be regarded as selected (di = 1) or neutral (di = 0).

Under this reparameterized model, the previous parameters ai are

written as: ai = diai
* where a�i Ds

2
a�,iidN 0,s2

a�
� �

. The model further

assumes a Bernoulli distribution for the indicator di variable with

parameter P: di|P,Bin(1,P). P is itself assumed to be Beta

distributed: P,Beta(0.2,1.8) [12,13]. Hence, by construction

s2
a�~10.

The posterior distributions of the different parameters of interest

were estimated via MCMC procedures as previously described

[13] from 2,000 post burn-in samples (with a burn-in period of

2,500 iterations) and a thinning interval of k = 25. The decision

rule to identify loci subjected to selection was based on a Bayes

Factor (BF) derived at each locus from the posterior distribution of

the di [12]. To make interpretation of the BF easier, we expressed

it in deciban units (dB) ie dBi = 10log10(BFi) [12].

Simulations under neutrality
Four different demographic scenarios were investigated to

evaluate the distribution of the PPP-values for neutrally evolving

SNPs. In the first and second scenarios, allele count data were

simulated for L = 1,000 independent bi-allelic neutral SNPs in P

random mating populations evolving under a pure-drift Wright-

Fisher demographic model over T non overlapping discrete

generations from a common ancestral population. Under this

model we thus expect the population specific FST for a population

with a constant (diploid) size N since divergence to be equal to

FST~½1{(1{1=2N)�T&T=2N. The same forward simulator as

the one described below (Text S3) was used to generate data. In

the first scenario (PDN1), P = 10 populations each of a constant

(diploid) size N = 500 were simulated from a common ancestral

population with a star shaped phylogeny. To evaluate the effect of

population hierarchical structure, in the second scenario (PDN2),

P = 4 populations (N = 500) were initially (T = 0) simulated and two

of these split in two populations (of size N = 250) at T = 30 and

T = 50 generations respectively resulting in P = 5 populations for

30,T,50 and P = 6 populations for T.50. In the third scenario

(MDN), allele count data were also simulated for L = 1,000

independent bi-allelic neutral SNPs in P random mating

populations evolving under a Wright Fisher model with migration.

Because in this latter case (and for neutral loci), the expected

distribution of allele frequency at equilibrium corresponds to the

one described above for model 2, data were simply simulated

under the inference model 2.

Finally, to investigate a more complex (and realistic) demo-

graphic scenario, we simulated a data set under the calibrated

model featuring the best-fitting conditions for four human

populations (Europeans, Africans, Asians and African Americans)

Bayesian Scan
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using the cosi package [22]. The demographic history of the

populations corresponded to an Out-of-Africa model of an

ancestral population that splits into Africans and non-Africans,

and then into Europeans and Asians. African Americans are

modeled as a recent admixture of the African and European

populations. Fifty 250 kb long (autosomal) segments were

simulated using heterogeneous recombination rates (picked from

the empirical distribution of the deCODE genetic map [23])

leading to a total of 107,158 SNPs.

Simulations under pure-drift and migration-drift
demographic models with selection

Allele count data were simulated for L independent bi-allelic

SNPs in P random mating populations evolving over T discrete

non overlapping discrete generations from a common ancestral

population (star shaped phylogeny). We first considered a simple

pure-drift Wright-Fisher model (Text S3) in which the current

populations are derived from an ancestral one in complete

isolation (i.e. without migration between populations). We also

simulated data under a simple Wright Fisher model with migration

(Appendix III2) using a simplified version of previously described

algorithms [10,13]. In both models, selection was further

introduced in the model by attaching a selective coefficient si

(si~0 for a neutral locus) and a selection type (either positive or

balancing) to each SNP i.

In all the simulations we did not consider mutation. In addition,

SNP fixed for the same allele in all populations were discarded

from further analysis. This might somewhat mimic part of the

ascertainment bias expected in real data sets, since monomorphic

SNPs are not expected to be genotyped or analyzed [12].

Results

PPP-value distribution under the null hypothesis
Under the hypothesis of exchangeability of the SNP (i.e. SNP

neutrality), PPP-values for neutral loci are expected to be close to

0.5. However statistical noise introduces some dispersion around

this value and thus some thresholds are necessary to define

outliers. In addition, both models of differentiation could only be

related to very simple demographic models and thus departure

from the true demographic history might also affect the PPP-value

distribution. Thus, in order to evaluate the robustness of both PPP-

value classifiers based on the two alternative Bayesian hierarchical

models 1 and 2, we first investigated the PPP-values distribution

for data sets simulated under various neutral demographic

scenarios (see Materials and Methods).

The first scenario (PDN1) is a simple Wright-Fisher pure drift

model with 1,000 (neutral) SNPs segregating in 10 different

populations of constant size originating from a common ancestral

one T generations ago. As mentioned above, the statistical model 1

was proposed to deal with this latter kind of non-equilibrium

demographic scenarios [17,18]. Several values of T were considered

to evaluate the effect of the level of differentiation: from T = 10

(FST = 0.01) to T = 300 (FST = 0.3). As detailed in Table 1, both

statistical models resulted in these cases in average PPP-value close

to 0.5 although model 1 tended to give average values lower than

0.5 as the differentiation increased. Interestingly, the dispersion (as

measured by the standard deviation) decreases with differentiation.

Hence, under this demographic model, the probability of detecting

false positives SNPs (i.e. truly neutral SNPs with extreme PPP-

values) will decrease with the level of differentiation, model 1 being

less robust than model 2. For instance no SNP displayed a PPP-

value below 0.1 when T.80 (FST.0.08) for model 1 and when

T.40 with model 2 (FST.0.04). Similarly and for both models, no

SNPs displayed a PPP-value above 0.9 when T.40 (FST.0.04).

The lack of reliability of both models at low level of divergence

might be partly explained by a clear underestimation of population

specific FST at low level of divergence (FST,0.05) (Figure S2). This

tendency towards underestimation was not observed when

simulating data under either inference model 1 or 2 (Figure S1)

indicating an imperfect fit of low level of pure drift divergence. In

addition, we also noticed that for very high level of divergence

(FST.0.4), estimates were strongly upwardly biased, especially in the

case of model 1. Thus these two models didn’t appear relevant for

such high level of pure drift divergence as expected by the marked

difference (even for SNPs with ancestral reference allele frequency

close to 0.5) between the expected distribution of within population

allele frequency [24] and the distributions assumed in the models

(Figure S3).

Under such pure-drift divergence models, a strong (and implicit)

hypothesis which might often be violated concerns the star shaped

phylogeny relating the different populations. As an attempt to

evaluate consequences of departure from such simple phylogeny,

we thus analyzed data sets simulated under a pure-drift

demographic scenario with a more complex history (PDN2)

starting with 4 populations at T = 0, two of which giving rise to 2

populations at T = 30 and T = 50 generations respectively. This

resulted in an increase of PPP-values dispersion soon after the

population split (e.g. T = 35 and T = 55 in Table 1). This could be

directly related to previous observations since population splits

lead to a clear underestimation of population-specific FST for the

newly arisen populations (ĉcj tending to 0 at early time after the

split). Overall, although bias in the estimation of the ĉcj persisted,

the dispersion decreased as the number of generations (since the

split), thus rendering the PPP-value approach relatively robust.

In a third demographic scenario (MDN), we simulated 1,000

SNPs segregating in 10 populations under a migration-drift

equilibrium which corresponds to the inference model 2 (see

Methods). Although, no clear bias was observed in the estimation

of the ĉcj with both models (e.g. Figure S2), PPP-value dispersion

increased as the level of differentiation decreased. Nevertheless

and as expected, model 1 appeared less robust than model 2 at low

level of differentiation (FST,0.05). In addition, the departure of

the average PPP-values toward values lower than (the expected)

0.5 appeared more pronounced as the differentiation increased.

We finally explored with coalescent simulations a more realistic

scenario (COA) consisting in the calibrated Out-of-Africa model

featuring the best-fitting conditions for four human populations

(Europeans, Africans, Asians, and African Americans modelled as

a recent admixture of Africans and Europeans) [22]. Note that

because, 50 independent 250 kb segments were simulated, some

SNPs were not independent. Based on the complete resulting data

sets, three different population groups were analyzed (Table 1).

Results were overall consistent with those reported above for more

simple scenarios. Hence, for the EuroAfriAsia group, almost no

SNP displayed PPP-values below 0.2 or above 0.8. As expected

from previous observations on PDN2 simulated data sets,

introducing the African American recently admixed populations

lead to a higher dispersion of PPP-values (more pronounced for

the analysis of the EuroAfAmAfri group) together with a low

estimated ĉcAfAm for this population (ĉcAfAm,0.015 when analyzing

the four simulated populations and ĉcAfAm,0.001 when analyzing

the EuroAfAmAfri group). Nevertheless, only a small proportion

of the SNPs (,1%) displayed PPP-values lower than 0.1 or higher

than 0.9.

On the basis of these different simulations, the distribution of

PPP-values appears robust to various demographic scenarios

provided that the global estimated population differentiation
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(average) is not too small (as a rule of thumb FST.0.05). In

addition and as previously mentioned [12,17], the two models

considered in this study remain almost insensitive to the prior

distribution of the pi which might be (demographically) interpret-

ed as the allele frequency in the ancestral population (under a

pure-drift model) or in the gene pool (under a migration-drift

model at equilibrium). As a result, the models are expected to be

robust to the chosen SNP ascertainment scheme. Hence, for the

first three scenarios investigated above, the distribution of PPP-

values appeared almost unchanged when keeping all the SNPs in

the analysis, even those fixed in all populations (data not shown).

Similarly, results reported in Table 1 for a different SNP

ascertainment scheme applied on the COA simulations which

consisted in keeping only those SNPs segregating (MAF.0.01) in

at least two populations suggested that the influence of

ascertainment bias on the PPP-value distribution is small.

In order to evaluate to what extent selection causes an outlier

PPP-value for the underlying SNPs, we analyzed several simulated

data sets with some SNPs subjected both to balancing and positive

selection (see Materials and Methods) and three different selection

coefficients as representative of low (s = 0.02), moderate (s = 0.05)

and high (s = 0.10) selection intensity.

Analyzing data sets simulated under a pure drift
demographic model with selection

We first considered a pure-drift demographic scenario similar to

the PDN1 one described previously. We herein report results

obtained with a data set consisting of eight populations with a

constant haploid size of N = 500 deriving from a common

ancestral one and genotyped for 10,000 SNPs among which

8,500 were neutral (si = 0), 750 were subjected to positive selection

(250 with si = 0.02, 250 with si = 0.05 and 250 with si = 0.1) and

750 were subjected to balancing selection (250 with si = 0.02, 250

with si = 0.05 and 250 with si = 0.1). Five such data sets were

generated with T = 10, T = 25, T = 50, T = 75 and T = 100

generations after divergence. We thus expected (assuming

neutrality) for each population an FST (F̂F
j
ST~ĉcj ) equal to 0.0198,

0.0488, 0.0953, 0.139 and 0.181 respectively (see Material and

Methods). From moderate level of divergence (T/N.0.1), both

models lead to a clear and increasing overestimation of FST, the

bias being more pronounced with model 1 than model 2 (Figure

S4). Compared to data sets containing only neutral SNPs (see

above and Figure S2), it appears that this overestimation was

mostly related to the presence of SNPs subjected to (positive)

selection. Nevertheless, for moderate level of divergence (roughly

speaking when 0.05,FST,0.2) estimation of cj appeared to be

relatively robust to selection.

Interestingly, estimates of the ancestral reference allele frequen-

cy p̂pi (mean of the posterior distribution of pi) were remarkably

consistent with their corresponding simulated values for neutral

SNPs although precision decreased with increased level of

divergence (Figure S5). Indeed, the correlation between simulated

and estimated ancestral allele frequencies was always above 0.98

with both models, while the Root Relative Mean Square Error

(RRMSE) ranged from 3.25% (T = 10) to 10.7% (T = 100) with

model 1 and from 3.24% (T = 10) to 9.90% (T = 100) with model

2. However, these p̂pi estimates were biased for SNPs under

selection (Figure S5), the bias increasing with divergence and

intensity of selection. More precisely, the RRMSE ranged from

4.04% (T = 10 and s = 0.02) to 40.9% (T = 100 and s = 0.10) with

model 1 and from 4.04% to 39.5% with model 2 for SNPs under

balancing selection. Similarly, for SNPs subjected to positive

selection, the RRMSE ranged from 3.24% (T = 10 and s = 0.02) to

41.4% (T = 100 and s = 0.10) with model 1 and from 3.23% to

40.8% with model 2.

For these five simulated data sets the mean of the different PPP-

value distributions were always close to 0.5 (from 0.480 to 0.489

for model 1 results and from 0.501 to 0.528 for model 2 results)

while the standard deviation decreased with level of divergence

(from 0.235 when T = 10 to 0.106 when T = 100 for model 1

results and from 0.231 when T = 10 to 0.0958 when T = 100 for

model 2 results). As expected and shown in Figure 1 for two of

these simulated data sets (T = 10 and T = 100), the PPP-value

median (and mean) remained close to 0.5 for neutral SNPs while

tending to 0 (respectively 1) for SNPs subjected to positive

(respectively balancing) selection. Moreover, this trend was more

pronounced as the selective coefficient and differentiation

increased and for SNPs under positive selection. As a result, the

tails were more enriched in SNPs under selection (Table S1),

model 2 showing an increased power of discrimination compared

to model 1 (at least for SNPs under positive selection). For

instance, while 7.5% of the simulated SNPs were subjected to

positive selection, this proportion ranged from 39.2% (T = 10) to

73.6% (when T = 100) for the 250 SNPs with the lowest PPP-

values obtained with model 1 and from 40.4% (T = 10) to 100%

(T = 75 and T = 100) with model 2 (a vast majority of these SNPs

being those with high value of s). Discrimination based on PPP-

values appeared nevertheless far less efficient in identifying SNPs

under balancing selection (Table S1). Hence, while 7.5% of the

simulated SNPs were subjected to balancing selection, this

proportion ranged from 15.6% (T = 10) to 64.0% (when T = 75

and T = 100) for the 250 SNPs with the lowest PPP-values

obtained with model 1 and from 9.20% (T = 10) to 56.0%

(T = 100) with model 2.

Although we expected lower (resp. upper) tails to be enriched in

SNPs under positive (resp. balancing) selection, identifying outliers

on the observed PPP-value distribution makes it impossible, in

practice, to control for False Discovery Rate (FDR) or False

Negative Rate. We thus further investigated the power and

robustness of each model, based on the simulated data sets, by

computing FDR and recording the number of SNPs properly

identified as subjected to selection for different PPP-value

threshold (Table 2). For a given threshold the FDR but also the

power decreased as the number of simulated generations

increased, which was expected since this also resulted in

sharpening the overall PPP-value distribution due in particular

to an increase of the cj and thus the allele frequency variance.

Similarly, the power was always higher when considering SNPs

subjected to stronger selection (see above). Model 2 appeared far

more efficient than model 1 mainly because PPP-value estimates

were more extreme for SNPs under selection (e.g. Figures 2C and

2F). For instance, when T = 75 a threshold of 0.2 to detect SNPs

under positive selection resulted in a FDR equal to 0 while the

power was equal to respectively 13.6% when using model 1 and

68.4% when using model 2. The associated FDR for such a

threshold when T = 10 was close to 10% for both models (Table 1).

Finally, performing similar analyses on simulated data sets with a

lower number of populations (Tables 1 and 2) lead to only a slight

decrease in overall power.

Analyzing data sets simulated under a migration drift
demographic model with selection

We further evaluated both statistical models on data sets

simulated under a migration drift demographic model (see

Material and Methods). Note that assuming populations have

reached (migration-drift) equilibrium, model 2 is consistent with

such demographic scenarios (see Material and Methods). As in the
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previous section, we herein reported results obtained with data sets

consisting of eight populations with a constant haploid size of

N = 500 which, according to a Wright island demographic model

and during 250 generations, exchanged migrant alleles through a

common gene pool (Text S3). For each data set, 10,000 SNPs were

simulated among which 8,500 were neutral (si = 0), 750 were

subjected to positive selection (250 with si = 0.02, 250 with si = 0.05

and 250 with si = 0.1) and 750 were subjected to balancing

selection (250 with si = 0.02, 250 with si = 0.05 and 250 with

si = 0.1). The proportion of migrant alleles arriving and leaving

each population was further controlled by simulated population

specific FST values which, for simplicity, were set equal in each

Figure 1. Distribution of the PPP-values estimates obtained with model 1 and model 2 for two data sets (T = 10 and T = 100)
simulated under a pure-drift demographic scenario. Each data set consists of genotyping data on 8 populations for 10,000 SNPs: 8,500 neutral
SNPs (N), 36250 SNPs subjected to positive selection (P) of varying intensity (s = 0.02, s = 0.5 and s = 0.10) and 36250 = 750 SNPs subjected to
balancing selection (B) of varying intensity (s = 0.02, s = 0.5 and s = 0.10). Boxplots of the PPP-values as a function of the type and intensity of selection
are represented for data set simulated with T = 10 and analyzed with model 1 (A) and model 2 (B) and for data set simulated with T = 100 and analyzed
with model 1 (D) and model 2 (E). C) and F) PPP-values estimated with model 1 are plotted against those estimated with model 2 for the data set
simulated with T = 10 and T = 100 respectively. Neutral SNPs are plotted in grey while SNPs subjected to positive (respectively balancing) selection are
plotted in red (respectively blue). In addition, the simulated coefficients of selection are represented by a triangle (s = 0.02), a circle (s = 0.05) or a
square (s = 0.10).
doi:10.1371/journal.pone.0011913.g001
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population. Three data sets were generated with FST = 0.05,

FST = 0.10 and FST = 0.15.

In each case, the values of ĉcj obtained under model 1 and model

2 for each of the eight simulated populations were found very close

to the corresponding simulated FST: for data set simulated with

FST = 0.05, ĉcj ranged from 0.0437 (0.0442) to 0.0472 (0.0479)

under model 1 (model 2) analysis; with FST = 0.10, ĉcj ranged from

0.100 (0.0988) to 0.105 (0.103) under model 1 (model 2) analysis;

with FST = 0.15, ĉcj ranged from 0.151 (0.146) to 0.162 (0.151)

under model 1 (model 2) analysis. This suggested that estimation of

differentiation was more robust to selection than observed above

for the pure-drift demographic scenario. As shown in Figure S6, p̂pi

Figure 2. Distribution of the PPP-values estimates obtained with model 1 and model 2 for two data sets (FST = 0.05 and FST = 0.15)
simulated under a migration-drift demographic scenario. Each data set consists of genotyping data for 10,000 SNPs: 8,500 neutral SNPs (N),
36250 SNPs subjected to positive selection (P) of varying intensity (s = 0.02, s = 0.5 and s = 0.10) and 36250 = 750 SNPs subjected to balancing
selection (B) of varying intensity (s = 0.02, s = 0.5 and s = 0.10). Boxplots of the PPP-values as a function of the type and intensity of selection are
represented for data set simulated with T = 10 and analyzed with model 1 (A) and model 2 (B) and for data set simulated with T = 100 and analyzed
with model 1 (D) and model 2 (E). C) and F) PPP-values estimated with model 1 are plotted against those estimated with model 2 for the data set
simulated with T = 10 and T = 100 respectively. Neutral SNPs are plotted in grey while SNPs subjected to positive (respectively balancing) selection are
plotted in red (respectively blue). In addition, the simulated coefficients of selection are represented by a triangle (s = 0.02), a circle (s = 0.05) or a
square (s = 0.10).
doi:10.1371/journal.pone.0011913.g002
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(estimated of reference allele frequency in the gene pool) for

neutral SNPs were in good agreement with their corresponding

simulated value. Although these estimates remained less precise

than previously, they were not sensitive to the level of

differentiation since the RRMSE ranged from 16.3% (15.6%) to

16.7% (16.3%) under model 1 (model 2) analysis. As observed

previously, the bias was stronger for SNPs subjected to selection

but did also not seem dependent on the simulated FST. For

instance for SNPs subjected to strong positive selection (s = 0.10),

the RRMSE ranged from 54.8% (60.7%) to 59.9% (67.4%) under

model 1 (model 2) analysis. Note that in general, model 2 appeared

a little less robust to selection than model 1 when considering

estimation of pi.

Consequently, this simple migration drift demographic scenario

close to equilibrium appeared more favorable than the previous

one to identify SNPs subjected to selection based on the PPP-value

criterion (Figure 2). As previously, the mean of the PPP-values was

close to 0.5 for both models (from 0.453 to 0.502 with model 1 and

from 0.514 to 0.538 with model 2) while standard deviations were

lower and decreased with the level of differentiation (from 0.131 to

0.191 with model 1 and from 0.129 to 0.183 with model 2).

Likewise, the proportion of SNPs under selection in the tails of the

distribution was higher (Table S1). For instance, among the 250

SNPs with the lowest PPP-values, from 92.8% to 98.4% (with

model 1) and 100% (with model 2) were subjected to positive

selection, while among the 250 SNPs with the highest PPP-values

from 29.3% to 45.6% (with model 1) and from 27.3% to 42.6%

(with model 2) were under balancing selection. Compared to

previous simulation demographic scenarios, model 1 estimates of

the PPP-values for SNPs subjected to positive selection deviate to a

lesser extent from those estimated with model 2 (Figure 2).

As a consequence, for a given PPP-value threshold, power and

robustness to detect SNPs under selection were greatly improved

(Table 2). Hence, when looking for SNPs subjected to positive

selection, at the 0.2 threshold, FDR was very close to 0 for both

models while almost all the SNPs with s = 0.1 were detected. In

general, FDR tended to decrease with differentiation while model

2 performed better than model 1.

Comparisons with another Bayesian approach on
simulated and real data sets

To compare the power and robustness of our decision criterion

based on PPP-values to identify SNPs under selection with a

previously reported approach, we further analyzed the above

simulated data sets under the model initially proposed by

Beaumont and Balding [10]. As detailed in the Methods section,

this model relies on the estimation, through a logistic regression, of

both a ‘‘locus effect’’ and a ‘‘population effect’’ on genetic

differentiation. Based on an extension proposed by Riebler et al.

[13], we recently proposed to derive for each SNP a Bayes Factor

(BF) which provides a straightforward decision criterion to decide

whether the SNP is subjected to selection [12]. Indeed, in

agreement with the Jeffreys’ rule [25], we showed that a threshold

of 15 (respectively 10) on such BF (expressed in Deciban units)

appeared optimal to detect SNPs under positive (respectively

balancing) selection. This model and its extensions [10–13] might

thus be considered as the state of the art Bayesian approach to

identify SNPs under selection although it requires far more

computational efforts than for models considered in the present

study (see Discussion).

We first assessed the power of the three different classifiers

(based on PPP-values estimated under models 1 and 2 and BF

estimated under model 3) by generating receiver operating

characteristic (ROC) curves [26] which plot the power vs

(1-specificity) for a binary classification system whereby the cutoff

value is varied. Curves resulting from the analysis of nine different

simulated data sets are reported in Figure 3 for each of the three

classifiers and distinguishing SNPs subjected to positive (in red)

and balancing (in blue) selection (irrespectively of the intensities of

selection). As expected from previous observations, ROC curves

for SNPs subjected to positive selection were always better than

ROC curves for SNPs under balancing selection. Similarly, power

to detect SNPs subjected to selection under a pure-drift

demographic model increased with differentiation but remained

lower than under a migration-drift demographic model. Interest-

ingly, ROC curves of both PPP-value classifiers were generally

above ROC curves for the BF classifier while the PPP-value

classifier based on model 2 clearly outperformed the PPP-value

classifier based on model 1 for positive selection. Nevertheless, the

definition of an optimal threshold value for the PPP-value classifier

strongly depends on the level of differentiation (see above). Table 3

reports the comparisons of the power and robustness of the

analyses performed with model 2 and model 3. As a matter of

expedience we chose a PPP-value threshold of 0.2 (respectively

0.8) to declare SNPs as subjected to positive (respectively

balancing) selection and a threshold of 15 on BF was chosen

when analyzing data with model 3. At such thresholds, the FDR

were generally similar among the two different analyses except for

low level of differentiation (FST#0.05). In these cases FDR (and

thus power) was substantially higher for model 2 than for model 3.

Note that a great proportion of false positives originated from the

upper tail of the PPP-value distribution (see for instance results for

the MDM data sets simulated with FST = 0.05). At the thresholds

considered and for data sets simulated under migration-drift

equilibrium, the power to detect SNPs under positive selection

varied from 42.9% to 56.8% and was similar between the two

approaches. However, for data sets simulated under a pure-drift

demographic model, this power was always lower (from 0.3% to

40.9%). In addition, model 3 outperformed model 2 as the level of

differentiation increased. Yet, as illustrated in Figure 4A for the

PDM data set with T = 100 and J = 8, the PPP-value threshold of

0.2 is clearly too stringent. Hence, for this latter data set,

increasing the threshold to 0.3 improves the power from 24.3% to

41.2% (see Table 2), which is similar to the model 3 value (40.9%)

without affecting robustness. As expected from previous studies

[10–13], the power to detect SNPs under balancing selection was

small (always lower than 25%). However, model 2 performed

generally better than model 3 in particular for MDM data sets.

Finally, as shown in Table 3 and Figure 4, results were in good

agreement between the two models since a good relationship

appeared between estimated PPP-values and BF (the more

extreme PPP-value towards 0 or 1, the higher the BF). As an

example, in the MDM simulated data set with FST = 0.15,

respectively 338 and 328 SNPs were (correctly) identified as under

positive selection with analysis based on model 2 and model 3

(Table 3). Among these, 313 SNPs were shared by both

procedures.

Analysis of a cattle data set
We finally analyzed a data set consisting of 9 West-African cattle

populations genotyped for 36,320 SNPs we previously used to

perform of whole genome scan for adaptive divergence [12].

Overall, estimates of population specific differentiation were in

good agreement with those previously reported (Table S2)

especially, and as expected, when using model 2. Nevertheless,

for highly differentiated populations (FST.0.2), model 1 resulted in

higher values. The FST averaged across all populations ranged

from 0.141 to 0.160, depending on the model considered. In

Bayesian Scan
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addition, in our initial analysis [12] we also derived estimates for

SNP specific FST. Note that these latter were computed as the

median of the corresponding posterior distributions (thus leading,

when averaging across SNPs, to a lower global FST of 0.100).

We further studied the distribution of PPP-values estimated for

each SNPs. As with simulated data, the average PPP-value was

close to 0.5 with both models (0.480 with model 1 and 0.521 with

model 2) with an almost equal standard deviation (0.173 with

model 1 and 0.172 with model 2). When comparing these results

to those previously obtained (Figure 4C), an overall good

agreement was observed. Indeed, the higher the SNPs were

differentiated (plotted in blue in the Figure 4C) and the higher the

BF, the lower the estimated PPP-values. Conversely, the lower the

SNPs were differentiated (plotted in red in the Figure 4C) and the

higher the BF, the higher the estimated PPP-values. However,

although the estimates from the two models lead to qualitatively

similar results with a global correlation of 0.928 between them, the

dispersion was higher for those obtained with model 2 (from 0.008

Figure 3. ROC curves for nine simulated data sets obtained with the three different classifiers. Six PDM data sets (T = 10, 50 and 100
generations and J = 4 and 8 populations) and 3 MDM data sets (FST = 0.05, 0.1 and 0.15 and J = 8 populations) were analyzed. Two ROC curves per
analyzed data set were generated (in red for SNPs subjected to positive selection and in blue for SNPs subjected to balancing selection) for each of
the three classifiers compared: i) classifier based on BF estimated under model 3 (solid line), ii) classifier based on PPP-values estimated under model 2
(dashed line) and iii) classifier based on PPP-values estimated under model 1 (dotted line).
doi:10.1371/journal.pone.0011913.g003
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to 0.924) than model 1 (from 0.012 to 0.902). In particular, in the

tails of the distributions PPP-values were generally more extreme

with model 2 than model 1. This observation was actually in good

agreement with results obtained on simulated data sets (see above).

As a consequence, model 2 lead to a decision regarding SNP

selection status more in agreement with the one based on the BF

[12]. For instance, we initially identified 2,054 SNPs with a

BF.15 as candidates to be subjected to selection, among which

537 were most likely under balancing selection (FST,0.011) while

1,517 were most likely under positive selection (FST.0.28). For the

first set (537 SNPs), PPP-values ranged from 0.363 to 0.902 (0.775

on average) when considering model 1 results and from 0.339 to

0.924 (0.781 on average) with model 2. For the second set (1,517

SNPs), PPP-values ranged from 0.0120 to 0.604 (0.262 on average)

Figure 4. Plots of the PPP-values estimated with model 2 against the BF (in dB) computed with model 3. A) Results for the PDM data set
with T = 100 generations and J = 8 populations simulated under a pure-drift demographic model. B) Results for the MDM data set with FST = 0.1 and J = 8
populations simulated under a migration-drift demographic model. In A) and B) neutral (simulated) SNPs are plotted in grey while SNPs subjected to
positive (respectively balancing) selection are plotted in red (respectively blue). Depending on their underlying simulated coefficient of selection, plots
latter are represented by a triangle (s = 0.02), a circle (s = 0.05) or a square (s = 0.10). C) Results from the analysis of the data set consisting in 36,320 SNPs
genotyped on 9 West-African cattle populations [12]. SNP localized within the first (last) half of the SNP specific FST distribution, as previously estimated
[12], are plotted in blue (red), the color being darker for those within the first (last) quarter of this same distribution.
doi:10.1371/journal.pone.0011913.g004
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when considering model 1 results and from 0.008 to 0.407 (0.200

on average) with model 2.

Discussion

In this study, we implement a Bayesian model-based strategy to

scan for adaptive differentiation on large SNP data sets. The

rationale of such approaches consists of evaluating a local

adjustment of the null model to data at each locus by computing

PPP-values [15]. We then investigated two different models (model

1 and model 2), which could respectively be interpreted in the

context of pure-drift divergence [17] and an infinite Wright island

model involving drift and migration at its equilibrium state

[10,18]. An important feature of both models was the possibility to

derive population-specific differentiation estimates [18]. These

latter parameters are then expected to be constant over SNPs

within each population under the neutral hypothesis correspond-

ing to SNP exchangeability. Consequently, SNPs displaying either

high or low PPP-values (i.e. outliers) were interpreted as loci

possibly under selection. From a theoretical point of view, such

likelihood-based strategy permits full use of the data, relying

explicitly on a model rather than opting for the identification of

outliers based on an empirical or simulated distribution of

summary statistics [7–9]. Conversely, in our approach, the

integration over the posterior distribution of parameters, given

the complete data vector in the calculation of PPP-values, results in

a rather conservative procedure (double use of the data). However,

and as pointed out by Bayarri and Castellanos [27], a small (or

large) PPP-value ‘‘can safely be interpreted as incompatibility with

the null model’’. Nevertheless, compressing the data into summary

statistics and further replacing likelihood computation by data

simulations under an Approximated Bayesian Computation (ABC)

framework was recently proven efficient to identify loci subjected

to selection while allowing complex genetic model to be

considered [28].

Evaluation of both models on simulated data sets revealed that

they performed equally in estimating differentiation when

considering a migration-drift scenario while model 2 was

surprisingly more efficient under the pure-drift divergence

scenario. For the latter scenario, nevertheless, they together

resulted in underestimation of differentiation at low level of pure-

drift divergence (FST,0.05) while model 1 implementation

became fairly inaccurate (e.g. Figure S2A) for high level of

divergence (FST.0.2). Actually, although the Beta distribution

(with parameters depending on ancestral or gene pool allele

frequency and differentiation) does not consider the allele fixation,

this distribution provided a better fit to the one expected in the

pure-drift case [24] as depicted in Figure S5. Thus, even though

model 1 took into account the possibility of allele fixation by

introducing a truncated Gaussian distribution, it did not provide

any gain in estimation robustness.

As expected from previous studies [10–13], estimated PPP-

values allowed more accurate identification of SNPs under positive

rather than balancing selection. Moreover, the accuracy increased

with the intensity of selection. Importantly, the dispersion of PPP-

values was confirmed to be highly dependent on the level of

differentiation since this is directly related to the variance in allele

frequency. In particular, for the case of low level of pure-drift

divergence (FST,0.05) for which we observed an underestimation

of differentiation, this might contribute to an increased FDR.

More generally and from a desired practical point of view, this

made it difficult to propose standard thresholds on the distribution

of PPP-values to decide whether or not a SNP is under selection,

although more sophisticated approaches could have been

envisioned such as clustering techniques based on mixture models.

However, at this stage, we wanted to keep the decision rule as

simple as possible. Thus, as a matter of expedience, to detect SNP

candidates to be subjected to positive (balancing) selection, a

conservative threshold of 0.1 (0.9) might be recommended since in

most cases investigated through simulation it lead to a FDR close

to 0 (although it increases when differentiation decreases) and an

optimal power (which conversely decreases as differentiation

increases). When analyzing the two types of simulated data sets,

it clearly appeared that both models were less powerful when

dealing with completely isolated populations. However and more

strikingly, model 2 undoubtedly outperformed model 1 in

identifying outliers probably because it resulted in more extreme

PPP-value estimates for SNPs localized in either tail of the

distribution. This trend was confirmed when comparing results

with those based on the alternative and more complex modeling

represented by model 3 [10–13]. More generally, both approaches

were shown to have similar performances. This might be related to

the high similarity between the two underlying statistical models.

Note however that while the PPP-value is essentially a measure of

the departure from the null hypothesis (SNP neutrality), under the

approach based on model 3, an explicit modeling of the alternative

hypothesis is performed through the introduction of a SNP effect

in a logistic regression of the differentiation.

For real data sets, the SNP ascertainment process might also be

expected to affect robustness of the approaches. Hence, approach-

es to perform a separate modeling of the demographic and

ascertainment processes have recently been proposed [29].

However, as previously discussed [12] and suggested by our

simulations, the different models appeared rather robust to such a

bias. This might result from their insensitiveness to the prior

distribution on the pi. As a consequence, the main difficulties

might be more related to the simple assumptions on which

demographic scenarios relied. Except for some special cases (e.g.

artificial selection experiments based on the development of

divergent lines from a common founder population), assuming star

shaped phylogenies, as in a pure-drift model, remains highly

unrealistic and leads to an underestimation of the variance in allele

frequency when a hierarchical structure exists among the

populations studied [30]. Due to the dependency of PPP-values

on this crucial parameter, we might have expected a higher rate of

false positives in these situations. For instance, it was recently

shown that such population relationships greatly increased the rate

of false positives in tests of selection based on FST which use a null

distribution generated under a simple island model of differenti-

ation [31]. Nevertheless, simulations under more complex

scenarios suggested that the approach was relatively robust to

departure from simple demographic assumptions provided the

level of differentiation was not too low. Interestingly, hierarchical

structure among populations as introduced from recent admixture

or population splitting appeared as limiting cases. Indeed, we

observed a high underestimation of the population specific

differentiation parameter for recently admixed (or split) popula-

tions, leading to an increase of the PPP-values dispersion. Owing

to the flexibility of Bayesian hierarchical modeling, it might be

straightforward to include additional levels in models 1 and 2 to

incorporate prior information on relationships among the

populations surveyed. Alternatively, in the context of high

throughput genotyping data sets, results from different neighbor

SNPs might be empirically combined to identify regions in the

genome displaying an unexpectedly high proportion of outliers

[12]. Such regional information was overlooked in both our

models since we considered all SNPs as exchangeable. Introduc-

tion of a spatial structure among SNPs was recently investigated,
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to take Linkage Disequilibrium into account in a model extending

model 2 [14]. However, when considered on a whole genome

basis, such approaches might add significant computational

burden.

Finally, the model-based strategy presented in this study was

chiefly operational and this might be viewed as an efficient way to

perform a first exploratory analysis of large data sets. Hence

running the MCMC algorithm underlying model 1 for 250,000

iterations on a data set containing 10,000 SNPs genotyped on 10

populations needed approximately 2 hours on a PC equipped with

a 2.1 GHz processor. In contrast, the analysis of the cattle data set

with model 3 [10,12,13] took more than 40 hours (i.e. approxi-

mately 20 times slower).

Supporting Information

Text S1 Description of the MCMC algorithms.

Found at: doi:10.1371/journal.pone.0011913.s001 (0.09 MB

PDF)

Text S2 Derivation of E(fij|hij) and Var(fij|hij).

Found at: doi:10.1371/journal.pone.0011913.s002 (0.01 MB

PDF)

Text S3 Simulation study design.

Found at: doi:10.1371/journal.pone.0011913.s003 (0.03 MB

PDF)

Table S1 Composition of the tails of the PPP-values distribution.

Results for eight different data sets are reported, five of which were

simulated under a pure drift demographic model (PDM) with a

varying number T of simulated generations and three were

simulated under a migration drift model (MDM) with a varying

level of migration controlled by the simulated FST. For each

simulated data sets and analysis (either with model 1 or model 2),

the proportions of SNPs subjected to selection within the

considered tail of the distribution which belong to the different

classes of selection type (N = neutral, B = balancing or P = positive)

and selection coefficients (s = 0.02, s = 0.05 and s = 0.10) are

reported.

Found at: doi:10.1371/journal.pone.0011913.s004 (0.04 MB

XLS)

Table S2 Estimates of differentiation for the nine populations

from the cattle data set obtained with model 1, model 2 and the

alternative model used in the initial report [12].

Found at: doi:10.1371/journal.pone.0011913.s005 (0.01 MB

XLS)

Figure S1 95% equal tail Credible Interval for the differentia-

tion parameter c obtained after analyzing two data sets DS1 and

DS2 simulated respectively under inference model 1 and 2. The

two simulated data sets consist of 1,000 SNPs and 12 populations

with the following simulated value of c : c1 = c2 = 0.01,

c3 = c4 = 0.025, c5 = c6 = 0.05, c7 = c8 = 0.075, c9 = c10 = 0.1

and c11 = c12 = 0.15. A) Data set DS1 analyzed with model 1,

B) Data set DS1 analyzed with model 2, C) Data set DS2 analyzed

with model 2, D) Data set DS2 analyzed with model 2.

Found at: doi:10.1371/journal.pone.0011913.s006 (0.03 MB

PDF)

Figure S2 Estimates of c for 17 data sets simulated under a pure-

drift demographic model. Allele counts for 1,000 (neutral) SNPs

were simulated for 10 populations and for 23 different times

(measured in number of discrete generations) after divergence

(T = 10, T = 20, T = 30, T = 40, T = 50, T = 60, T = 70, T = 80,

T = 90, T = 100, T = 125, T = 150, T = 175, T = 200, T = 250,

T = 300, T = 400, T = 500, T = 600, T = 700, T = 800, T = 900

and T = 1000). The resulting data sets were analyzed using both

model 1 (A) and model 2 (B). Resulting estimates (mean of the

posterior distribution) are plotted against the corresponding

simulated time (the different number representing the population

label) and are connected by a line. The grey dashed line represents

the expected FST value (see Methods).

Found at: doi:10.1371/journal.pone.0011913.s007 (0.07 MB

PDF)

Figure S3 Allele frequency distribution within a population of

constant (haploid) effective size (Ne = 500) evolving during T

discrete generations (T = log(12c)/log(121/Ne) where c is a

measure a population differentiation) as a function of the initial

allele frequency (Pi). For each case investigated, a histogram of

1,000,000 simulated values is plotted together with the corre-

sponding densities from model 1 (truncated Gaussian in blue with

probability masses in 0 and 1) and model 2 (Beta distribution).

Note that an exact derivation of the corresponding distribution has

been derived using a forward-time diffusion approach [24].

Found at: doi:10.1371/journal.pone.0011913.s008 (0.32 MB

PDF)

Figure S4 Estimates of c for five data sets simulated under a

pure-drift demographic model. Allele counts for 10,000 SNPs

(8,500 neutral SNPs, 750 subjected to positive selection and 750 to

balancing selection) were simulated for 8 populations and for 5

different times (measured in number of discrete generations) after

divergence (T = 10, T = 25, T = 50, T = 75 and T = 100). The five

resulting data sets were analyzed using both model 1 (A) and

model 2 (B). Resulting estimates (mean of the posterior

distribution) are plotted against the corresponding simulated time

(the different number representing the population label) and are

connected by a line. The grey dashed line represents the expected

FST value (see Methods).

Found at: doi:10.1371/journal.pone.0011913.s009 (0.01 MB

PDF)

Figure S5 Robustness of the estimates (mean of the posterior

distribution) of the ancestral (reference) allele frequency pi. Two

data sets (T = 10 and T = 100) consisting in genotyping data for

10,000 SNPs (8,500 neutral SNPs, 750 subjected to positive

selection and 750 subjected to balancing selection) on 8

populations were analyzed with model 1 and model 2 (see text).

For each data set, three plots are shown: i) estimates obtained

under model 1 against (true) simulated values (A with T = 10 and

D with T = 100), ii) estimates obtained under model 2 against

(true) simulated values (B with T = 10 and E with T = 100) and iii)

estimates obtained under model 1 against estimates obtained

under model 2 (C with T = 10 and E with T = 100). Neutral SNPs

are plotted in grey while SNPs subjected to positive (respectively

balancing) selection are plotted in red (respectively blue). In

addition, the simulated coefficients of selection are represented by

a triangle (s = 0.02), a circle (s = 0.05) or a square (s = 0.10).

Found at: doi:10.1371/journal.pone.0011913.s010 (1.06 MB JPG)

Figure S6 Robustness of the estimates (mean of the posterior

distribution) of the (reference) allele frequency pi in the gene pool.

Two data sets (FST = 0.05 and FST = 0.15) consisting in

genotyping data for 10,000 SNPs (8,500 neutral SNPs, 750

subjected to positive selection and 750 subjected to balancing

selection) on 8 populations were analyzed with model 1 and model

2 (see text). For each data set, three plots are represented: i)

estimates obtained under model 1 against (true) simulated values

(A with FST = 0.05 and D with FST = 0.15), ii) estimates obtained

under model 2 against (true) simulated values (B with FST = 0.05

and E with FST = 0.15) and iii) estimates obtained under model 1
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against estimates obtained under model 2 (C with FST = 0.05 and

E with FST = 0.15). Neutral SNPs are plotted in grey while SNPs

subjected to positive (respectively balancing) selection are plotted

in red (respectively blue). In addition, the simulated coefficients of

selection are represented by a triangle (s = 0.02), a circle (s = 0.05)

or a square (s = 0.10).

Found at: doi:10.1371/journal.pone.0011913.s011 (1.51 MB JPG)
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