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Abstract
Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in
the world and an important model species for many research areas. Coupling great interest in this species
as a research model with the need for genetic improvement of aquaculture production efficiency traits
justifies the continued development of genomics research resources. Many quantitative trait loci (QTL)
have been identified for production and life-history traits in rainbow trout. A bacterial artificial
chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional
candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout
aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome
reference sequence for this species.

Results: The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-
color high-information content fingerprinting (HICF) method. The clones were assembled into physical
map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and
9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is
1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated
by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring
large contigs to the microsatellite-based genetic linkage map.

Conclusion: The production and validation of the first BAC physical map of the rainbow trout genome
is described in this paper. We are currently integrating this map with the NCCCWA genetic map using
more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more
than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable
detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional
candidate genes for economically important traits and the incorporation of MAS into rainbow trout
breeding programs.
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Background
Rainbow trout (Oncorhynchus mykiss) are the most-widely
cultivated cold freshwater fish in the world and are con-
sidered by many to be the "aquatic lab-rat". Interests in
the utilization of rainbow trout as a model species for
genome-related research activities focusing on carcino-
genesis, toxicology, comparative immunology, disease
ecology, physiology, transgenics, evolutionary genetics,
and nutrition have been well documented [1]. Coupling
great interest in this species as a research model with the
need for genetic improvement for aquaculture justifies the
continued development of genome resources facilitating
selective breeding.

Genome size estimates derived from molecular weight of
DNA per cell for rainbow trout and other salmonids vary
from 2.4 to 3.0 × 109 bp [2,3]. As with most salmonids,
rainbow trout experienced a recent genome duplication
event resulting in a semi-tetraploid state [4]. Our physical
mapping experience with BACs from the Swanson library
has demonstrated that duplicated loci can be detected by
DNA fingerprinting [5]. Additionally, BACs that represent
one of two duplicated loci were shown by fluorescent In-
situ hybridization (FISH) to distinctly hybridize to a spe-
cific chromosome pair [6]. Therefore, it is likely that the
vast majority of the duplicated loci contain enough
sequence variation to allow correct assembly of a physical
map using BAC DNA fingerprinting.

Current genomic resources available for rainbow trout
research include multiple bacterial artificial chromosome
(BAC) libraries [5,7]; doubled haploid (DH) clonal lines
[8-11]; genetic maps [3,12-15]; a large EST database
[16,17]; and DNA microarrays [18,19].

Seven rainbow trout BAC libraries were constructed to
date. Two libraries constructed in Japan [7] contain aver-
age insert sizes of 58 kb and 110 kb, and provide haploid
genome coverages of 6.7 fold and 5.3 fold, respectively.
However, they have not been arrayed in plates and library
screening tools are not available. One BAC library from
the Swanson male homozygous line and one from the
OSU female homozygous line were commercially con-
structed by Amplicon Express Inc. in 2002. Both libraries
were prepared from partial digestions with HindIII. The
OSU BAC library has 96,768 clones with an average insert
size of 110 kb (4.5× coverage). The Swanson BAC library
has 184,704 clones with an average insert size of 130 kb
(10× coverage). HindIII BAC DNA fingerprinting for local
physical mapping of 27 Type-I markers in the Swanson
library demonstrated the library's utility for identifying
duplicated loci and confirmed its 10× coverage [5]. Both
libraries have been used for genomic sequencing and
genetic mapping of loci of interest [20-27]. An additional
5× genome coverage Swanson DH YY male library

(92,160 clones) was constructed at the Children's Hospi-
tal Oakland Research Institute (CHORI-220; http://
bacpac.chori.org/library.php?id=405) in 2005 using
EcoRI partial digestion of genomic DNA with an esti-
mated average insert size of 159 kb. An additional two
new libraries were prepared by Amplicon Express in 2008.
The two new 5× genome coverage Swanson DH YY male
libraries (110,592 clones each) were prepared using
BamHI and EcoRI partial genomic digestion to comple-
ment the 10X HindIII Swanson library and have estimated
insert sizes of 140 kb. The four Swanson DH YY male
libraries described above were prepared using genomic
DNA from the same Swanson doubled-haploid clonal
line that is propagated and maintained at the lab of Gary
Thorgaard in Washington State University.

Two genetic maps with improved marker densities were
recently developed for rainbow trout by INRA [12] and
the NCCCWA [15]. The INRA map is based on a panel of
two DH gynogenetic lines. It has more than 900 microsat-
ellites over 31 linkage groups and a total length of 2,750
cM (average resolution of 3 cM). The NCCCWA map is
based on a panel of five families that represent the starting
genetic material of the NCCCWA selective breeding pro-
gram. It has 1,124 microsatellite loci over 29 linkage
groups and a total length of 2,927 cM (average resolution
of 2.6 cM).

The rainbow trout haploid karyotype is composed of 52
chromosome arms, but chromosome numbers can vary
among rainbow trout populations in concordance with
their native geographic distribution [28]. Therefore,
anchoring the genetic linkage groups to the physical chro-
mosome arms was a crucial task accomplished by Phillips
et al. [6] using BACs as FISH probes. The range of the hap-
loid chromosome number (N) is between 29 and 32 [28].
The karyotype of the Swanson DH line is composed of 2N
= 58 [29]. The offspring of "hybrids" between strains with
different chromosome number are viable and they can be
used for genetic mapping as two uni-armed (acrocentric)
chromosomes from the parent with 2N = 60 will align
with a di-armed (metacentric) chromosome from the par-
ent with 2N = 58. A comparative cytogenetic map of the
rainbow trout and Atlantic salmon using FISH with BACs
that harbor Type-I markers and microsatellites is being
developed in a coordinated effort [30]. This cytogenetic
map and the comparative genetic map of Danzmann et al.
[31] provide a frame-work for future high resolution
trout-salmon comparative genome maps.

Qualitative/quantitative trait loci (QTL) mapping experi-
ments in rainbow trout have been very successful because
of their high fecundity, external fertilization, and ease of
gamete handling and manipulation. Many QTL have been
identified for production and life-history traits including
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resistance to the parasite C. shasta [32], resistance to IHNV
[33,34] and to IPNV [35], Killer cell-like activity [36],
upper thermal tolerance [37,38], embryonic developmen-
tal rate [8,39,40], spawning time [41,42], confinement
stress response [43] and smoltification [44,45]. The avail-
ability of a BAC physical map integrated with the genetic
map will facilitate fine mapping of QTL, the selection of
positional candidate genes and the incorporation of
marker-assisted selection (MAS) into rainbow trout breed-
ing programs. A major shortcoming of QTL studies is that
they are limited to the variation present in a limited
number of families and typically do not detect loci with
small effect. This can be overcome by whole genome asso-
ciation studies and other approaches that capture effects
of most QTL that contribute to the population-wide vari-
ation in a trait such as genomic selection. Recently we
demonstrated the feasibility of low resolution LD associa-
tion studies in rainbow trout [46]. In the absence of whole
genome sequence assembly, the robust integrated physi-
cal and genetic map that we aim to construct will provide
better resolution than the current genetic maps for order-
ing of genetic markers and estimating physical distances
between markers, thus facilitating whole genome associa-
tion studies rainbow trout.

Several BAC-based physical maps were constructed in
recent years for economically important aquaculture spe-
cies including tilapia [47], Atlantic salmon [2] and catfish
[48,49]. Here we report the construction of the first phys-
ical map of the rainbow trout genome using a 10×
genome coverage BAC library derived from the Swanson
DH clonal line.

Results and Discussion
BAC Fingerprinting and contigs assembly
We used the 4-color High-Information-Content Finger-
printing (HICF) SNaPshot method of Luo et al. [50] to
fingerprint all the clones from the 10X HindIII BAC
library (184,704 clones) and 7,392 clones from the

CHORI-220 5X EcoRI library. After editing with FPMiner
software (BioinforSoft, Beaverton, OR) 82% BAC finger-
prints from the 10X library and 50% from the CHORI-220
library were assembled into physical contigs using FPC
software http://www.agcol.arizona.edu/software/fpc/
with a tolerance of 0.5 bp and an initial cutoff of 1 E-70
(1 × 10-70), followed by DQer and several rounds of end-
to-end merging and single-to-end merging at progres-
sively lower cutoff stringencies. The current version of the
map is composed of 154,439 clones of which 145,060 are
assembled into 4,173 contigs and 9,379 remained single-
tons (Table 1). The average number of BACs per contig is
34.76, and the distribution of the number of BACs per
contig is shown in Figure 1. The average number of finger-
printing fragments per BAC is 76.4, and the average insert
size for this library is 130 kb [5]. Therefore, each fragment
is estimated on average to represent 1.7 kb of genome
DNA. The total number of unique fingerprinting frag-
ments (consensus bands) in contigs is 1,185,157, which
corresponds to an estimated physical length of 2.0 Gb
(75% - 80% of the rainbow trout genome). The average
number of consensus bands (CB) per contig is 284, and
the estimated contig size is 482 kb. The number of contigs
in this assembly is similar to the first generation Atlantic
salmon physical map, which resulted in 4,354 contigs and
37,285 singletons with an average contig length of 590 kb
from fingerprinting of a 12.5X library [2]. The rainbow
trout physical map can be searched and viewed online via
WebFPC: http://www.genome.clemson.edu/activities/
projects/rainbowTrout

Validation of contigs
The physical map assembly was validated by: 1) compar-
ing contigs assembly to the probe hybridization results
and agarose gel fingerprinting contigs of Palti et al. [5];
and 2) anchoring large contigs to the microsatellite-based
genetic linkage map of Rexroad et al. [15]. In the first
approach we evaluated the contig assignments of 236
clones that were positive by probe hybridization to 27

Table 1: BAC fingerprinting and FPC assembly statistics

Number of clones fingerprinted 192,096 ~10.4× genome coverage
Used in FPC assembly 154,439 ~8.3× genome coverage
Average insert size (Kb) 130
Average number of fragments per clone 76.4
Estimated average fragment size (Kb) 1.7
Number of clones in contigs 145,060 ~7.8× genome coverage
Number of contigs 4,173
Average number of clones per contig 34.76
Average contig size in consensus bands 284
Estimated average contig size (Kb) 482
Number of Q contigs 811 19.4%
Number of Q clones 1,986 1.4%
Number of CB in contigs 1,185,157
Estimate total length in contigs (Kb) 2,000 70% - 80% genome size
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type I markers (Table 2). Most of the clones (189) that
were positive for a single probe and were also assembled
into a single contig by Palti et al. [5] also clustered inside
a single contig in this physical map, confirming the relia-
bility of this assembly. Only one marker (fabp7b) was truly
split into two contigs in the physical map where five
clones clustered in contig 2908 and four clustered in con-
tig 1658. The other 10 clones that did not cluster in the
major contig of clones positive to each marker did not
cluster with other positive clones either, likely represent-
ing the fraction of mis-assembled clones. An additional
33 clones (14%) that were positive to the markers of Palti
et al. failed our fingerprinting editing criteria and were
excluded from the current FPC assembly. Overall, the cur-
rent assembly of 93% of the clones was in agreement with
our previous work and only 10 clones (5%) were likely
mis-assembled.

In the second validation approach, 11 of the largest con-
tigs were anchored to the genetic linkage map using 25
microsatellite markers isolated from BAC end sequences
(BES) and reported here for the first time, and three mic-
rosatellites that were previously isolated from other clones

in the contigs (Tables 3 and 4). Two to four markers were
developed per contig from clones that were distal to each
other on the contig as illustrated in Figure 2. All of the 28
markers were placed on the rainbow trout genetic map by
two-point linkage analysis. Markers from 9 of the 11 con-
tigs displayed close genetic linkage of 0 cM - 10 cM. The
other two contigs (138 and 450) were likely mis-joined as
for each contig two of the three markers were closely
linked and the third marker was mapped to another link-
age group (Table 4). Those two were also the largest con-
tigs with 334 and 431 clones and estimated length of 3.7
Mb and 4.6 Mb, respectively. The ratio of physical to
genetic linkage distances varied among the contigs we
sampled, which is similar to other vertebrate genomes
[48,51]. We will be able to better investigate this relation-
ship in the rainbow trout genome when we will have a
comprehensive and robust integration between the phys-
ical and genetic maps. In terms of number of contigs, 9 of
11 (82%) are in agreement with the genetic map. In terms
of genome coverage in number of markers, 24 of 26
(92%) are in agreement between the physical and genetic
maps. This 8%-18% error rate is higher then the 5% esti-
mated for the catfish physical map of Quiniou et al. [48]

BAC clones distribution in contigsFigure 1
BAC clones distribution in contigs.
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or the 4% rate detected in the 3-color HICF physical map
of the maize genome [52]. However, the whole assembly
error rate for this trout physical map is likely lower than
the estimate of 18% or even 8% as this validation was
heavily skewed toward the largest contigs, and indeed the
two mis-joined contigs were also the largest contigs.

FPC identified 1,986 questionable (Q) clones in 811 con-
tigs in this physical map (Table 1). Q-clones are the result
of false overlaps between DNA fingerprinting patterns,
which can be caused by the presence of chimerical clones
in the BAC library, cross-contamination between neigh-
boring wells, large repetitive regions of the genome or
duplicated regions that are frequent in the trout genome.
The occurrence of Q-clones in this assembly (1.4%) is
lower than the 4%-11% reported for other HICF projects
[48,49,52]. However, the fraction of contigs with Q-
clones in this assembly (19.4%) is similar to the catfish
physical map assembly of Xu et al. [49]. The initial high
cutoff stringency and relatively deep genome coverage
that we used likely contributed to the lower fraction of Q-

clones in this assembly. The quality of this physical map
was validated, but it could still benefit from better compu-
tational tools for identifying Q-clones. Clearly, the assem-
bly of physical maps can be significantly improved by
identifying the specific Q-clones in each contig, which in
turn will enable evaluation of their location within the
contig and relationship to the neighboring clones. As a
proof of concept, the computational approach for
improving physical maps assembly that is currently being
developed by Frenkel et al. [53] was tested on the two
large mis-joined contigs that we identified in this assem-
bly and correctly identified the specific Q-clones causing
the mis-joining of the contigs and how they should be
split into smaller contigs that would also be in good agree-
ment with the genetic map (data not shown). Contig 260
that was also analyzed by this approach was found to be
an intact contig, which is also in agreement with our
results (Table 4). Taken together the results of this analysis
illustrate that better handling of Q-clones by the assembly
software can dramatically improve physical maps.

Table 2: Assembly of BACs positive to gene probes and the agarose HindIII fingerprinting of Palti et al. [5].

Gene Major Contig No. of Clones Other Contigsa Failedb

1. a1-mg-1 4410 5 1
2. CXC-R4 1145 8 1 (348) 1
3. DAB Singleton 1
4. fabp7b 2908 5 4 (1658), 1 (566) 2
5. GH2-1 228 10 2
6. GH2-2 560 4
7. GTPBP-Gi-1 2715 5 1
8. GTPBP-Gi-2c 4594 7 1 (247)
9. GTPBP-Gi-3c 4594 3 1
10. GTPBP-Gi-4 608 5
11. Hep-1 336 17 1 (9737) 4
12. Hep-2 12 7
13. HSZFP238-a 1304 16 2
14. HSZFP238-b 3300 2
15. ID1B 1492 16 2
16. ID1C-1 2759 3 2
17. Irp-1A-1 2251 9 2
18. Irp-1A-2 1106 7 1 (761) 3
19. MHCIa-1 3093 8 1 (450), 1 (1607), 1 (1937) 3
20. MHCIa-2 84 9 1 (1304) 1
21 MHCIa-3 959 8 1 (3816)
22. NPY-1 5683 4
23. NPY-2 3205 2
24. RP-S16-a 2361 5 2
25. RP-S16-b 1657 3
26. SCAR163 3249 9 1
27. TAP1 260 11 3

Total: 189 (93%) 14 (7%) 33 (14%)

a The contig numbers are in parenthesis.
b Clones that were not fingerprinted successfully and did not pass the editing step of the analysis.
c GTPBP-Gi-2 and GTPBP-Gi-3 appear tightly linked on contig 4594, but the respective positive BACs do not overlap. This may be caused by local 
tandem duplication of this locus.
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Table 3: Genetic linkage mapping of microsatellites isolated from BAC end sequences. 

Marker Clone Contig Chr. Forward/Reverse Primers GenBank

OMY4002 170E02 58 14 AGGTTATTTCCATTTCCCGC/GAGGAGTCCCAGAGGAAAGG GF100674
OMY4003 378C10 58 14 GACTTCTGCTCTGTCGGTCC/GACAGGTAGCCAAAACTCCG GF100675
OMY4005 116G20 260 2 TCATAAGTCATATGGTGACTATCATTT/GCAAATGCATTGACATCTCG GF100676
OMY4006 162L19 260 2 GATACACCCCTGCTGTTCGT/ACCCACCAAGCCACTCTCT GF100677
OMY4007 146D09 260 2 AACGCATAGGAGGGAGGATT/AAAATATTGTGGCCAGCAGC GF100678
OMY4008 198M04 84 18 ATGCTTTTGCAATTTCCTGG/ATGTTCATGCTGACCGACTG GF100698
OMY4009 227H04 791 22 CGCTGGAATGTTTTCATCTG/ATTTCACAAATGGCCAGGAG GF100679
OMY4010 383M11 930 11 TGATCATGGCACCCATACTG/TCACCCTGGTGGCCTACTAC GF100680
OMY4011 154C16 930 11 CAGTATGTCCTGTGAGGCCC/TCCACTTTAAGGGCATTTGG GF100681
OMY4012 194O09 100 27 AGCAAGCTCAATGAAGCACA/GAGCCCAGAGGTGAGATCAG GF100682
OMY4013 251I01 100 27 AGCGGACTGGGCTGTAATAA/ATGGACCAACTGAGCCTGAC GF100683
OMY4015 318K03 138 27 GTGGGCATTTTTGCTGACTT/CCGTTGATACATTTTGGCAG GF100684
OMY4017 300B08 138 1 TCATCTTCGACAGCATGGAG/GAAGGCCAAAGAAGCATGAA GF100685
OMY4018 207I23 138 1 CCTGTTTTGAAAATGGGACC/ACCAACCGCCATAGTAGCAG GF100686
OMY4020 377G20 168 10 TGTCCCTCAAAGTGCTACCC/CAGATGTGGGAACTTGAGCA GF100687
OMY4022 207O04 168 10 ACAAAGACCACAACGGCATT/TTGGCATTTACATATGTCCCC GF100688
OMY4023 241D02 336 3 ATCTCCAAGCCCTGAGGAAT/TTTTTGGTCCCCACAAGAAT GF100689
OMY4024 203O06 336 3 GAGCCAGTAATTCATTCGCC/GCAGGACAATCGTTTTAGGG GF100690
OMY4025 278E22 336 3 ATGACCCTGACGGGATGTTA/AGCTCCACACACAACACAGC GF100691
OMY4026 178K11 450 22 GTCGCAAAAGGCACTAAAGG/TGTGGCAGGTGCTGTTAGAG GF100692
OMY4027 204J15 450 22 ATGCCAAAGAAATGGACAGG/TGGCCTCCCTTGTCATTAAA GF100693
OMY4028 220L14 450 1 TCCCAGTGGATGGGACTTAG/GTGGGTGTCACATGTGTGGT GF100694
OMY4038 218N06 172 6 GGGGAAATTCAACCCACTTT/ATGGCGAATTGGCTAGACTG GF100695
OMY4039 275M02 172 6 ACTCTCCCCTGTCCTCCATT/CTAGTATCGACCCCTGCGAA GF100696
OMY4040 386B11 172 6 TGAAGGGGGCTGATTAGTTG/ACAGCGTTCCATAGCGAGAT GF100697

All clones were from the 10X HindIII YY male Swanson doubled haploid BAC library (RT).

Table 4: Validation of physical map assembly by linkage mapping of microsatellites isolated from clones that were part of 11 of the 
largest contigs in the rainbow trout physical map.

Contig No. of Clones (Q)a Contig Length (Kb) No. of Markers rb LOD Chr.

58 174 (3) 1,938 2 0.000 29.2 1
84c 190 (3) 2,300 2 0.014 19.1 18
100 313 (2) 3,300 2 0.101 20.6 27
168 306 (3) 2,934 2 0.009 28.7 10
172 299 (6) 3,167 3 0.040 8.1 6
260c 224 (1) 2,692 4 0.039 31.3 2
336 136 (0) 1,722 3 0.005 46.3 3
791c 124 (0) 1,722 2 0.000 25.2 22
930 112 (1) 1,394 2 0.006 49.7 11

Mis-joined Contigs
138a 431 (4) 4,590 2 0.043 16.0 1
138b 431 (4) 4,590 1 N/A 32.0 27
450a 334 (4) 3,709 2 0.006 38.6 22
450b 334 (4) 3,709 1 N/A 39.4 1

a Number of Q-clones in parenthesis. Clones that were assigned to a contig but may be false positives (e.g. chimerical clones) are marked by FPC as 
Q-clones.
b Two point linkage recombination between markers from the two most distant clones in the contig.
c Additional markers that were previously isolated from other BACs in the contigs were linked to the new BAC end sequence microsatellites by 
two point linkage analysis and included in this table. Contig 84: OMM3090/MHCI-A [27]; Contig260: OMM3079/TAP1 [23]; Contig 791: OMM3183/
TLR8a (manuscript in preparation).
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Conclusion
The production and validation of the first physical map of
the rainbow trout genome is described in this paper. We
are currently integrating this map with the genetic map
using more than 200 microsatellites isolated from BAC
end sequences and by identifying BACs that harbor more
than 300 previously mapped markers. The availability of
an integrated physical and genetic map will enable
detailed comparative genome analyses, fine mapping of
QTL, positional cloning, selection of positional candidate
genes for economically important traits and the incorpo-
ration of MAS into rainbow trout breeding programs. A
comprehensive integrated map can also provide a mini-
mal tiling path for genome sequencing and a framework
for whole genome sequence assembly.

Methods
BAC libraries and DNA fingerprinting
BAC clones were obtained from the DH Swanson YY male
10X HindIII library [5] and the CHORI-220 Swanson 5X
EcoRI library http://bacpac.chori.org/library.php?id=405.

All the clones from the 10X HindIII BAC library (184,704
clones) and 7,392 clones from the CHORI-220 library,
were fingerprinted. We used the 4-color HICF SNaPshot
method of Luo et al. [50]. For each 384-well plate from
the library four 96-well blocks were inoculated using a 96-
pin replicator. For plate orientation and fingerprinting
quality, wells E7 and H12 were replaced in each 96-well
block with a control BAC clone. The cultures were grown
on an orbital shaker at 37 C and 400 rpm for 22 hr. The
BAC DNA was purified using the Qiagen R.E.A.L. 96 prep
kit (Qiagen, Valencia, CA). Each BAC was simultaneously
digested with four 6-bp recognizing restriction endonu-
cleases generating 3' recessed ends and a 4-bp recognizing
restriction endonuclease producing blunt ends. Each of
the four recessed 3' ends was labeled with a different fluo-
rescent dye using the SNaPshot kit (Applied Biosystems,
Foster City, CA). Restriction fragments were sized with a
capillary DNA analyzer ABI3730XL (Applied Biosystems)
using an internal GeneScan-1200 LIZ v. 1 size standard.
Fragment size-calling was performed with the GeneMap-
per v. 3.7 (Applied Biosystems). Outputs of size-calling

Example of a rainbow trout contig anchored to a genetic linkage group using microsatellites isolated from BAC end sequencesFigure 2
Example of a rainbow trout contig anchored to a genetic linkage group using microsatellites isolated from 
BAC end sequences. The contig shown is number 172 containing 299 clones. The 3 markers were mapped to Chromosome 
6. Genetic distances between markers were calculated from a two-point linkage analysis. The clones from which the markers 
were isolated (Table 3) are "hidden" within the highlighted clones. Clone groups with more then 90% DNA fingerprints overlap 
are represented by the largest BAC in the group, which was not the actual BAC from which the microsatellites shown here 
were isolated.

Omy4040Omy4038Omy4039 3.8 cM

0.0 cM
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files were automatically edited with the FPMiner program
http://bioinforsoft.com/ using the program's default set-
ting. This software package was used to distinguish peaks
corresponding to restriction fragments from peaks gener-
ated by background noise in the profile of each BAC fin-
gerprint and to remove vector restriction fragments from
the profiles. The program also removed sub-standard pro-
files that could negatively affect contigs assembly. The
files generated by FPMiner were used in the FPC contig
assembly.

Contigs assembly
Contigs were assembled from fragments within size range
of 70-1,000 bp using FPC program version 8.5.3 [52,54].
FPC parameters were adjusted for the HICF method as
previously described [48,50,52]. An initial assembly was
performed with a tolerance of 0.5 bp and a Sulston score
of 1 × 10-70. Contigs with more than 15% Q-clones were
re-assembled by setting the DQer function to 15% and the
"Step" value to 2. This was followed by several rounds of
end-to-end merging and single-to-end merging at progres-
sively lower cutoff stringencies (Table 5). The "Best of"
function was set to 50 builds.

BAC end sequencing and markers development
The 10X HindIII Rainbow trout BAC library [5] was used
for BAC-end sequencing (BES). BAC culture was con-
ducted using standard protocols and end sequencing with
SP6 and T7 primers was done using standard Sanger tech-
nique. The raw, untrimmed files were processed by
PHRED software [55]. The PHRED quality score cut-off
value was set at 20 for the acquisition of Q20 values. The
BESs were trimmed of vector sequences (pBeloBAC11 vec-
tor [56]) and filtered of E. coli sequences. Microsatellites
and other simple sequence repeats (SSR) were analyzed
using Tandem repeat Finder software [57]. We examined
ten classes of SSRs by using a maximum period size of 10.
BESs harboring at least 50 base pairs (bp) flanking
sequences on either side of the microsatellites were
selected for PCR primer design. Primers for BESs contain-
ing microsatellites were designed using Primer3 software
[58]. The primer product size range was chosen between
150 and 450 nucleotides. The optimum size of primers
was set to 20 nucleotides (range from 18 to 27 nucle-
otides) with an optimum melting temperature of 60.0°C
(range from 57 to 63°C).

Genotyping
The NCCCWA mapping panel of 5 families was geno-
typed with microsatellites as previously described [15]. A
total of 25 microsatellite markers isolated from BAC end
sequences (Table 3) and three microsatellites that were
previously isolated from BAC clones [23,24,27] were gen-
otyped using the tailed protocol of Boutin-Ganache et al.
[59]. Primers were obtained from commercial sources

(Alpha DNA, Montreal, Quebec, Canada). Three oligonu-
cleotide primers were used in each DNA amplification
reaction (Forward: 5' GAGTTTTCCCAGTCACGAC-primer
sequence 3'; reverse: 5' GTTT-primer sequence 3'; fluores-
cent labeled primer with FAM: 5' GAGTTTTCCCAGTCAC-
GAC 3'). Primers were optimized for amplification by
varying annealing temperatures and MgCl2 concentra-
tions. PCR reactions (12 μl total volume) included 50 ng
DNA, 1.5-2.5 mM MgCl2, 2 pmol of forward primer, 6
pmol of reverse primer, 1 pmol of fluorescent labeled
primer, 200 μM dNTPs, 1× manufacturer's reaction buffer,
and 0.5 unit Taq Polymerase (ABI, Foster City, CA, USA).
Amplifications were conducted in an MJ Research DNA
Engine thermal cycler model PTC 200 (MJ Research,
Waltham, MA) as follows: an initial denaturation at 95°C
for 10 min, 30 cycles consisting of 94°C for 60 sec,
annealing temperature for 45 sec, 72°C extension for 45
sec; followed by a final extension of 72°C for 10 min. PCR
products were visualized on agarose gels after staining
with ethidium bromide. Three μl of each PCR product was
added to 20 μl of water, 1 μl of the diluted sample was
added to 12.5 μl of loading mixture made up with 12 μl
of HiDi formamide and 0.5 μl of Genscan 400 ROX inter-
nal size standard. Samples were denatured at 95°C for 5
min and kept on ice until loading on an ABI 3730 DNA
Analyzer (ABI, Foster City, CA, USA). Output files were
analyzed using GeneMapper version 3.7 (ABI, Foster City,
CA, USA), formatted using Microsoft Excel and stored in a
Microsoft Access database.

Linkage analysis
The 28 microsatellites were placed on the rainbow trout
genetic map by two-point linkage analysis as previously
described [15,60]. Genotype data combined for both
sexes were formatted using MAKEPED of the LINKAGE
[61] program and checked for inconsistencies with Men-
delian inheritance using PEDCHECK [62]. RECODE [63]
and LNKTOCRI [64] were used to assemble the data into

Table 5: FPC parameters used to assemble the physical map.

Sulton Score Step in the Assembly Build Merge Function

1.00E-70 Initial assembly --
1.00E-70 Dqer, 15%, Step: 2 --
1.00E-65 Single-to-End 35
1.00E-55 Single-to-End 35
1.00E-68 End-to-End, 2 35
1.00E-60 End-to-End, 2 35
1.00E-50 End-to-End, 2 35
1.00E-45 Single-to-End 35
1.00E-38 Single-to-End 35
1.00E-40 End-to-End, 2 35
1.00E-35 End-to-End, 2 35
1.00E-50 End-to-End, 1 35
1.00E-40 singletons to contigs --
1.00E-35 singletons to contigs --
Page 8 of 10
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CRIMAP [65] format. Genotype data were added to that of
Rexroad et al [15] and MULTIMAP [66] was used to con-
duct two-point linkage analyses to identify the closest
markers from the published map having the highest LOD
Scores.
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