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The aim of this paper is to present the fatigue damage modeling approach developed 
at ONERA for the fatigue life prediction of composite materials and structures. This 

paper is divided into five sections. The first one explains why the already developed 
and validated methods for fatigue life modeling of metals and alloys cannot be directly 
applied to composite materials. Thus, the proposal of an efficient fatigue model for 
composite materials necessitates a good understanding of the specific damage me-
chanisms that occur under static and fatigue loadings of composites. These damage 
mechanisms are detailed in the second section. Then, the next section presents the 
different types of models reported in the literature; among them, the progressive 
damage models, to which special attention will be paid. Finally, structural simulations 
and constant-life diagrams will be considered in the last sections.

Introduction

The introduction of composite materials in a wide range of structural 
components requires engineers and research scientists to reconsider 
fatigue loading as a factor inducing failure, even for structures where 
fatigue was not traditionally considered as an issue. Up to now, com-
posite materials were considered as fatigue insensitive and one of the 
ideas implied behind this statement was that the conventional loading 
levels applied to components were far too low to initiate any local 
damage that could induce catastrophic failure under repeated loading. 
Then, the requirement for no growth of defects, i.e., manufacturing 
defects and accidental damage, has always been assumed to be suffi-
cient for the design of composite airframes subjected to fatigue loading. 
However, this assertion has been questioned by the aerospace indus-
trial sector. Indeed, with the continuous improvement of composite 
design methods during the last decades and the imperative of structural 
mass minimization for recent airliners, during in-life service composite 
structures are subjected to loadings increasingly closer to their static 
strength. To be more specific, increasing the operational loads in the 
structures by reducing the static strength margins down to their mini-
mum values does not make fatigue critical for composite structures 
[68]. However, this assumption is likely to lead to situations where 
more unstable fatigue cracks develop in areas where out-of-plane 
stresses may be found. Fatigue is also inherently an important issue 
in rotating composite structures. Applications are as diverse as rotor 
blades for wind turbines and helicopters, marine propellers, flywheels, 
paper machine rolls, etc. Matrix fatigue degradation and fiber failure are 
the main failure modes and they should be avoided through sensitive 
design. An iterative process for the definition of different prototypes is 

usually required and, in order to reduce cost and time for product deve-
lopment, accurate fatigue behavior simulation is critical for composite 
structural components or structures.  

Consequently, fatigue of composite structures is of growing interest 
and leads industrials to develop accurate fatigue modeling, as well as 
a better prediction of delamination in laminates during fatigue loading. 
Since fatigue of metallic materials is a well-known phenomenon, first 
attempts to account for fatigue in composites consisted in adapting to 
composites, the already existing methods for metallic materials [68]. 
Unfortunately, the situation regarding the fatigue behavior of compo-
site materials is different from that of metals and alloys. The methods 
developed for metallics are unsuitable and strongly not recommended 
for composites, as will be explained in the first section of this paper. 
Thus, in order to develop fatigue models for composite materials and 
to achieve a more optimized design and selection of materials, it is 
first necessary to understand the damage mechanisms and failure 
modes to propose models suitable for either conventional laminates 
or woven composite structures. However, as mentioned in [5], it is 
“difficult to get a general approach of the fatigue behavior of compo-
sites materials, including polymer matrix, metal matrix, ceramic ma-
trix composites, elastomeric composites, Glare, short fiber reinforced 
polymers and nano-composites”. 

Research on the fatigue performance of advanced composites started 
at the beginning of the 70s, just after their introduction and first appli-
cations. A lot of experimental work has been performed over the last 
four decades for fiber-reinforced composites and very comprehen-
sive databases have been constructed, particularly concerning wind 
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power applications [34]. Along with these experimental works, theoretical 
models have been developed to predict damage accumulation and fatigue 
life for fiber-reinforced composites with various stacking sequences and 
fiber- and matrix-types under loading conditions that vary from constant-
amplitude loading to spectrum loading [4, 20, 28, 38, 57, 58, 77]. A 
classification of these models will be presented further in this paper. Des-
pite all of these studies, research efforts should be continued to meet the 
challenge of developing models with a more generalized applicability in 
terms of loading conditions and of material selection.

How should the issue of fatigue be addressed 
for composite materials?

Fatigue in materials is caused by repeated loading and unloading 
cycles to maximum stresses lower than the ultimate tensile strength 
of the material. Cycling loading and the different loading regimes are 
characterized by the R-ratio (R=min/max ) as reported in figure 1.

Figure 1 - Sinusoidal loading and relevant terminology of different loading 
R-ratios from Post et al.[59]

Metals vs. composite materials

Figure 2 - Comparison of fatigue strengths of graphite/Epoxy, steel, fiber-
glass/Epoxy and aluminum from Weeton et al. [91]

As mentioned previously, metals and composites behave differently 
under fatigue loading. Bathias [5] devoted an entire paper to the 
comparison of fatigue damage between metals and composite ma-
terials, and pointed out some important differences between metals 
and high performance composites. The main differences are sum-
marized as follows. Composite materials exhibit a better resistance 
to fatigue, compared to metals. The fatigue ratio, SD/UTS, between 
the fatigue strength, SD, in tension-tension (0<R<1) and the ulti-
mate static tensile strength, UTS, is always higher than 0.4 and 

can reach 0.9 for CFRP (Carbon Fiber Reinforced Polymer). These 
values are comparable to those found for metals, i.e., less than 0.5, 
and only 0.3 for aluminum alloys (Figure 2).

However, despite their high fatigue performances, composites are not 
totally sheltered from fatigue damage, due to, essentially, the variety 
of configurations (types of fiber, resin and lay-up) that can result in 
different endurances. Figure 3 shows a comparison of various archi-
tectures with regard to fatigue performance.

Figure 3 - Comparative fatigue strengths of a same resin/Glass composite with 
various fiber architectures (UD, woven, laminates) from Weeton et al. [91]

A difficulty with composite materials is that increasing fiber resistance 
or matrix toughness, or even improving fiber/matrix bonding, does 
not always result in an improved fatigue performance, i.e., a longer 
fatigue life and a higher fatigue ratio [40].

The fatigue resistance of composite materials is much lower 
in compression–compression (R>1) than in tension-tension 
(0<R<1), whereas it is the contrary for metallic alloys. Tension-
compression fatigue is more deleterious than tension-tension 
fatigue and is the most detrimental loading condition for fatigue 
of composites. Note that the ratio SD/UTS under compressive 
loading can be as low as 0.3 for some composite materials. 
Under bending, the behavior of composite materials is difficult 
to determine because of the multitude of types of damage that 
occur (transverse cracks due to tensile loading, delamination, 
fiber kinking due to compression loading). As a result, the fatigue 
of composite materials is a complex phenomenon. For instance, 
even if the compressive strength of a composite is generally lower 
than the tensile strength and the composite is less damaged under 
compression loading, an effect of the tension damage on the com-
pressive strength can be observed.

The comparison between damage accumulation in composite mate-
rials and in homogeneous materials, as a function of the number of 
cycles, is schematically described in figure 4. A relatively large part 
of the total fatigue life in metals is devoted to the stage of gradual and 
invisible deterioration (i.e., mesoscopic scale damage, such as: dislo-
cation cells, persistent slip bands (PSB), etc.). There is no significant 
reduction of stiffness in metals during the fatigue process. The final 
stage of the process starts with the formation of small cracks, which 
are the only form of observable damage. These cracks grow gradually 
and coalesce quickly to produce a large crack leading to final failure of 
the structural component [86].
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During fatigue of composites, damage starts very early, after only 
a few hundred loading cycles or even during the first loading cycle 
for a high stress level. This early damage is followed by a second 
stage of very gradual degradation of the material, characterized by a 
progressive reduction of the apparent stiffness. More severe types of 
damage appear in the third stage, such as fiber breaks and unstable 
delamination growth, leading to an accelerated decline and, finally, to 
catastrophic failure [86].

Figure 4 - Comparison of the damage evolution as a function of the number 
of cycles for composites and metals.

All of these differences between metals and composite materials lead 
to developing specific methods for modeling the fatigue behavior of 
each material. Usually, methods for predicting the damage initiation 
are sufficient for metals, whereas it is necessary to follow the evolution 
of the different damage mechanisms in composite materials and to be 
able to estimate the effect of these different damage modes on the 
material behavior and failure (residual performances). Consequently, 
methodologies developed for metals are not suitable for composite 
materials. In order to develop specific methods for composites, it is 
thus imperative to understand their fatigue damage mechanisms.

Fatigue damage mechanisms in composite materials

Generally, failure of composites under static loading is due to a com-
bination of various interacting mechanisms leading to the final rup-
ture. In the case of laminates, as well as in a single lamina, different 
kinds of damage mechanisms can be found. Failure usually originates 
at the interface between matrix and reinforcement (i.e., debonding), 
especially on defects, which are always present in composites, main-
ly due to the manufacturing process. Other common types of failure 
modes are: matrix cracking, fiber rupture, delamination (in laminates) 
and buckling (in compression).

During fatigue, the first stage of deterioration of continuous fiber-
reinforced polymers is characterized by the formation of a multitude 
of microscopic cracks and other forms of damage, such as fiber/
matrix interface debonding and fiber pull-out from the matrix. As 
mentioned earlier, during fatigue, damage starts very early (Figure 
5 a-b). During this initial loading period (Stage 1), there is generally 
a small drop in stiffness associated with the formation of damage. 
Then, there is a second stage of very gradual degradation of the 
material, where the stiffness reduces progressively and where da-
mage seems to increase slowly and linearly. More serious types of 
damage appear in the third stage, such as fiber breakage and uns-
table delamination growth, leading to an accelerated decline with an 
increasing amount of damage and finally catastrophic failure [23]. 
Schulte et al. [71-73] first reported this three-stage stiffness reduc-
tion and it has, since then, been observed in many different types of 
composite materials, and also in woven composites [22, 93].

 

Figure 5 - a) Fatigue crack growth in cross-ply laminates and b) the three 
characteristic stages of fatigue damage in composites from Reifsnider [62]

Several authors have shown that the observed damage mecha-
nisms are identical for laminates under static and fatigue loadings 
[66, 85, 90]. However, the crack evolution laws are different and 
the damage threshold in fatigue is lower than the damage threshold 
during static loading [7, 8, 42].

Another type of composites, such as woven-fabric composites, is 
showing growing interest and is used in advanced structural ap-
plications due to its inherent advantages. Indeed, the advantages 
conferred by the woven reinforcements compared to fiber lay-ups 
are an easier manipulation and ply stacking during composite ma-
nufacturing, good drapability properties that allow the use of woven 
reinforcements in complex mold shapes, increased impact resis-
tance and damage tolerance of the composite material and delami-
nation resistance capability owing to the presence of fibers along 
the thickness direction. Along with these advantages, composite 
materials based on woven fabric reinforcements achieve high stiff-
ness and strength, comparable with those obtained through traditio-
nal fiber reinforcements.

In 2D woven composites (fabric formed by interlacing the longitudinal 
yarns (warp) and the transverse yarns (weft)), such as plain, twill 
or satin), four types of damage mechanisms occur under static and 
fatigue loadings: intra-yarn cracks in yarns oriented transversely to 
the loading direction, inter-yarn decohesion between longitudinal and 
transverse yarns, fiber failure in longitudinal yarns and yarn failures 
[9, 11, 52, 54, 82, 85].

Da
m

ag
e

Composite

Cycles at
failure

Number of cyclesNumber of cycles at initiation

Damage in the
earty cycles

Metal

Da
m

ag
e

Percent of life

Residual strength

0

1

1

a)

b)

2 3 Stages

Damage

Cycles

Stiffness

0

0° 0°

CDS

0° 0°

0° 0°

0° 0°

100

100

Stage 1
Matrix cracking

of increasing density

Stage 2
Coupling between transverse cracks

and interfacial debonding

Stage 3
Delamination

Stage 5
Fracture

Stage 4
Fiber breakage

	 1	 101	 102	 103	 104	 105	 106



Issue 9 - June 2015 - Fatigue Damage Modeling of Composite Structures: the ONERA Viewpoint
	 AL09-06	 4

A damage scenario consisting in four stages can be deduced from 
these works (Figure 6) and has been proposed by Pandita et al. [54]. 
Under fatigue loading, for a plain-weave fabric composite subjected 
to a maximum tensile fatigue load of 0.5 of the static strength in the 
on-axis direction, there is no or very little fatigue damage in the first 
stage (Figure 6a). In a second stage, fatigue damage consists of 
fiber-matrix debonds and matrix cracks in transverse yarns, leading 
to a continuous transverse crack (Figure 6b). This transverse crack 
subsequently grows either into a matrix-rich area or is deflected into 
the longitudinal fiber bundle within the same layer, a phenomenon 
called ‘meta-delamination’ (Figure 6c). It constitutes the third stage, 
characterized by a saturation of intra-yarn cracks. The propagation of 
the transverse cracks proceeds very slowly. The fourth stage (Figure 
6d) consists in the separation between the longitudinal yarns. Finally, 
in 2D woven fabrics, static and fatigue damage mechanisms are simi-
lar, the only difference concerning the damage evolution laws. 

The geometry of 3D or interlock woven composites and composites 
with braided reinforcement is so complex that it is generally difficult 
to clearly separate the occurring damage mechanisms: microcrac-
king, interface failure, void initiation and void growth. A major diffe-
rence, compared to composite laminates or 2D woven composites, 
is that delamination is impeded. During static loading, the observed 
damage mechanisms are intra-yarn cracks in transverse yarns, inter-
yarn debonding between longitudinal and transverse yarns, fiber fai-
lure in longitudinal yarns and failure of the yarns. These 3D woven 
composites, which have very good mechanical properties - improved 
through-thickness elastic properties, resistance to delamination and 
to impact damage - present similar static and fatigue mechanisms, as 
observed experimentally [31, 69].

To summarize, while damage mechanisms are really different between 
UD laminates and woven composites, in both cases, these damage 
mechanisms are comparable under either a static or a fatigue loading. 
The only change is in the damage evolution laws.

Fatigue damage modeling

State of the art

As mentioned earlier, fatigue studies started mainly with experimental 
campaigns during the 70s in the aerospace field to demonstrate that 
fatigue was not a real issue at that time. Some experimental campaigns 
are still conducted nowadays. For example, an extensive material tes-

ting program, the OPTIMAT research program [34], was conducted 
recently over 3000 individual tests over four years. Testing has been 
focused on the mechanical properties of the composite materials com-
monly used in modern wind turbine blades, specifically epoxy GFRP 
(Glass Fiber Reinforced Composite). However, experimental tests are 
expensive and it is difficult to cover all of the configurations.

In order to reduce the number of tests for predicting composite 
fatigue failure, composite fatigue modeling is required. An interes-
ting article written by Degrieck and Van Paepegem [17] focuses on 
the existing modeling approaches for the fatigue behavior of fiber 
reinforced polymers and gives a comprehensive survey of the most 
important modeling strategies for fatigue behavior. A more recent 
paper written by Sevenois and Van Paepagem [76] gives an over-
view of the existing techniques for fatigue damage modeling of FRPs 
with woven, braided and other 3D fiber architectures. The aim of  
the present paper is not to give an in-depth discussion of the fatigue 
models; thus, the interested reader will be asked to refer to refe-
rences [17, 76]. In the first reference, the authors justify the clas-
sification, currently made by Sendeckyj et al. [75], concerning the 
large number of existing fatigue models for composite laminates. 
This classification consists of three major categories: fatigue life 
models (empirical/semi-empirical models), which do not take into 
account the actual degradation mechanisms, but use S-N curves or 
Goodman-type diagrams and introduce a fatigue failure criterion; 
phenomenological models for residual stiffness/strength; and, final-
ly, progressive damage models (or mechanistic models), which use 
one or more damage variables related to observable damage me-
chanisms (such as transverse matrix cracks, delamination). Note 
that this classification has been recently slightly modified for fatigue 
damage modeling techniques for FRP (Fiber Reinforced Polymers) 
with woven, braided or other 3D fiber architectures [76], but the 
classification reported in the following refers to [17].

Empirical or semi empirical models quantify failure or determine the 
composite fatigue life based solely on a fixed loading condition (i.e., 
the stress state). These experimentally based models are all specific 
to certain types of composite materials and do not consider specific 
damage mechanisms in their formulation. They require extensive and 
expensive experimental campaigns and are difficult to extend towards 
more general loading conditions. This methodology is traditionally 
used by industrialists. Various models can be found in the literature 
[12, 19, 20, 28, 63]. As shown in figure 7, (semi ) logarithmical for-
mulations can be used as well as numerous other S-N formulations; 
some of them are reported in figure 7. 

Figure 6 - Scheme of the tensile fatigue damage development in woven fabric composites, 
subjected to a tension–tension fatigue loading in the weft direction from Pandita et al. [54].
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Fibre fracture
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a) No fatigue failure b) Crack in a transverse yarn c) Meta-delamination d) Fibre fracture at longitudinal yarns
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Figure 7 -  Various constant amplitude S-N curve fits for (0°)8  glass/epoxy, 
R=0.1 [50]

Phenomenological models describe the fatigue behavior of the 
composite through the evolution of macroscopic properties, 
such as stiffness [39, 56, 81] and strength [16, 36, 65, 78]. 
The loss of these macroscopic properties is usually described. 
Residual strength models possess a natural failure criterion 
(Figure 8): if the residual strength falls to about the same level 
as the externally applied stress, then, the material fails [26]. 
However, it necessitates destructive tests. Empirical models and 
residual strength models cannot be used to simulate the stiff-
ness degradation during fatigue life because both S-N fatigue 
life methodology and residual strength approach do not take 
into account the loading history, i.e., the successive damage 
states, the continuous redistribution of stress and the reduction 
of stress concentrations that appear during the gradual degrada-
tion of a fiber-reinforced composite in a structural component. 
Residual stiffness models describe the degradation of the stiff-
ness properties due to fatigue damage in terms of macroscopic 
variables, but they exhibit much less statistical scatter than resi-
dual strength models.

Figure 8 - Residual strength curves for 0/90 GRP laminate samples subjected 
to fatigue cycling at an R ratio of 0.1 and various stress levels [24]

Progressive damage models, which use one or more damage va-
riables related to measurable effects of damage (interface debonding, 
transverse matrix cracks, delamination size, etc.), are claimed as 
the most promising models because they quantitatively account for 
the damage accumulation in the composite structure. Degrieck and 

Van Paepegem [17] subdivide progressive damage models into two 
classes: 
	 • Damage models that predict the damage growth as such (e.g., 
number of transverse matrix cracks per unit length, size of the dela-
minated areas). These models consider one specific damage mecha-
nism and determine the physical change in damage with increasing 
loading cycles. They are typically of the form of the well-known 
Paris’ law for crack propagation in homogeneous materials (i.e., da/
dN). References, essentially on fatigue of composite laminates, can 
be found in [6, 21, 30, 70].
	 • Models that correlate the damage growth with the residual 
mechanical properties (stiffness/strength). One of the major causes 
of the stiffness degradation is distributed matrix cracking, and such 
a type of progressive damage suggests the use of a continuum 
damage model to describe the material behavior [41, 43, 46, 83]. 
These models typically use Finite Element models to simulate the 
damage progression and some of them have been extended to pre-
dict the fatigue life of a structural component. Among the various 
studies on laminates, different contributions must be quoted: [1, 2, 
13, 44, 45, 51, 67, 74, 79, 80, 84]. Most of these works concern 
fatigue of laminate composites. A few research groups deal with 
fatigue of woven composites. Among them, Hochard et al. [32, 33] 
developed a fatigue damage approach as a combination of a static 
damage model and a cumulative damage evolution law based on a 
thermodynamic approach. Modeling both static and fatigue loadings 
with the same model is allowed by the use of a non-linear cumulative 
law that describes the damage evolution according to the maximal 
load and the amplitude of the cyclic loading. This model is based 
on a damage model developed for UD carbon/epoxy laminates [55]. 
Thanks to the assumption consisting in replacing the woven ply by 
two stacked unidirectional virtual plies, this generalized model can 
be used to simulate the mechanical behavior of various unbalanced 
woven plies, from quasi-unidirectional to balanced woven plies. This 
model has been applied with success to a 5-harness satin weave 
glass/epoxy laminate without stress concentration. Nevertheless, a 
plane stress assumption is made and this model cannot be directly 
applied to thick 3D woven composites.

A damage model has also been proposed by Van Paepagem et al. 
[87, 88] and is based on anisotropic damage evolution functions with 
separate terms for the damage initiation, the damage growth and the 
final progressive damage evolution. This model can simulate stiffness 
damage, stress redistribution and accumulation of permanent strain. 
The use of a modified Tsai-Wu static failure criterion has been pro-
posed. The fatigue damage model has been applied to displacement-
controlled bending fatigue experiments of plain-weave glass/epoxy 
specimens and good agreement was found between predicted and 
simulated specimen deformation and applied force.

These two models have been developed for 2D woven composites and 
not for 3D woven interlock composites. The plane stress assumption 
cannot be applied [61], since these composites are relatively thick.

An important feature of these degradation approaches is that they 
enable variable amplitude loadings to be dealt with, since they can 
take into account a change of stress state during loading. Actually, 
traditionally, fatigue characterization of a material is performed under 
constant amplitude sinusoidal loading and most experimental studies 
of variable amplitude loading in composite materials have focused on 
loading that consists of two or more constant amplitude blocks with 
two to four stress levels and R-ratios [27, 53, 92]. Nevertheless, the 
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block loading tests are not representative of realistic loading situa-
tions and may not even generate the same type of damage state in the 
material. The majority of the models presented in the literature have 
only been applied to constant amplitude loading and block loading 
with a few stress levels. The reader is referred to a comparative study 
presented in [59] that evaluates different models in terms of their 
predictive capability under more realistic spectrum loading cases of 
interest to the wind turbine and naval architecture industries.

ONERA fatigue damage modeling of 3D woven interlock PMC and 
CMC composites

ONERA has been working for years on progressive damage models 
under static loading of 3D polymeric and ceramic woven composites 
(ONERA Damage Model (ODM) [46, 48]). These two models accu-
rately describe the static behavior of either 3D woven polymer matrix 
composites (PMC) or ceramic matrix composites (CMC). Recently, 
they have been extended to fatigue loadings [29, 61]. As mentioned 
previously, in the case of interlock woven PMC, the same damage 
mechanisms occur during monotonic and fatigue loadings, but their 
damage evolution laws differ. These damage mechanisms are des-
cribed using damage variables that describe the effects of damage 
on the behavior in the three main directions of the woven compo-
site. Then, a cumulative damage dk, per k mechanism (k=1, 2 or 3), 
is defined by adding two terms: one part is due to the monotonic 
loading Mon

kd and the other one is governed by fatigue loading Fat
kd . 

The monotonic damage law depends on the driving forces yk which 
are themselves a quadratic form of strain: yk=fct(). This leads to a 
scalar (instead of a tensor) formulation, which is easier to analyze and 
to generalize to multiaxial loadings. The matrix damage driving forces 
for monotonic loading are also assumed to drive the matrix damage 
during fatigue loading: 

( ) ( ),Mon Fat
k k Max k Max ykd d y d y R= + 	 (1)

The cyclic damage law, where N is the number of cycles, includes 
the description of the matrix damage evolution during cyclic loading:
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Ry evolves between 0 and 1 since the driving forces are always 
positive. Moreover, this specific ratio definition is very convenient 
to deal with multiaxial loadings. Note that when the stress ratio is 
negative R


< 0, the corresponding driving force ratio is null (because 

ymin= 0 when R

< 0). Rakotoarisoa [61] does not take into account 

the behavior for compressive loadings in the model; consequently, 
the damage evolution is only possible for tension (static or fatigue) 
loadings (thus, only for positive stress ratios). 0( )

Fat
ky   is the fatigue 

damage threshold, yMax(k) is the maximal driving force (maximum over 
one cycle) and ( )

ü
c ky , k, k, k  are model parameters. At satura-

tion, the damage reaches the saturation value d∞(k) . This model has 
been validated on smooth specimens and a good agreement was 
found between experimental data and simulation. Variable amplitude 
loadings can be described with this model, even creep loading cases, 

except spectral loading, in which all cycles have a different load evo-
lution. To address these complex loadings, a 3D kinetic damage mo-
del for woven PMC composites, i.e. with a rate form written damage 
evolution laws ( / ...d t∂ ∂ = ), is currently under development in col-
laboration with LMT-Cachan [3] based on the ODM-PMC model. A 
specific feature of the proposed damage law is that it only introduces 
one damage variable per mechanism, but with two contributions (a 
monotonic contribution and a fatigue contribution). The kinetic da-
mage evolution law can be applied to different kinds of loading (mo-
notonic, fatigue, random) and is also mean stress dependent [18]. 
The final damage evolution law recovers the initial cumulative damage 
ODM-PMC model exactly in cases of monotonic and creep loadings.

Concerning the yarn failure (due to fiber failures), even though the 
fibers are usually assumed to be insensitive to fatigue loadings [82], 
matrix damage leads to load transfer to the fiber bundles leading to 
fiber failure, thus inducing a reduction in the effective strength of the 
fiber bundles. Finally, fiber bundle fracture is used as a criterion for 
the evaluation of fatigue lifetime, as well as residual strength. The 
rupture is induced by a sudden and unstable multiplication of fiber 
failures in the yarns. These yarns can be considered as the critical 
element in the sense of Reifsnider [64], since their failure defines 
the composite failure. There is no first sign of damage for the yarn 
(loss of modulus) because early failures are limited and spatially 
dispersed.  

Fatigue of CMC woven composites is also a new subject of interest in the 
community [15, 60]. CMC woven composites can be used in the aeros-
pace industry, because of their low mass density and good mechanical 
properties at high temperature, since they are protected against oxidation 
by a self-healing matrix at temperatures higher than 650°C. A fatigue mo-
del, based on the ODM model specifically devoted to CMC woven com-
posites (five damage variables, since damage is oriented by the loading 
[47], instead of three variables for PMC woven composites for which 
damage is mainly oriented by the microstructure) has been developed 
at ONERA [29, 49]. The lifetime of the material is determined through a 
macroscopic mechanical model and a physicochemical model, which 
is time-dependent. The procedure has been validated considering SiC/
SiC specimens under fatigue loadings and subjected to different kinds of 
environment, i.e., pressure (oxygen and water) and temperature.  

Structural simulation

These two models have been implemented in a finite element code 
(ZeBuLoN), in order to (i) keep track of the continuous stress redis-
tribution (the simulation requires the complete path of damage states 
to be followed) and (ii) to perform fast and efficient finite element 
simulations.

Figure 9 presents the modeling strategy to determine the fatigue life 
and residual strength of interlock woven PMC composites. A first sta-
tic analysis is performed with the quasi-static model to verify whether 
the specimen has failed or not. If it is not the case, a first set of 
cycles is applied. The cumulative damage law allows the resulting 
matrix damage variables to be calculated. Then, before ensuring that 
the bundle failure criterion is not attained, in order to perform the next 
block of cycles, the strain fields, fiber bundle fracture variables and 
matrix damage driving forces are updated by simulating one cycle 
(shown in red in figure 9) with the quasi-static model. To reduce 
the computational costs of the model, the updating is performed at 
three characteristic load levels only: maximum and minimum load are 
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chosen in order to calculate the parameters required for the failure ana-
lysis and the next fatigue analysis. The mean load is chosen in order to 
estimate the evolution of viscous strain. This method can be considered 
as an adapted version for composites of a jump-in-cycle procedure. 
The value of the “cycle jump” can be determined by an automated crite-
rion [45]. The damage variables are used as a measurement for deter-
mining the size of the block of cycles. The faster the damage evolution 
is, the smaller the blocks are and, consequently, the number of cycles 
per block. Moreover, the larger the number of cycles used to update the 
driving forces is, the longer the finite element fatigue life simulations 
are, since the updated cycle needs to be finely discretized. This model 
has been applied to open-hole specimens, but the simulation results 
still need to be compared with experimental data. 

Constant life diagram

Generating fatigue data for every configuration as a basis for efficient 
predictive models is not conceivable. Constant life diagrams (CLD) 
offer a predictive tool for the estimation of the fatigue life of the mate-
rial under loading patterns for which no experimental data exist. It is a 
representation of S-N data. The constant-life lines in the CLD connect 

points with the same estimated lifetime, as a function of mean stress 
and stress amplitude.

Constant life diagrams for metals are usually observed to be sym-
metric, whereas for composites they are distinctly not, due to 
the different tensile and compressive strengths that they exhibit. 
Actually, in fatigue, there are different damage and failure mecha-
nisms in tension and compression. Under tensile loading, the lami-
nate composite is governed by fiber failures (in a fiber-dominated 
lay-up). Under compression loading, the composite properties are 
mostly determined by the matrix and matrix-fiber interaction. As 
a result, a typical CLD for composite materials is often shifted to 
the right hand side and the highest point is located away from the 
R = -1, (mean = 0) line, as shown in figure 10. 

Vassilopoulos et al. [89] have examined the influence of the formu-
lation of a CLD on the composite lifetime. The predictive accuracy 
of the constant life formulation is very important because fatigue 
analysis results are significantly affected by the accuracy of the 
estimated S-N curve. They assessed the most common and recent 
formulations considering the ease of application, the need for expe-
rimental data and forecast accuracy, as critical evaluation parame-
ters. The main highlights are given in the following.

Figure 9 - Modeling strategy for lifetime and residual strength prediction
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On the adjustment of non-linearity (Figure 10), several approaches 
have emerged, i.e., piecewise linear "R-value multiple CFL diagram" 
[50], power law [25], power law from a single S-N experimental curve 
[37]and different power laws in tension and compression [10].  

Figure 10 - Different types of CLD: 
a - « multiple R-value CFL diagram »[50], b – power law [25] 

Concerning the need for experimental data, the most demanding 
approaches have proven to be the most reliable. This is the case of 
the piecewise linear approach, which is the most accurate among 
the various formulations analyzed when a minimum number of three 
available S-N curves is available. The simplifying assumptions that 
allow some models to expect only a few fatigue data [37] or none 
[35] do not lead to a satisfactory accuracy. Moreover, these as-
sumptions do not usually allow new fatigue measures to be incor-
porated “on the fly”. Finally, it should be noted that all of these 
approaches raise the question of a joint processing of static and 
fatigue data.

Uncertainties and variability

An inherent characteristic of composite materials, which must be 
taken into account, is the variability in strength and fatigue life data. 
This variability is higher than that observed in metals. The structural 
reliability provided by the conventional deterministic design approach 
(using safety factors) is different for composite and metal structures. 
Composite structures have to be designed with the same level of 
confidence as metallic structures and, therefore, a probabilistic-based 
methodology is of interest. In addition to the scatter in strength and 
life data, the uncertainties of the applied loads also affect the reliabi-
lity of a structure. To deal with these uncertainties, a safety factor of 

1.5, traditionally used in aircraft structural design, generally provides 
a very high level of reliability although not quantifiable. A probabilistic 
certification method can provide additional and useful information for 
a more efficient structural design. Recent works at ONERA have illus-
trated the implementation of an advanced probabilistic treatment by 
applying it, as a beginning, to simple empirical models. The approach 
is based on the SLERA principle (Strength-Life-Equal-Rank Assump-
tion), which considers the static data dispersion as the main source 
of the whole observed dispersion [14], as presented in figure 11. 
The tools developed for the statistical identification are well adapted 
to the available types of data (lifetimes, static / residual strengths) 
and their structuring. They are based on the innovative use of the EM 
(Estimation-Maximization) algorithm. This allows the identification to 
be made more versatile and more effective compared to techniques 
in the available literature. Its application to purely numerical fatigue 
models is still in progress and will incorporate the already available 
numerical techniques for propagating uncertainty.

Figure 11 - SLERA principle (Strength-Life-Equal-Rank Assumption)[14]

Conclusion / Perspectives

This paper has attempted to address the problem of fatigue life 
prediction of composites from the point of view of ONERA. It des-
cribes the methodology that ONERA adopted to propose a fatigue life 
modeling. In this respect, ONERA has taken advantage of years of 
experience in progressive damage models under monotonic loadings, 
both for laminates and 3D woven composites. Nevertheless, studies 
on fatigue of composites are relatively recent at ONERA, less than 
five years. The first idea was that ONERA would benefit from a good 
knowledge of fatigue of metallics, in order to propose a fatigue model 
for composites; however, as reported in the first part of this paper, 
the fatigue methodologies for metallics cannot be directly applied to 
composites. It has also been shown that the composite fatigue failure 
modes are different depending on the type of composites (2D or 3D 
woven, UD laminates). There is no single method for the modeling 
of a series of composite materials. To propose a fatigue model for 
3D interlock woven composites (PMC or CMC), the initial important 
step for ONERA consisted in understanding the damage mechanisms 
occurring in woven composite materials during fatigue. It resulted 
from this study that the types of damage mechanisms in 3D inter-
lock woven composites resulting from monotonic or fatigue loadings 
are fairly similar. This then allowed the existing monotonic damage 
models to be extended to a fatigue model. These models have been 
applied to simple structures and the next step will consist in applying 
them to real structures under real loadings. This constitutes a challen-
ging perspective to this study. 
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