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Abstract—Recently, mainly due to the advances of deep
learning, the performances in scene and object recognition
have been progressing intensively. On the other hand, more
subjective recognition tasks, such as emotion prediction, stagnate
at moderate levels. In such context, is it possible to make affective
computational models benefit from the breakthroughs in deep
learning? This paper proposes to introduce the strength of deep
learning in the context of emotion prediction in videos. The two
main contributions are as follow: (i) a new dataset, composed
of 30 movies under Creative Commons licenses, continuously
annotated along the induced valence and arousal axes (publicly
available) is introduced, for which (ii) the performance of the
Convolutional Neural Networks (CNN) through supervised fine-
tuning, the Support Vector Machines for Regression (SVR) and
the combination of both (Transfer Learning) are computed and
discussed. To the best of our knowledge, it is the first approach
in the literature using CNNs to predict dimensional affective
scores from videos. The experimental results show that the limited
size of the dataset prevents the learning or finetuning of CNN-
based frameworks but that transfer learning is a promising
solution to improve the performance of affective movie content
analysis frameworks as long as very large datasets annotated
along affective dimensions are not available.

Keywords—continuous emotion prediction; deep learning;
benchmarking; affective computing

I. INTRODUCTION

In the last few years, breakthroughs in the development of
convolutional neural networks have led to impressive state
of the art improvements in image categorization and object
detection. These breakthroughs are a consequence of the
convergence of more powerful hardware, larger datasets, but
also new network designs, and enhanced algorithms [1], [2].
Is it possible to benefit from these progresses for the affective
movie content analysis? Large and publicly available datasets
composed of movies annotated along affective dimensions
start to emerge [3] and, even if they are far from being as
large as datasets such as ImageNet [4], tools exist to benefit
from the Convolutional Neural Networks (CNN) frameworks,
composed of tens of millions parameters, trained on huge
datasets [1].

In this work, we aim not to maximize absolute performance,
but rather to study and compare the performance of four state

of the art architectures for the prediction of affective dimen-
sions. It contributes to the affective movie content analysis
field as follows:

• Benchmark of four state of the art architectures for
the prediction of dimensional affective scores: fine-tuned
CNN, CNN learned from scratch, SVR and transfer
learning. To the best of our knowledge, it is the first
approach in the literature using CNNs to predict dimen-
sional affective scores from videos;

• Public release of a large dataset composed of 30 movies
under Creative Commons licenses that have been contin-
uously annotated along the induced valence and arousal
dimensions.

The paper is organized as follows. Section II provides back-
ground material on continuous movie content analysis work, as
well as CNNs and Kernel Methods. In Section III, the process
for annotating the new dataset is described. The computational
models investigated in this work are presented in Section IV.
Their performance is studied and discussed in Section V, while
the paper ends in Section VI with conclusions.

II. BACKGROUND

A. Dimensional Affective Movie Content Analysis

Past research in affective movie content analysis from
audiovisual clues extracted from the movies has focused on
the prediction of emotions represented by of a small number
of discrete classes which may not reflect the complexity of
the emotions induced by movies. However, more and more
work describes emotions using a more subtle and dimensional
representation: the valence-arousal space.

Interestingly, Hanjalic and Xu who pioneered the affec-
tive movie content analysis mapped video features onto the
valence-arousal space to create continuous representations [5].
They directly mapped video features onto the valence-arousal
space to create continuous representations. More recently,
Zhang et al. proposed a personalized affective analysis for
music videos [6]. Their model is composed of SVR-based
arousal and valence models using both multimedia features and
user profiles. Malandrakis et al. trained two Hidden Markov
Models (HMMs) fed with audiovisual features extracted on



the video frames to model simultaneously 7 discrete levels
of arousal and valence [7]. Then, these discrete outputs were
interpolated into a continuous-valued curve.

In contrast with previous work using handcrafted features,
we focus in this work on CNNs to predict affective scores
from videos. As a point of comparison for the evaluation of
the CNN-based frameworks, we also focus on kernel methods
and especially the SVR, commonly used in the state of the
art, learned with features from previous work.

B. Convolutional Neural Networks and Kernel Methods

SVM for regression [8], also known as SVR, is one of
the most prevalent kernel methods in machine learning. The
model learns a non-linear function by mapping the data into
a high-dimensional feature space, induced by the selected
kernel. Since the formulation of SVM is a convex optimization
problem, it guarantees that the optimal solution is found. SVRs
have been extensively used in the affective computing field for
music emotion recognition [9], as well as spontaneous emotion
recognition in videos [10], and affective video content analysis
[11]–[13].

Beginning with LeNet-5 [14], CNNs have followed a classic
structure. Indeed, they are composed of stacked convolutional
layers followed by one or more fully-connected layers. So
far, best results on the ImageNet classification challenge have
been achieved using CNN-based models [1], [2]. CNNs have
been mostly used in the affective computing field for facial
expression recognition [15]. Recently, Kahou et al. trained a
CNN to recognize facial expressions in video frames [16]. Its
prediction was then combined with the predictions from three
other modality-specific models to finally predict the emotional
category induced by short video clips.

The CNN approach disrupts the field of machine learning
and has significantly raised the interest of the research com-
munity for deep learning frameworks. Generally applied for
object recognition, its use will be naturally extended to any
recognition task. The contributions using CNNs in the affective
computing field will likely show up in the coming months.

III. CONTINUOUS MOVIE ANNOTATION

The LIRIS-ACCEDE dataset proposes 9,800 excerpts ex-
tracted from 160 movies [3]. However, these 9,800 excerpts
have been annotated independently, limiting their use for
learning models for longer movies where previous scenes may
reasonably influence the emotion inference of future ones.
Thus, as a first contribution, we set up a new experiment where
annotations are collected on long movies, making possible
the learning of more psychologically relevant computational
models.

A. Movie Selection

The aim of this new experiment is to collect continuous
annotations on whole movies. To select the movies to be
annotated, we simply looked at the movies included in the

LIRIS-ACCEDE dataset1 since they all share the desirable
property to be shared under Creative Commons licenses and
can thus be freely used and distributed without copyright
issues as long as the original creator is credited. The total
length of the selected movies was the only constraint. It had
to be smaller than eight hours to create an experiment of
acceptable duration.

The selection process ended with the choice of 30 movies
so that their genre, content, language and duration are diverse
enough to be representative of the original LIRIS-ACCEDE
dataset. The selected videos are between 117 and 4,566
seconds long (mean = 884.2sec ± 766.7sec SD). The total
length of the 30 selected movies is 7 hours, 22 minutes and 5
seconds. The list of the 30 movies included in this experiment
is detailed in Table I.

B. Experimental Design

The annotation process aims at continuously collecting the
self-assessments of arousal and valence that viewers feel while
watching the movies.

1) Annotation tool: To collect continuous annotations, we
have used a modified version of the GTrace program originally
developed by Cowie et al. [17]. GTrace has been specifically
created to collect annotations of emotional attributes over time.
However, we considered that the design of the original GTrace
interface during the annotation process is not optimal: the
video to be rated is small, the annotation scale is far from
it, and other elements may disrupt the annotator’s task. That
is why we modified the interface of GTrace in order to be less
disruptive and distract annotators’ attention from the movie as
less as possible.

First, we redesigned the user-interface so that the layout is
more intuitive for the annotator. During the annotation process,
the software is now in full screen and its background is black.
The video is bigger, thus more visible, and the rating scale is
placed below the video (Figure 1(b)).

Second, we used the possibility offered by GTrace to create
new scales. We designed new rating scales for both arousal
(Figure 1(a)) and valence (Figure 1(b)). Under both scale,
the corresponding Self-Assessment Manikin scale is displayed
[18]. It is an efficient pictorial system which helps understand
the affective meaning of the scale.

Third, instead of using a mouse, the annotator used a
joystick to move the cursor which is much more intuitive. To
link the joystick to GTrace, we used a software that simulates
the movement of the mouse cursor when the joystick is used.

2) Protocol: In the experimental protocol described below,
each movie is watched by an annotator only once. Indeed,
the novelty criteria that influences the appraisal process for an
emotional experience should be taken into consideration [19].

Annotations were collected from ten French paid partic-
ipants (seven female and three male) ranging in age from
18 to 27 years (mean = 21.9 ± 2.5 SD). Participants

1An exhaustive list of the movies included in the LIRIS-ACCEDE dataset
as well as their credits and license information is available at:
http://liris-accede.ec-lyon.fr/database.php



(a) Screenshot before the annotation along the arousal axis

(b) Screenshot during the annotation along the valence axis

(c) Modified GTrace menu

Fig. 1. Screenshots of the modified GTrace annotation tool. Nuclear Family is
shared under a Creative Commons Attribution-NonCommercial 3.0 Unported

United States License at http://dominicmercurio.com/nuclearfamily/.

had different educational backgrounds, from undergraduate
students to recently graduated master students. The experiment
was divided into four sessions, each took place on a different
half-day. The movies were organized into four sets (Table I).
Before the first session, participants were informed about the
purpose of the experiment and had to sign a consent form
and fill a questionnaire. Participants were trained to use the
interface thanks to three short videos they had to annotate
before starting the annotation of the whole first session. The
participants were also introduced to the meaning of the valence
and arousal scales.

Participants were asked to annotate the movies included
in the first two sessions along the induced valence axis and

TABLE I
LIST OF THE 30 MOVIES ON WHICH CONTINUOUS ANNOTATIONS HAVE

BEEN COLLECTED

Sets Duration Movies

A 01:50:14 Damaged Kung Fu, Tears of Steel, Big Buck Bunny,
Riding The Rails, Norm, You Again, On time, Chat-
ter, Cloudland & After The Rain

B 01:50:03 Barely Legal Stories, Spaceman, Sintel, Between
Viewings, Nuclear Family, Islands, The Room of
Franz Kafka & Parafundit

C 01:50:36 Full Service, Attitude Matters, Elephant’s Dream,
First Bite, Lesson Learned, The Secret Number &
Superhero

D 01:51:12 Payload, Decay, Origami, Wanted & To Claire From
Sonny

the movies in the last two sessions along the induced arousal
axis. This process ensures that each movie is watched by an
annotator only once. The order of the sets with respect to the
four sessions was different for all the annotators. For example,
the first participant annotated the movies from sets A and
B along the induced valence axis and the movies from sets
C and D along the induced arousal axis whereas the second
participant annotated the movies from sets B and C along the
induced valence axis and the movies from sets D and A along
the induced arousal axis. Furthermore, the videos inside each
session were played randomly. After watching a movie, the
participant had to manually pull the trigger of the joystick in
order to play the next movie.

Finally, each movie is annotated by five annotators along
the induced valence axis and five other annotators along the
induced arousal axis.

C. Post-processing

Defining a reliable ground truth from continuous self-
assessments from various annotators is a critical aspect since
the ground truth is used to train and evaluate emotion pre-
diction systems. Two aspects are particularly important: there
are annotator-specific delays amongst the annotations and the
aggregation of the multiple annotators’ self-assessments must
take into account the variability of the annotations [20].

Several techniques have been investigated in the literature
to deal with the synchronisation of various individual ratings.
In this work, we combine and adapt the approaches proposed
by Mariooryad and Busso [21] and by Nicolaou et al. [22] to
deal with both the annotation delays and variability.

First, the self-assessments recorded at a rate of 100 values
per second are down-sampled by averaging the annotations
over windows of 10 seconds with 1 second overlap (i.e. 1 value
per second). This process removes most of the noise mostly
due to unintended moves of the joystick. Furthermore, due to
the granularity of emotions, one value per second is enough
for representing the emotions induced by movies [20], [23].

Then, each self-assessment is shifted so that the τ -sec-
shifted annotations maximizes the inter-rater agreement be-
tween the τ -sec-shifted self-assessment and the non-shifted



self-assessments from the other raters. The inter-rater agree-
ment is measured using the Randolph’s multirater kappa free
[24]. Similarly to Mariooryad and Busso [21], the investigated
delay values τ range from 0 to 10 sec. However, in practice, τ
ranged from 0 to 6 sec and the largest values (5 or 6 sec) were
rarely encountered (mean = 1.47 ± 1.53 SD). As suggested
by Landis and Koch [25], the average Randolph’s multirater
kappa free shows a moderate agreement for the shifted arousal
self-assessments (κ = 0.511 ± 0.082 SD), as well as for the
shifted valence self-assessments (κ = 0.515± 0.086 SD).

Finally, to aggregate the different ratings we use an ap-
proach similar to the one proposed in [22]. The inter-coder
correlation is used to obtain a measure of how similar are
one rater’s self-assessments to the annotations from the other
participants. The inter-coder correlation is defined as the
mean of the Spearman’s Rank Correlation Coefficients (SRCC)
between the annotations from the coder and each of the
annotations from the rest of the coders. The SRCC has been
preferred over other correlation measures since it is defined
as the Pearson correlation coefficient between the ranked
variables: the SRCC is computed on relative variables and
thus ignores the scale interpretation from the annotators. The
inter-coder correlation is used as a weight when combining the
multiple annotators’ annotations. The inter-coder correlation is
higher in average for valence (mean = 0.313 ± 0.195 SD)
than for arousal (mean = 0.275± 0.195 SD).

Figure 2 shows the raw ratings and post-processed ones
for both induced arousal and valence scales for the movie
Spaceman. The bold curves are the weighted average of the
continuous annotations computed on the raw ratings or on the
smoothed and shifted ones.

To conclude, this post-processing assigns each 1-second
segment of a movie two values: one represents the induced
arousal and the other the induced valence. Both values are
rescaled so that they range from 0 to 1. More precisely, 26,525
1-second segments are extracted from the 30 movies. The full
length movies, raw self-assessments as well as post-processed
ones are publicly available at: http://liris-accede.ec-lyon.fr/.

IV. REGRESSION FRAMEWORKS FOR EMOTION
PREDICTION

In this section, we describe the four frameworks that are
compared in Section V. All the models presented in this
section output a single value: the predicted valence or arousal
score. Thus, they all need to be learned twice: either for
predicting induced arousal scores, or for predicting induced
valence scores.

A. Deep Learning

Two models using CNNs to directly output affective scores
are investigated in this work. Both take as input the key frame
of the video segment for which an arousal or valence score
is predicted. The key frame is defined as the frame with the
closest RGB histogram to the mean RGB histogram of the
whole excerpt using the Manhattan distance.

(a) Raw and post-processed annotations for arousal

(b) Raw and post-processed annotations for valence

Fig. 2. Annotations collected for the movie “Spaceman”. Both subfigures
show at the top the raw annotations and at the bottom post-processed
annotations for (a) arousal and (b) valence. The shaded area represents the

95% confidence interval of the mean.

We used data augmentation to enlarge artificially the train-
ing set. As in [1], the model was trained using random
224× 224 patches (and their horizontal reflections) extracted
from the 256 × 256 input images. These input images were
the center crop of the key frames extracted from the video
segments in the training set and resized so that the original
aspect ratio is preserved but their smallest dimension equals
256 pixels. The training is stopped when the Mean Square
Error (MSE), measured every 500 iterations using a validation
set, increases for 5 consecutive measurements. At validation
and test time, the network makes a prediction by extracting
the 224× 224 center patch.



1) Fine-tuning: This first framework is based on the fine-
tuning strategy. The concept of fine-tuning is to use a model
pretrained on a large dataset, replace its last layers by new
layers dedicated to the new task, and fine-tune the weights
of the pretrained network by continuing the backpropagation.
The main motivation is that the most generic features of a
CNN are contained in the earlier layers and should be useful
for solving many different tasks. However, later layers of a
CNN become more and more specific to the task for which
the CNN has been originally trained.

In this work, we fine-tune the model proposed in [1] com-
posed of five stacked convolutional layers (some are followed
by local response normalization and max-pooling), followed
by three fully-connected layers. To adapt this model to our
task, the last layer is replaced by a fully-connected layer
composed of a unique neuron scaled by a sigmoid to produce
the prediction score. The loss function associated to the output
of the model is the Euclidean loss. Thus, the model minimizes
the sum of squares of differences between the ground truth and
the predicted score across training examples. All the layers
of the pretrained model are fine-tuned, but the learning rate
associated to the original layers are ten times smaller than the
one associated with the new last neuron. Indeed, we want the
pretrained layers to change very slowly, but let learn faster
the new layer which is initialized from a zero-mean Gaussian
distribution with standard deviation 0.01. This is because the
pretrained weights should be already relatively meaningful,
and thus should not be distorted too much.

We trained the new fine-tuned models using the reference
implementation provided by Caffe [26] using stochastic gradi-
ent descent with a batch size of 256 examples, momentum of
0.9, base learning rate of 0.0001 and weight decay of 0.0005.

2) Learning From Scratch: We also built and learned from
scratch a CNN based on the architecture of [1] but much
simpler since our training set is composed of 16,065 examples.
The model is composed of two convolutional layers and three
fully-connected layers. As in [1], the first convolutional layer
filters the 224 × 224 × 3 input key-frame with 96 kernels
of size 11 × 11 × 3 with a stride of 4 pixels. The second
convolutional layer, connected to the first one, uses 256 kernels
of size 5×5×96. The outputs of both convolutional layers are
response-normalized and pooled. The first two fully-connected
layers are each composed of 512 neurons and the last fully-
connected layer is the same as the last one added to the fine-
tuned model in the previous section. The ReLU non-linearity
is applied to the output of all the layers. All the weights
are initialized from a zero-mean Gaussian distribution with
standard deviation 0.01. The learning parameters are also the
same as those used in the previous section.

B. SVR

This model is similar to the baseline framework presented
in [3]: two independent ε-SVRs are learned to predict arousal
and valence scores separately. The Radial Basis Function
(RBF) is selected as the kernel function and a grid search
is run to find the C, γ and p parameters. The SVR is fed

with the features detailed in [3], i.e., audio, color, aesthetic,
and video features. The features include, but are not limited
to, audio zero-crossing rate, audio flatness, colorfulness, hue
count, harmonization energy, median lightness, depth of field,
compositional balance, number and length of scene cuts per
frame, and global motion activity. All features are normalized
using the standard score.

C. Transfer Learning: CNN as a feature extractor

The SVR is the same as in the previous section except that
the 4,096 activations of the second fully-connected layer called
“FC7” of the original model learned in [1] are normalized
using the standard score and used as features to feed the
SVR in addition to the features used in the previous section.
Thus, the CNN is treated as a feature extractor and is used to,
hopefully, improve the performance of the SVR.

V. PERFORMANCE ANALYSIS

In this section, the performance of the four well-known state
of the art architectures introduced in Section IV is compared
and discussed.

A. The Importance of Correlation

The common measure generally used to evaluate regression
models is the Mean Square Error (MSE). However, the per-
formance of the models cannot be analyzed using simply this
measure. As a point of comparison, on the test set, the MSE
between the ground truth (ranging from 0 to 1) for valence
and random values generated between 0 and 1 equals 0.113,
whereas the linear correlation (Pearson correlation coefficient)
is close to zero. However, the ground truth is biased in the
sense that a large portion of the data is neutral (i.e. its valence
score is close to 0.5) or is distributed around the neutral score.
This bias can be seen from Figure 2. Thus, if we create a
uniform model that always outputs 0.5, its performance will
be much better: its MSE is 0.029. However, the correlation
between the predicted values and the ground truth will be also
close to zero. The performance for the random and uniform
baselines are indicated in Table II. For the random distribution,
we generate 100 distributions and report the average MSE and
correlation.

To analyze the results and the performance of the compu-
tational models, the linear correlation has the advantages not
to be affected by the range of the scores to be predicted and
to measure the relationship between the predicted values and
the ground truth.

B. Experimental Results

To learn and evaluate the various frameworks, the dataset
presented in Section III and composed of 26,525 1-second
segments extracted from 30 movies is distributed into a
training set, a validation set and a test set. Approximately
60% of the data is assigned to the training set and 20% of
the data is assigned to both the validation and test sets. More
precisely, 16,065 1-second segments extracted from 15 movies
are assigned to the training set, 5,310 segments from 8 movies



TABLE II
PREDICTION RESULTS FOR VALENCE AND AROUSAL DIMENSIONS (MSE:

MEAN SQUARE ERROR, R: PEARSON CORRELATION COEFFICIENT)

System
Arousal Valence

MSE r MSE r

Random 0.109 0.0004 0.113 -0.002

Uniform 0.026 -0.016 0.029 -0.005

CNN – Fine-tuned 0.021 0.152 0.027 0.197

CNN – From scratch 0.023 0.157 0.031 0.162

SVR – Standard 0.023 0.287 0.035 0.125

SVR – Transfer learning 0.022 0.337 0.034 0.296

to the validation set and finally, 5,150 segments from 7 movies
to the test set. This distribution makes also sure that the genre
of the movies in each set is as diverse as possible.

Table II presents the results of using CNNs (fine-tuned
and learned from scratch), SVR and transfer learning for the
prediction of valence and arousal dimensions based on the
MSE and the Pearson’s r correlation coefficient. For the four
frameworks, the predicted scores as well as the ground truth
for valence and arousal range from 0 to 1. Table II shows that
for valence and arousal, the highest correlation is obtained by
the transfer learning approach. Once again, this result reveals
that CNNs provide generic mid-level image representations
that can be transferred to new tasks, including the transfer from
the classification of 1,000 ImageNet classes to the prediction
of the valence and arousal affective scores. Transfer learning
improves by 50% the performance in terms of correlation of
the second best performing framework for predicting valence,
and by 17% for arousal. However, no clear gain is obtained
for MSE. For valence, the MSE is even higher than the MSE
of the uniform strategy.

The fine-tuned CNN outperforms the other models in terms
of MSE for both valence and arousal. The gain in terms of
MSE is more important for valence. For arousal, the MSE
value is close to the performance obtained by the transfer
learning strategy. However, for both arousal and valence, the
correlation is much lower than the performance obtained with
transfer learning. Nevertheless, it is a promising result given
that the performance of this model on the training set indicates
that, despite the use of a validation set to stop the learning
phase if the performance on the validation set increased for
5 consecutive measurements, the size of the dataset is not
big enough to prevent overfitting. Indeed, previous work has
shown that overfitting and training set size are closely related
[27]. For example, the performance of the fine-tuned model
on the training set for the prediction of valence is much better
(MSE = 0.012, r = 0.79). It may also explain why the
performance of the CNN learned from scratch is lower than
the performance of the fine-tuned CNN.

Regarding the arousal dimension, it is interesting to note that
the correlation of the SVR is almost twice the correlation of
the pure deep learning frameworks. This could be explained

by the fact that both deep-learning models lack audio and
motion information, unlike the SVR framework which uses
features extracted from the audio signal and from statistics for
consecutive frames of a video segment. However, Nicolaou
et al., among others, showed that the prediction of arousal is
greatly enhanced by the use of audio and motion cues [22].
Thus, we plan to investigate the use of audio cues to produce
more accurate affective predictions for videos and to take into
account more than one frame to predict the induced affective
score of a 1-second length video segment.

VI. CONCLUSION

This work presents the performance of Convolutional Neu-
ral Networks for affective movie content analysis and intro-
duces a new dataset composed of 30 movies continuously
annotated along the induced valence and arousal axes split
into 25,525 1-second length video segments. This new dataset
is publicly available at: http://liris-accede.ec-lyon.fr/, and is
complementary to the original LIRIS-ACCEDE dataset. We
have found that the fine-tuned CNN framework is a promising
solution for emotion prediction. However, the limited size of
the training set (16,065 samples) prevents the pure CNN-
based frameworks to obtain good performances in terms
of correlation. Nevertheless, intermediate layers, originally
trained to perform image recognition tasks, are generic enough
to provide mid-level image representations that can greatly
improve the prediction of affective scores in videos. As long
as very large datasets annotated along affective dimensions
are not available, transfer learning is a convenient trade-off to
improve the performance of affective movie content analysis
frameworks.

In future work, we plan to treat the prediction of valence and
arousal as a 2D regression problem to take into account the
correlation of valence and arousal. We also plan to investigate
the use of audio cues that are known to be important to
model the arousal in particular. Finally, all the frameworks
investigated in this work are static frameworks that do not
model the dynamic of the videos. We hope that using this
temporal information may help to produce more accurate
affective predictions for videos.
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