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Abstract: Cloud computing is a highly scalable and cost-effective infrastructure for running HPC, enterprise and Web

applications. However rapid growth of the demand for computational power by scientific, business and web-

applications has led to the creation of large-scale data centers consuming enormous amounts of electrical

power. Hence, energy-efficient solutions are required to minimize their energy consumption. The objective of

our approach is to reduce data center’s total energy consumption by controlling cloud applications’ overall re-

source usage while guarantying service level agreement. This article presents Energy aware clouds scheduling

using anti-load balancing algorithm (EACAB). The proposed algorithm works by associating a credit value

with each node. The credit of a node depends on its affinity to its jobs, its current workload and its com-

munication behavior. Energy savings are achieved by continuous consolidation of VMs according to current

utilization of resources, virtual network topologies established between VMs and thermal state of computing

nodes. The experiment results show that the cloud application energy consumption and energy efficiency is

being improved effectively.

1 INTRODUCTION

Up to now, the problem of efficiently allocating

tasks in clusters has received considerable atten-

tion. Task scheduling algorithms have been pro-

posed to optimize the placement of tasks with re-

spect to performance-related criteria. Usually, those

researches do not use migration to consolidate work-

load.

In recent years, many authors have studied the

problem of power aware placement, finding theoret-

ical solutions as well as practical ones(Lawson and

Smirni, 2005)

In a similar field of research, performance of dis-

tributed systems, load-balancing techniques are often

used in order to guaranty good performance. These

techniques work by spreading load on all available

servers, which is efficient from the performance point

of view, but not from the energy point of view.

Typical performance measures include task re-

sponse time, throughput and processor utilization.

But when the goal is to reduce energy consumption,

this type of algorithms can lead to have hosts largely

under-loaded and therefore consuming energy unnec-

essarily.

In this context, this article proposes an energy-

aware anti-load balancing algorithm. This run-time

algorithm will migrate tasks while they are running,

using on-the-fly migration technology.

Classical anti-load balancing algorithms based on

migration techniques(Thiam and Da Costa, 2011) use

mainly one single parameter: Threshold. Depending

on a server load, if over a threshold, load is migrated

on other servers or a new server is switched-on in

order to keep a good quality of service. If under a

threshold, load is migrated on other servers and the

host is switched off.

Most researches on energy efficiency try to reduce

energy consumption of servers, but they usually do

not take into account the cost of cooling systems and

related infrastructure. Thus it is important to set a

minimum threshold to consolidate tasks, but also to

avoid to load hosts heavily by concentrating too many

tasks on the same host.

The main contribution of this work is to propose

an efficient algorithm that migrate tasks to reduce

energy-consumption while preserving performance

and preventing hot spots. The algorithm, called EA-

CAB, is based on results from the field of load balanc-

ing, especially on ALB (Thiam and Da Costa, 2011)



algorithm. We evaluate EACAB by simulation using

Enersim.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work, followed by the model

in Section 3. The proposed migration algorithms are

discussed in Section 4. An analysis of simulation re-

sults of the proposed algorithms is presented in Sec-

tion 5.

2 RELATED WORK

In this section, we present energy consumption mod-

els and migration techniques.

2.1 About Energy Consumption

In the past few years, people start to realize that the

energy consumption is a critical issue since energy

demand of clusters have been steadily growing fol-

lowing the increasing number of data centers. Several

strategies for energy saving in heterogeneous clus-

ters have been proposed and studied. Recently, many

energy-aware scheduling algorithms have been devel-

oped primarily using the dynamic voltage-frequency

scaling (DVFS) capability which has been incorpo-

rated into recent commodity processors. However,

these techniques are rarely compatible with optimiz-

ing both quality of service for tasks and energy con-

sumption.

Chase et al. (Chase et al., 2001) illustrated a

method of determining the aggregate system load and

the minimal set of servers that can process a load.

A similar idea leverages work in cluster load balanc-

ing to determine when to turn machines on or off to

handle a given load (Pinheiro et al., 2001). A crit-

ical problem for these ideas is that in order to turn

lightly loaded machines off or to assign workload to

newly turned-on machines, the task need to be trans-

ferred from one machine to another. But almost all

the operating systems used in the real clusters, e.g.

Windows, Unix and Linux, cannot support such kind

of operations. So in their research specific OS fea-

tures have to be developed and applied, which in turn

limits the practicability of their approaches. Research

efforts are in great need to architect green data cen-

ters with better energy efficiency. The most promi-

nent approach is the consolidation enabled by virtual-

ization. Server virtualization technology has become

known to improve utilization while reducing various

aspects of consumption and offering the ability to ride

the green trend while helping businesses save money.

There are indeed a few high-performance computers

designed with energy-saving in mind, such as Blue-

Gene/L (Adiga et al., 2002), which uses a system

on a chip to reduce energy consumption, and Green

Destiny (Warren et al., 2002), which uses low-power

Transmeta nodes. But their concern on energy sav-

ing is only confined to the design of hardware, with

nothing to do with the strategies for power control at

run-time, which also plays an important role. There

is also a large effort in saving energy for desktop and

mobile systems. In fact, most of the early researches

in energy-aware computing were on these systems.

At the system level, there has been work in trying to

make the OS energy-aware by making energy the first

class resource (Ellis, 1999). A number of good meth-

ods and ideas in these studies could be introduced to

the energy saving schemes in cluster systems.

2.2 Job Scheduling

Migration allows tasks to be moved from their orig-

inally assigned hosts to another one, at runtime.

Several virtualization software support virtual ma-

chine migration and switching off unused hosts to re-

duce energy consumption. Entropy(Hermenier et al.,

2009), a Consolidation Manager for Clusters, is a re-

source manager for homogeneous clusters, which per-

forms dynamic consolidation of resources based on

constraint programming, using VM migration. (Be-

loglazov and Buyya, 2010) proposes a novel tech-

nique for dynamic consolidation of VMs based on

adaptive utilization thresholds which reduces Service

Level Agreements (SLA) violation. Also, vendors,

like VMware with vSphere 4, includes a Distributed

Power Management (DPM) that monitors virtual ma-

chines resource utilization within the cluster.

In (Srikantaiah et al., 2008) the proposed algo-

rithm aims at finding a minimal energy allocation of

workload to servers. In all these studies the objective

is to minimize the energy consumption of the servers,

while satisfying given performance-related bounds on

the period. In (Pierson and Casanova, 2011), a model

of cluster hosts that have DVFS capacities was used

to calculate a bound on the optimal solution. Contrary

to our work, those researches only minimize servers

energy consumption while not taking into account the

impact of hot spots on the cooling system. Proposed

work considers the algorithm of load unbalancing to

improve tasks management, taking into account the

cost of migrations.



3 MODEL AND OBJECTIVES

In this section we consider a group of clusters that

consists of H computing hosts, or hosts. We model

each host with the unit: CPU cycles per time-unit. We

also consider T services, or tasks, that run on the clus-

ter. A task l is defined by its percentage of CPU need,

l. The CPU need of a task is the CPU share it would

use on a host that is dedicated to it. We will define

multiple objective functions. They define optimiza-

tion problems taking into account constraints that will

result in efficient load unbalancing algorithms. We

use an algorithm which is the opposite of load balanc-

ing because our main objective is to increase energy

gain.

3.1 Model and Hypothesis

We consider an environment represented by a large-

scale data center consisting of H = ∑N
i=1 Hi hetero-

geneous physical hosts. Each cluster i has Hi hosts.

There are N clusters. Each host is characterized by

the CPU performance defined in Millions Instructions

Per Second (MIPS). We consider Ti tasks, that run on

the cluster i.

Thus, migration must take place under several

constraints:

• Conservation of the execution context: It must be

possible to stop the execution process of the task

and restart it where it has stopped. We must be

able to get the task execution context (MIPS, size,

remaining size, state, memory, etc.), to transfer

this state via the network, to reload and restart the

task. The migration of virtual machines is used to

obtain this result;

• Slowdown prevention : Job slowdown increases

the execution time and therefore increases the en-

ergy consumed by hosts and impact users;

• Avoiding overloaded hosts to avoid heat points as

it increases energy consumption of cooling. To

measure the saturation of a cluster, we use the

over-loaded threshold ε, which we call satura-

tion. A cluster reaches saturation when its load

is greater than ε.

The proposed algorithm provides solutions to

these problems. The following steps are executed by

the scheduler:

• Estimate the requested load (Ri) of the cluster i.

This load depends on the number of task (Ti) exe-

cuted by the cluster and their load (li, j,k is the re-

quested load of task k in cluster i on host j). ri, j is

the aggregated load of all tasks on host j in cluster

i.

Ri = ∑
Hi
j=1(ri, j) ri, j = ∑

Ti

k=1(li, j,k)

If task k is not running on host j in cluster i, then

li, j,k=0.

• Computes load Ci and speed Vi of cluster i

Ci = ∑
Hi
j=1(ci, j)

Vi, j = ∑
Hi
j=1(vi, j)

ci, j Actual load of host j in cluster i

vi, j Maximum speed of host j in cluster i in Mips

• Job satisfaction Si of cluster i (same for task

satisfaction of host j in cluster i)

Si =
Ci
Ri

• constraints

∀ j,k li, j,k ∈ [0,1],
∀i, j ri, j ∈ [0,Si]
∀i Si ∈]0,1]

• hypotheses

– Communication within a cluster and between

other clusters are considered as negligible;

– For each cluster there is at least one host and

one task;

– Migration cost is considered as the same in

CloudSim. To migrate a VM, only RAM has

to be copied to another node. The migration

time depends on the size of RAM and the avail-

able network bandwidth. M migration delay =

RAM / bandwidth + C (C = 10 sec). Bandwidth

is considered as constant;

– To minimize energy consumption the load of

each host tries to verify : ∀i, j ci, j ∈ {0}∪
[γ,1]
γ is the underloaded threshold

This equation means that each host are either

switched off or with a load over γ;

– Besides the under-load threshold we add an-

other parameter ε corresponding to saturation

and acting as a overload threshold. To verify

that there is no over-loaded hosts :

∀i, j ci, j ≤ ε

We will use the classical linear model of power

consumption in function of load :

∀i, j Pi, j = P
i, j
min +ci, j(P

i, j
max −P

i, j
min) Therefore the

total power consumption of the system is: P =

∑N
i=1 ∑

Hi
j=1 Pi, j To obtain energy consumed during a

time slice, instantaneous power has to be multiplied

by time. Total energy is then obtained by summing



all the energy of those time slices. An objective is to

minimize this energy.

3.2 Objectives

The main objective of our approach is to improve

cloud’s total energy efficiency by controlling cloud

applications’ overall energy consumption while en-

suring cloud applications service level agreement.

Therefore, our work must take place under several ob-

jectives :

• Ease of task Management : Managing jobs can

be a tremendous task which requires many highly

experienced IT experts. Providing an easily con-

figurable system can significantly reduce the costs

and ease the system management. One of our

goals is to design a system which requires mini-

mal human intervention to be configured. More-

over, once the system is deployed and configured,

it becomes increasingly important to perform up-

dates and/or add new servers. In such scenar-

ios servers will be required to brought offline and

added back later. Our goal is to design a system

which is flexible enough to allow for dynamic ad-

dition and removal of servers. Finally, as system

components can fail at any time, it is desirable for

a system to heal in the event of failures without

human intervention. Consequently, we aim at de-

signing a system using self-healing mechanisms

to enable high availability.

• Energy Efficiency: Over the past years, rising en-

ergy bills have resulted in energy efficiency to

become a major design constraint for distributed

systems providers. Given that traditional clouds

are rarely fully utilized, significantly energy sav-

ings can be achieved during periods of low uti-

lization by transitioning idle servers in a power

saving state. However, as servers are rarely fully

idle, first idle times need to be created. One of

our goals is to propose task placements manage-

ment algorithms which are capable of creating

idle times, transitioning idle servers in a power

saving state and waking them up once required

(e.g. when load increases).

– Avoiding overloaded hosts to avoid heat points

as it increases energy consumption of cooling.

To measure the saturation of a cluster, we use

the over-loaded threshold ε, which we call sat-

uration. A cluster reaches saturation when its

load is greater than ε.

4 ENERGY AWARE CLOUDS

SCHEDULING USING

ANTI-LOAD BALANCING

ALGORITHM (EACAB)

Selection policy selects appropriate tasks for migra-

tion. Location policy determines then suitable hosts to

receive them. In other words, they locate complemen-

tary hosts to/from which they can send/receive tasks.

Current version of our algorithm uses tasks load to

take those decisions. In the following, we present an

algorithm (EACAB) based on the merged principle of

Comet(Jeon et al., 2010) and of anti-load balancing.

4.1 Credit based Anti-load Balancing

Model

The algorithm proposed in this article aims at maxi-

mizing Credit which is a value used when calculating

the energy-efficiency of the system behavior.

This Credits algorithm is an adaptation of the The

Comet Algorithm (Chow and Kwok, 2002), a load bal-

ancing algorithm. Comet is based calculating credit

for mobile agent. Each agent in Comet is trying to

maximize its own credit by moving between hosts.

An agent ai uses the following formula:

Ci =−x1wi + x2hi − x3gi

Where wi : computation load of the host running

agent ai, hi and gi : communication load inside and

outside agent ai, and where x1, x2 and x3 are posi-

tive float coefficients which constitute dependence as-

signed to each agent from its creation to estimate its

affinity relative to their host. Thus an agent will move

to a new host if it result in a lower host load, or if it

reduces external communication or if it increases in-

ternal communication. This algorithm does not take

int account migration cost.

In the same way, the proposed algorithm in this

article works by associating a credit value with each

host. The credit of a host depends on the host, its cur-

rent workload, its communications behavior and his-

tory of task execution. When a host is under-loaded

(load < globally defined threshold), all its tasks are

migrated to a comparatively more loaded host.

In dynamic load unbalancing schemes, the two

most important policies are selection policy and lo-

cation policy. Selection policy concerns the choice of

the host to unload. Location policy chose the desti-

nation host of these moved tasks. An important char-

acteristic of selection policy is to prevent the desti-

nation host to become overloaded. Also, migration

costs must be compensated by the performance im-

provement.



Each host has its own Credit, which is a float

value. The higher a host Credits, the higher its chance

its tasks to stay at the same host. The credit of a host

increases if:

• Its workload or the number of tasks in the host

increases;

• Communication between its tasks and other hosts

increases;

• Its load increases while staying between the

under-loaded threshold γ and the over-loaded

threshold ε.

On the contrary, the credit of a host decreases in the

cases below:

• Its workload or its number of tasks decrease;

• It has just sent or received a message from the

scheduler which indicates that the host will prob-

ably become empty in a short while.

The Credit of a host will be used in the selection pol-

icy: the host which credit is the lower is selected for

tasks migration. The location policy identifies the re-

mote host with the highest credit which is able to re-

ceive the tasks selected by the selection policy with-

out being over-loaded. Figure 1 shows an example of

migration. The percentage represents here the occu-

pancy rate of each task on the host.

Figure 1: Different contexts for a migration.

4.2 Algorithm Description

In Comet mobile agents move between hosts accord-

ing to their affinities (credit) to achieve load balanc-

ing. Here we work with tasks which migrate depend-

ing on the load of the host. We apply the Credit con-

cept to the migration of tasks. EACAB algorithm

is based on the technique of calculating credit (σi, j)
of each host ( j in cluster i) by the same method of

Comet(Jeon et al., 2010). In EACAB, the formula is

then:

σi, j = ci, j − ri, jti, j + ε− γ

Were ci, j is the actual load of host j in cluster i,

ri, j is its requested computation load, ti, j is its task

satisfaction, and γ and ε are respectively under-load

and over-load threshold.

EACAB provides task scheduling strategy, which

dynamically migrate tasks among computing hosts,

transferring tasks from underloaded hostssec4 to

loaded but not overloaded hosts. It balances load of

computing hosts as far as possible in order to reduce

program running time.

The decision making algorithm behaves globally

as follows:

• If σi, j < 0 , the host j of cluster i is over-loaded or

under-loaded.

• If ci, j > ε , the host j of cluster i is over-loaded

• If ci, j < γ , the host j of cluster i is under-loaded

This algorithm is described in Algorithm 1. For

the sake of simplicity, corner cases such as all nodes

over-loaded are not included. Selection policies take

into account credits and migration cost. The selected

host (node j′ in cluster i′) is the one with the min-

imun σi′, j′ weighed by the migration cost between the

current position of the job and the potential host. If

τi, j,i′, j′ is the migration cost between the node j in

cluster i and the node j′ in cluster i′, the selected host

is the one that minimize : σi′, j′ .
τi, j,i′, j′

Maxi′′, j′′ (τi, j,i′′, j′′ )

4.3 Analysis of the Algorithm

This migration algorithm’s goal is to minimize the en-

ergy. It is composed of two parts. In the first part, it

checks for each host i if the load is below the thresh-

old. If this is the case, it locates the host j that will

receive all tasks of host i. The second part manages

hotspots. To reduce the load of an overloaded host, it

begins to migrate the slowest task. Selection policy

will choose the task that will stay the longest on the

host. Policy of localization will then identify the host

that will receive the task without exceeding its capac-

ities (ie. its load after migration will still be under ε).

So this host will be the new destination of the task.

5 EXPERIMENTS AND RESULTS

In order to evaluate the gains of EACAB compared

to classical algorithms, we implemented this algo-

rithm in EnerSim. This simulator is based on Grid-

Sim(Calheiros et al., 2011), where we added power

consumption (extended from CloudSim(Buyya and

Murshed, 2002) implementation) and virtual machine

(mainly their migration). It is a java event driven sim-

ulator of grids, cluster and Clouds. It provides infor-

mation about execution times, but also about instan-



Algorithm 1: Energy aware clouds scheduling using

anti-load balancing algorithm (EACAB).

Calculate ci, j , σi, j // Load, credit of node j in

cluster i

Sort in ascending order hosts according to the value

of their credit

for (Morig in sorted host j in all cluster i) do

Update ci, j , σi, j for remaining hosts

Sort the remaining hosts (per load)

if (ci, j < γ) then

// In case Morig is under-loaded

for (Mdest in all host j′ in all cluster i′) do

if Morig 6= Mdest and (ci′, j′ ≥ γ) and (ci, j +
ci′, j′ < ε) then

Add Mdest to potential destination set

Potential

end if

Migrate all task from Morig to the element

with lower credits weighted by migration

cost in Potential

end for

else

// Morig can be over-loaded

while (ci, j > ε) do

// In case Morig is over-loaded

Calculate lmin
i, j // load of the lightest task in

Morig

for (Mdest in all host j′ in all cluster i′

sorted by their credits) do

if ((Morig 6= Mdest) and (ci′, j′ + lmin
i, j ¡ ε)

then

Migrate task from Morig to Mdest .

end if

end for

end while

end if

end for

taneous power consumption and energy consumption

of tasks.

5.1 Simulation Environment

• Grid : 100 clusters of 100 hosts each. Each host

speed is between 1GHz and 3.06GHz

• Jobs : 1000 randomly generated tasks

– Duration between 10 and 40s

– Requested load between 10% and 100%

• Host shutdown and wakeup energy are assumed to

be zero as they are fast compared to the execution

time of tasks.

• Hosts have two different power states for each

core: Switched on and switched off. While

switched on, power consumption is linear in func-

tion of load between Pmin and Pmax. Those values

are different for each host and are respectively be-

tween 75 and 150W, and 200 and 250W.

In the following we compare EACAB with other

algorithms.

• Dynamic First Fit: a dynamic First Fit where

host are sorted according to their maximum power

consumption.

5.2 Experimental Results

It is designed to be a centralized coud scheduler that

emphasizes on cloud scheduler interoperation, and

complemented by a dynamic resource discovery ap-

proach on centralized network.

In this subsection, we describe the simulation

study performed to evaluate the performance of our

algorithms in terms of energy minimization as well as

the execution time and the number of migrations.

Figure 2: Energy of algorithms compared to dynamic first
fit with unsorted hosts. Lower is better.

5.3 Algorithm Description

The first observation is that for two algorithms, EA-

CAB consumes the least energy while Dynamic First

Fit algorithm consumes the most energy (see figure

2), when the number of jobs T > 350. For a small

number of tasks our algorithm leads to a significant

energy consumption. Our EACAB algorithm per-

forms even better. The second observation is that EA-

CAB algorithm is able to reduce the energy consump-

tion by 5 percent to 20 percent when job increases

from 350 to 1000.

Figures 3 and 4 show respectively the maximum

and median number of switched on host as a func-

tion of task number. When jobs increase then the

number of nodes switched on also increase, leading

to a higher power consumption. This is particularly

true if there is no migration after the initial placement

of tasks. Hence, the gain of our algorithm increases



Table 1: Makespane of algorithms compared to First Fit with sorted hosts.

Number of Jobs

Algorithm 100 200 300 400 500 600 700 800 900 1000

Dynamic first Fit 265.53 374.4 580.37 631.22 615.04 870.55 813.83 1006.31 853.68 1270.73

EACAB 230 225.81 321.95 399.45 495.09 589.84 565.48 872.3 738.43 815.65

Figure 3: Maximum host switched on with EACAB.

Figure 4: Median host switched on with EACAB.

power-wise with the number of tasks because migra-

tion is activated. Computing resources are fully used

in both cases at the start of the experiment. In the

case of the consolidation, less hosts are switched-on

because we can adapt to the workload dynamism. The

median has the same behavior but the maximum num-

ber of hosts is 50%. The observed gain increases with

the number of tasks and becomes constant when hosts

are saturated.

The good results of EACAB comes from the fact

that with the increase of the number of tasks, it has

more possibilities to migrate tasks. It can then better

allocate tasks on computing resources, reducing the

number of switched-on hosts.

Figure 5: Job mean load with EACAB.

Due to the thresholds of EACAB, it would be pos-

sible to reduce further the number of switched on

hosts but it would overload remaining hosts. Those

hosts would become hot points and would have a neg-

ative impact on cooling. In order to prevent overload-

ing, EACAB adjusts load as shown in Figure 5. If

the number of tasks increases, it will reduce the mean

actual load they will obtain.

Figure 6: Variation of threshold vs energy gain with EA-
CAB

Figure 6 shows that our algorithm is better than

classical Dynamic First Fit regardless of the threshold

when the number of tasks is important.

The choice of γ is still important. There is a en-

ergy consumption difference of 10% between the best

and the worst value. The worst value is 10% more ef-

ficient than dynamic first fit, the best one is 20% more

efficient.

For small number of tasks, energy consumption

increases because of the many migrations. To choose

this value it is omportant to consider the dynamisme

of the tasks. As said previously, increasing γ, reduce

energy consumption at the cost of consolidating more

and more the tasks.

EACAB has the shortest execution time when the

number of jobs increases. The result implicates that

the scheduling algorithm such as EACAB can lever-

age interconnects with migrations to achieve high per-

formance and energy efficiency. Table 1 shows that

our algorithm produces faster scheduling regardless

of the number of jobs.

6 CONCLUSION

In this paper, we presented and evaluated our energy-

efficient migration algorithm for clouds. This algo-

rithm is based on the principle of Anti-load balancing.



It provides energy-efficiency improvement compared

to classical load unbalancing algorithms.

Our main problem was to optimize energy con-

sumption given task performance constraints. Energy

consumption is to be taken in a broad way as we try

to prevent hot spots to reduce impact on cooling.

We have compared EACAB to classical solutions

over a range of problem instances using simulation.

EACAB parameters lead to a family of heuristics that

perform well in terms of energy savings while still

leading to good task performance.

EACAB consolidate tasks on a subset of the clus-

ter hosts judiciously chosen depending on the charac-

teristics and state of resources.

This algorithm has a low computational cost. It

can then be employed in practical settings. Over-

all, the proposed EACAB algorithm can compute al-

locations effectively with an important energy gain.

Experiments showed that with our algorithm we ob-

tained a 20% gain over standard algorithms. However,

it is important to investigate further how to improve

the quality of service, but also the optimization algo-

rithm.

Also current version of EACAB is centralized. We

aim at distributing this algorithm, so that each cluster

can exchange tasks, based on their respective credits.

Future version of EACAB will also take int account

other measures to compute Credit such as network

communication patterns.
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