Sébastien Laborie
email: sebastien.laborie@iutbayonne.univ-pau.fr

Bouchra Soukkarieh
email: bouchra.soukkarieh@irit.fr

Florence Sèdes
email: 3florence.sedes@irit.fr

On Using Generic Profiles and Views for Dynamic Web Services Adaptation

Keywords:

The emergence of mobile technologies allows users to be connected to services anytime, anywhere and anyhow. However, this mobility requires new constraints on the execution of the services and their presentations to users. Hence, these ones must be selected and adapted according to not only the user's profile but also his context.

In this paper, we present a new context-aware adaptation architecture based on Web Services, named CA-WIS . Our proposal aims users to interact with web services that correspond to their needs and their contexts.

I. INT RODUCTION

Nowadays, users use various devices, such as laptops, smartphones, tablets, and several types of networks (remote and local) to access resources and services. These context varieties create an increasing need for users to execute dynamically services that correspond to their current context.

In order to ensure the usability of Web Services (WS), it is necessary to integrate into Web Service architectures context informat ion. Th is context must describe information about the user's environment (device, network, location …) and his profile (preferences, static characteristics...).

Therefore, our objective is to propose a context-aware adaptation architecture based on Web Services. To realize this objective, we extended the classic Web Service architecture by adding an adaptation layer that contains various components dedicated to the management of the adaptation process, the user and the service contexts. Our architecture is named CA-WIS (Context Adaptation of Web Information System) platform. In this platform, we take into account the context in two phases: Ø The research phase: select a list of relevant services that correspond to the user needs and context.

Ø The interaction phase: adapt dynamically the executed services to the evolution of the user environment.

This platform allows users on the one hand to receive a list of adaptive Web Services to his current context, and on the other hand to interact with web services that correspond to their needs and their current contexts. The adaptation process in this platform is based on a methodology based on data modeling [START_REF] Soukkarieh | L'adaptation au contexte dans un système d'information web. Plateforme CA-WIS[END_REF]. In this methodology, Web Services are provided with specific profiles (i.e., service descriptions) and views (i.e. the service output rendering, such as a Web page). Then, based on the current user context, it selects the relevant service profiles and views that comp ly with the user's constraints. However, in such a framework, it might be possible that no specific view corresponds to the user context. Hence, in such a case, the user could not use the desired service. Furthermore, since each specific service profile is co mpared to the current user context, if many services are provided and if the user context evolves frequently, the system may be overloaded.

In order to overco me these limitations, we propose, in this paper, an enhancement of our framework that aims to group some specific profiles and views into generic profiles and views. This grouping accelerates the search process of relevant specific service profiles and views. Moreover, if not relevant specific view corresponds to the user's context, based on generic views, our method can generate new specific views. Consequently, our proposal ensures the usability of Web Serv ices at anytime, anywhere and anyhow.

The remainder of this paper is structured as follo ws. In Section 2, some web service architectures related to our CA-WIS platform are presented. Section 3 describes our Web Service architecture which dynamically takes into account the user contexts. Section 4 details our proposed algorithms for constructing generic profiles and views. Section 5 illustrates our method that uses generic profiles for selecting specific service profiles and views. Section 6 describes how new generic views may be used to compute new specific views. Section 7 presents our prototype. Finally, Section 8 concludes the paper with brief concluding remarks.

II. RELATED WORK

In this section, we take a look at some frameworks that take into account the user context in order to select and adapt Web Services.

v [START_REF] Cremene | Adaptation dynamique de services[END_REF] has proposed an architecture that aims to realize dynamic services adaptation according to the user's context. Th is architecture takes into account the user and services context. These contexts are handled by an "Adapter" component in this architecture to verify the compatibility between the user profile and the profile of each component of the service. When the Adapter detects the incompatibility between the profiles, it starts an adaptation process by adding, removing or replacing co mponents of the service.

Indeed, the main d isadvantage of this architecture is its complexity.

v [START_REF]Découverte et fourniture de services adaptatifs dans les environnements mobiles[END_REF] has presented an architecture that aims to dynamically adapt services to the user's context where each service is composed of a set of interconnected components. Several versions of the components of each service are saved. The service adaptation aims to select the service components that correspond to the context.

Indeed, the use of this architecture leads to a server overload.

v [START_REF] Kazi-Aoul | Une architecture générique pour la fourniture de services multimédia adaptables illustration par un scénario[END_REF] has proposed a generic architecture in order to provide adaptable services to mobile users. A database of multimedia data and another database of services and/or services components are generated by the service provider. These two databases contain several versions of service data and components in order to select the relevant version of the service to user's context.

The adaptation method used in this architecture causes the saturation of the system.

v [START_REF] Pashtan | Personal Service Areas for M obile Web Applications[END_REF] has proposed the CATIS system wh ich has been evaluated in the tourism do main. This system adapts only the result of the services to the user's context. Moreover, all the results displayed are always presented in text mode.

Every framework presented above aims to save multiple versions of services components and/or data in order to realize the adaptation process. These methods used in the previous frameworks usually cause the slow down and the saturation of system. Moreover, it may happen that no service could be provided to the user even if he wants to access to a service at anytime. Therefore, we propose in this article a new method that aims to treat this problem and to propose some relevant solutions.

III. CA-WIS PLATFORM

The architecture of our CA-WIS platform is based on the WS architecture (Figure 1) that is composed of three entities (provider, user, and registry) and is based on three standards (WSDL (Web Service Description Language) [11] , UDDI (Universal Description, Discovery and integration) [START_REF]W3Schools[END_REF] and SOAP (Simple Object Access Protocol) [9]). The service provider builds the service and publishes its description in a registry. The user needs are translated into requests that are transmitted to the WS registry. Once the service is found, the user will obtain direct interaction with the service [5] . 1) The Registry layer that corresponds to a registry of service description offering facilit ies that publish services for prov iders and that searches services for users. This layer doesn't play any role in the interaction phase; it is used exclusively during the research phase.

2) The Services Management layer is responsible for managing the adaptation process and computing the final results to the user. This fundamental layer is composed of two components.

i.

The "Requester" that is responsible of verify ing the user's context evolution by contacting the User Context Management co mponent.

ii.

The "Adaptation Model" that is responsible fo r the adaptation process.

3) The Context layer is responsible for capturing and managing the user and the service context. It is co mposed of two modules: i. User Context Management that is responsible for capturing the user context and storing it in a database (User Model (UM)). The user context is obtained in an explicit and imp licit way. More precisely, when the user launches his request, he may express explicit ly his static characteristics and his preferences but remaining characteristics (localization, network, etc) are obtained implicitly.

ii. Services Context Management that is responsible for the extraction of the Web Services contexts, the storage of these contexts in a database (Domain Model (DM)). The service context is exp ressed directly by the service provider.

The search of the web services and the interaction between the user and the service is not direct but is realized by the Services Management. For each connection from the user to the services, the Services Management, thanks to its components, verifies the evolution of the user's context and the compatibility between the new user context and the service context. If the two contexts are not compatible, the Services Management triggers an adaptation process by the Adaptation Model component.

Our CA-WIS plat form requests the Web Service provider to provide several views of its service data comply ing with different profiles. The adaptation process realized by the Services Management aims to find the relevant view that corresponds to the current user profile. If the Services Management doesn't find a relevant view, it can't realize an adaptation process (for more detail, see [START_REF] Soukkarieh | Dynamic services adaptation to the user's context[END_REF]).

To solve this problem, we propose, in this paper, a new method that aims (1) to accelerate the selection of specific service profiles and views by grouping the profiles and views provided by the service provider into generic profiles and views, and (2) to ensure the execution of services by generating specific v iews fro m generic views.

In the next parag raph, we detail how the Services Management uses generic profiles and generic v iews to adapt dynamically service to the user's context.

IV. CONST RUCTING GENERIC PROFILES AND VIEWS

Web Service providers may produce several Web Service presentations complying with different profiles. For instance, Figures 3 and4 illustrate two Web Services presentations which allo w d ifferent kind of iPhone users to see particular information about a restaurant. Specific profiles (e.g., Sp1 and Sp2) have been identified in order to execute the web services correctly on a target device. Moreover, specific views (e.g., Sv1 and Sv2) comply ing the specific profiles have been designed accordingly.

In the following, we show how to construct, fro m specific profiles and views; generic profiles (§4.1) and views (§4.2). (C) Specific View 2 (Sv2).

Fig. 4 Another specific presentation for iPhone

A. Constructing Generic Profiles

A profile is a description of all the capabilities and limitat ions of a given terminal [4] . Usually, pro files contain the description of both the software and hardware features of a terminal. Soft ware capabilit ies list, for example, the supported codecs, whether or not the operating system is capable of handling parallel v ideos or audio streams, etc. The hardware capabilit ies are given in terms of the physical display size, the input modalities, such as keyboard and pointers. Profiles may also capture user preferences. For example, the user may prefer a particular text magnification for readability purposes. In a mo re abstract way, a profile can be viewed as a set of constraints on presentations introduced by profile descriptions. Examples of profiles are illustrated in Figures 3(b). Thanks to our above defined procedure, all preferred media are added into Gp. Moreover, the bandwidth constraints and the used languages are merged into Gp. Actually, the bandwidth should be superior to 1Mo for executing both presentations. Furthermore, the presentations may be played in French or in English. Figure 5 presents the overall generic pro file Gp integrating all the specific contextual in formation of Figures 3(b In the next paragraph, we present how to construct fro m specific views, generic views and we show our objective of constructing generic profiles and views.

B. Constructing Generic Views

A view corresponds to a web service presentation structure. As done, for instance, for XHTM L documents, a view can be co mposed of elements and sub-elements characterizing the organization of the presentation. The root element of a view refers to the whole presentation and each leaf corresponds to med ia content.

Examples of specific v iews are presented in Figure 3(c) and 4(c). Fro m such views, we propose to compute a generic view co mbin ing all of their informat ion.

Definiti on 2 (A generic view):

A generic view is a structure which co mbines informat ion about specific views . Moreover, each element of the generic view is associated to a value which corresponds to its importance. For instance, if an element appears many times in some specific views, this will increase the importance of the element inside the generic view. When the algorithm stops, it p roduces the generic view illustrated in Figure 6. The construction of generic p rofiles fro m several specific profiles, and the generic views fro m several specific views helps to simplify and accelerate the adaptation process. So, the Services Management don't need to calculate the distance between all the specific profiles and the user's context, but it selects, first, a relevant generic profile and view, then, it searches a relevant specific profile and view that correspond to the user's context fro m the specific profiles and views attached to the relevant generic profile and view. In the next paragraph, we exp lain how the generic profiles are used for selecting specific views.

V. USING GENERIC PROFILES FOR SELECTING SPECIFIC VIEWS

Let consider that many specific views can be specified by a Web Service provider. Each specific view is linked to a particular profile. Hence, fro m a user profile, the goal of adaptation is to find the specific view that satisfies most of the target device constraints. That is, compute a distance between the user profile and the Web Service profile. An Adapted solution is thus the specific profile (associated with the specific v iew) that is close to the user profile.

For that purpose, since the user profile and the Web Service profile have the same s tructure, we have proposed the following distance between profiles: Tcu/Tcs: tree of user and service context Ecui/ Ecsi: element i of the service/user context W(Ecui): weight of Epui element of the user context N: nu mber of the context elements In this equation, we co mpare the content of each element of the user's context (Ecui) with the same e lement of the service context Ecsi calculat ing a degree of correspondence between the two (DC). If both have the same content, then DC takes the Value 1, otherwise 0. For examp le, if the user uses an operating system such as Windows, while the service works with a Unix system, the two systems are different, their DC is equal to 0. To take into account the degree of importance of the info rmation associated to the user's context, we must multip ly DC with W(Ecu i). But sometimes the user does not provide weights for all preferences in this case and to prevent it assumes 0 ß = 0.01. However, fro m a particular user profile it is not suitable to compute a distance between all the specific profiles. Actually, the framewo rks presented in the Related Work DC (Epu i, Epsi) = 1 if Epui = Epsi 0 else section explore indiv idually each service description and compute such kind of distance in o rder to select the relevant services. In many cases, this situation could overload the system. First, because many specific profiles could have been specified. Second, because the user profile may vary a lot of t imes. Hence, many co mparisons have to be computed and updated.

Consequently, we propose to group some specific profiles and views into the generic structures presented in the previous section. Groups can be formed fo r part icular devices, particular characteristics. . . Moreover, groups can be formed according to the distances between specific profiles. More precisely, if two p rofiles are quite similar thanks to the above defined distance, it means that they could be grouped into a generic structure.

Thanks to generic profiles and views, we can search more efficiently an adapted solution by: (1) searching a generic web service profile that comply most of the user profile and (2) fro m the selected generic profile, searching a corresponding specific web service that comply most of the user profile. It is obvious that this search complexity is less than exploring ind ividually all the specific possibilities.

VI. USING GENERIC VIEWS FOR GENERATING SPECIFIC VIEWS

Let consider that it might be possible that no specific views can be executed fro m a user profile. For instance, all specific profiles may have a low distance with the user profile, even if the distance fro m the generic pro file is better. This means that from a generic view it is possible to generate a new specific v iew better than the existing ones. Example 3. A user which is using his iPhone may prefer that the service content is in the form of text and video only.

Turn back to the Figures 3 and4, we note that there isn't specific view relevant with the prev ious user profile (neither Sv1 nor Sv2).

v

The first specific view of Figure 3 (c) (i.e., Sv1) is relevant with the user that prefers a service displaying images and videos only.

v
The second specific view of Figure 4 (c) (i.e. Sv2) is relevant with the user that prefers a service presenting images and texts only.

In order to solve such a situation, we have defined the following procedure for generating specific views fro m a generic view:

For each element of the generic view, if it co mp lies with the user profile, instantiate it, otherwise do not consider it. Hence, many adapted solutions can be computed fro m a generic view. The solutions that contain most of objects that comply with the targeted profile are p riv ileged solutions. Hence, a score is computed accordingly. Figure 7 presents the specific v iew generated by our procedure fro m the generic view presented in Figure 6. In many cases, when no specific v iew corresponds to the current user profile, the frameworks presented in the Related Work section provide no solution. Our proposal ensures to the user the usability of Web services at anytime even if no alternative has been specified in advance according to his context.

Restaurant

VII.

IMPLEMENTATION A Java-based prototype has been implemented to validate our proposal. In this prototype, we handle many Web Services related to restaurants, weather forecast, traffic informat ion… In Figure 8, we present a Web Service providing informat ion about a restaurant. More precisely, we illustrate in the figure one specific view when executing this Web Service. Each time a new service is imported into the system, its service description is added to the registery and the generic profiles and views are updated if needed.

Vidéos Texte Images

Fig. 8 A Web Service presenting a restaurant Consider now a user that uses an iPhone and that prefers contents in the form of texts and images exclusively. All these contraints are specified in h is profile. In such a case, the specific view presented in Figure 8 cannot be executed correctly on his device (because it contains videos that are not supported). Our prototype will first select a generic profile close to the user profile , thanks to the distance detailed in Section 5. Then, it executes the relevant specific view associated to such a generic profile. Since, a specific view co mplies with the user profile, this one is direct ly presented to the user. Figure 9 illustrates the adapted result, note that now no videos are presented and that the user could continue using the Web service with his handled device. In this first example, an alternative specific view that corresponds to the user profile has already been designed beforehand. However, thanks to generic profiles, we do not search in the set of all the specific service profiles. In fact, by selecting a relevant generic profile, we search only specific profiles that are potentially good candidates.

Of course, if the user profile is changing, e.g., the user is now using a laptop and prefers contents in the form of videos and images, our CA-WIS plat form detects on-the-fly and transparently such evolution and, if the prev ious displayed specific v iew does not comply with the current user profile, it d isplays another relevant specific view as shown in Figure 10 by using the same process. Suppose now that the service providers have designed no alternative beforehand for the following situation: the user uses his laptop and prefers that contents must be in the form of texts and video. In contrast with the related work, our platform selects a generic profile but won't find a specific service profile that complies with the user profile. In such a case, based on the generic view our p latform will compute a new specific view that does not already exist thanks to the method presented in Section 6. Concretely, this method will preserve as much as possible the information designed by service providers, instead of transforming and degrading the contents. Figure 11 presents the new computed specific view. Note that it merges the texts presented in Figure 9 and the videos presented in Figure 10. To achieve the adaptation process in this architecture, we focus on a new method. This method aims to group some specific profiles and views into generic profiles and views, in order to accelerate the selection of relevant Web Service.

Furthermore, if no specific views can be executed fro m a user profile, based on generic views, we have proposed to generate new specific views to ensure users to still interact with desired services. Finally, our p roposal has been tested through our CA-WIS platform.

Fig. 1

 1 Fig. 1 Web Service architecture In our CA-WIS architecture, we extend the WS architecture by adding an adaptation layer wh ich contains various components dedicated to the context acquisition and adaptation. The context, in this architecture, is presented by a generic model regarding the user and the service (for more

Fig. 3 A

 3 Fig. 3 A specific presentation for iPhone

Example 1 .

 1) and4(b). Fro m such specific profiles, we propose to compute a generic profile co mb ining all their constraints.Definiti on 1 (A generic profile):A generic p rofile refers to a list of constraints and groups several specific contextual informat ion into a global structure.In order to construct a generic profile Gp fro m some specific profiles Spi, we have defined the following procedure:v for each constraint Ck in Spi • if Ck Gp, addCk into Gp; • otherwise, merge Ck with its corresponding constraint C in Gp, e.g., add Ck in the set of constraints C or relax C in order to take into account Ck. Suppose that we want to construct a generic profile Gp fro m the specific p rofiles Sp1 (Figure. 3(b)) and Sp2 (Figure. 4(b)

) and 4(b). c1: Required bandwidth > 1Mo. c2: Languages = {French, English}. c3: Images are preferred. c4: Videos are preferred. c5: Texts are preferred.

Fig. 5 A

 5 Fig. 5 A generic profile Gp constructed from Fig. 3(b) and Fig. 4(b)

Algorith m 1 ,Example 2 .

 12 named ConstructGenericView, constructs a generic view given different specific v iews. Suppose that we want to construct a generic view Gv fro m the specific views Sv1 (Figure 3(c)) and Sv2 (Figure 4(c)). Firstly, we call the algorithm ConstructGenericView(root(Sv1), root(Gv)). Actually, it copies Sv1 into Gv and all arcs in Gv are labeled by the Value 1(Sv2), root(Gv)) in order to update Gv with new in formation co ming fro m other specific views, here Sv2. Fro m lines 1 to 4, the algorith m in itializes the follo wing lists: Lch ildsn = {PartA, Part B}, Lch ildgn = {PartA}, L1 = {PartB} and L2 = {<PartA, PartA>} (The function identicalNodes returns a list of couples where its specific and generic elements are identical).Fro m L1, the algorith m adds into Gv the subtree corresponding to Part B and all arcs are labeled by 1 (Lines 5 to 8). Fro m L2, we increment the importance of the PartA (it appears in Sv1 and Sv2, hence v = 2) and the a lgorith m is calling recursively on the elements of the couple of nodes <PartA; PartA> (Lines 9 to 12). During this recursive call, the new values for the lists follow: Lchildsn = {Image1, Image2, Image3, Image4, Image5}, Lchildgn = {Image1, Image2, Video1}, L1 = {Image3, Image4, Image5} and L2 = {<Image1, Image1>, <Image2, Image2>}. Fro m L1, its elements are added into the generic view Gv. Fro m L2, we increment the importance of the Image1 and Image2, and the algorith m is calling recursively on its elements . . . This process is repeated until all elements in L2 have been treated, i.e., until new information have to be incorporated into Gv.

Fig. 6 A

 6 Fig. 6 A generic view Gp constructed from Figure 3(c) and figure 4(c).

Fig. 7

 7 Fig. 7 Specific view generated (Sv3)

Fig. 9

 9 Fig. 9 Result of service adapted to iPhone

Fig. 10

 10 Fig. 10 Result of service adapted to the laptop

Fig. 11

 11 Fig. 11 Result of service adapted to the iPhone As you can see, our CA-WIS platform is able (1) to select efficiently specific views thanks to generic service profiles and (2) to produce new alternatives that has not been designed beforehand by service providers, thus ensuring to users the continuity and the usability of Web Services at anytime, anyhow and anywhere. VIII.