
HAL Id: hal-01193101
https://hal.science/hal-01193101v1

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On using generic profiles and views for dynamic web
services adaptation

Sébastien Laborie, Bouchra Soukkarieh, Florence Sèdes

To cite this version:
Sébastien Laborie, Bouchra Soukkarieh, Florence Sèdes. On using generic profiles and views for
dynamic web services adaptation. Journal of Modern Internet of Things, 2013, 2 (3), pp.18-23. �hal-
01193101�

https://hal.science/hal-01193101v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12738

To cite this version : Laborie, Sébastien and Soukkarieh, Bouchra and Sèdes,
Florence On using generic profiles and views for dynamic web services
adaptation. (2013) Journal of Modern Internet of Things, vol. 2 (n° 3). pp.
18-23. ISSN 2169-6446

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

On Using Generic Profiles and Views for
Dynamic Web Services Adaptation

Sébastien Laborie
*1

, Bouchra Soukkarieh
 2

, Florence Sèdes
 3

IRIT, Université Paul Sabatier, 118 Route de Narbonne, F -31062 TOULOUSE

LIUPPA – T2i, Université de Pau et des Pays de l’Adour
*1

sebastien.laborie@iutbayonne.univ-pau.fr ;
2

bouchra.soukkarieh@irit .fr;
3

florence.sedes@irit.fr

Abstract- The emergence of mobile technologies allows users to
be connected to services anytime, anywhere and anyhow.

However, this mobility requires new constraints on the

execution of the services and their presentations to users.

Hence, these ones must be selected and adapted according to

not only the user's profile but also his context.

In this paper, we present a new context-aware adaptation

architecture based on Web Services, named CA-WIS. Our

proposal aims users to interact with web services that

correspond to their needs and their contexts.

Keywords- Context-Aware Adaptation; Web Service

I. INTRODUCTION

Nowadays, users use various devices, such as laptops,

smartphones, tablets, and several types of networks (remote

and local) to access resources and services. These context

varieties create an increasing need for users to execute

dynamically services that correspond to their current context.

In order to ensure the usability of Web Services (WS), it

is necessary to integrate into Web Service architectures

context informat ion. Th is context must describe information

about the user's environment (device, network, location…)

and his profile (preferences, static characteristics...).

Therefore, our objective is to propose a context-aware

adaptation architecture based on Web Services. To realize

this objective, we extended the classic Web Service

architecture by adding an adaptation layer that contains

various components dedicated to the management of the

adaptation process, the user and the service contexts. Our

architecture is named CA-WIS (Context Adaptation of Web

Information System) platform. In this platform, we take into

account the context in two phases:

Ø The research phase: select a list of relevant services

that correspond to the user needs and context.

Ø The interaction phase: adapt dynamically the executed

services to the evolution of the user environment.

This platform allows users on the one hand to receive a

list of adaptive Web Services to his current context, and on

the other hand to interact with web services that correspond

to their needs and their current contexts. The adaptation

process in this platform is based on a methodology based on

data modeling [8]. In this methodology, Web Services are

provided with specific profiles (i.e., service descriptions)

and views (i.e. the service output rendering, such as a Web

page). Then, based on the current user context, it selects the

relevant service profiles and views that comply with the

user’s constraints. However, in such a framework, it might

be possible that no specific view corresponds to the user

context. Hence, in such a case, the user could not use the

desired service. Furthermore, since each specific service

profile is compared to the current user context, if many

services are provided and if the user context evolves

frequently, the system may be overloaded.

In order to overcome these limitations, we propose, in

this paper, an enhancement of our framework that aims to

group some specific profiles and views into generic profiles

and views. This grouping accelerates the search process of

relevant specific service profiles and views. Moreover, if

not relevant specific view corresponds to the user’s context,

based on generic views, our method can generate new

specific views. Consequently, our proposal ensures the

usability of Web Serv ices at anytime, anywhere and anyhow.

The remainder of this paper is structured as follows. In

Section 2, some web service architectures related to our CA-

WIS platform are presented. Section 3 describes our Web

Service architecture which dynamically takes into account

the user contexts. Section 4 details our proposed algorithms

for constructing generic profiles and views. Section 5

illustrates our method that uses generic profiles for selecting

specific service profiles and views. Section 6 describes how

new generic views may be used to compute new specific

views. Section 7 presents our prototype. Finally, Section 8

concludes the paper with brief concluding remarks.

II. RELATED WORK

In this section, we take a look at some frameworks that

take into account the user context in order to select and

adapt Web Services.

v [1] has proposed an architecture that aims to realize

dynamic services adaptation according to the user’s

context. Th is architecture takes into account the user

and services context. These contexts are handled by an

“Adapter” component in this architecture to verify the

compatibility between the user profile and the profile

of each component of the service. When the Adapter

detects the incompatibility between the profiles, it

starts an adaptation process by adding, removing or

replacing components of the service.

Indeed, the main d isadvantage of this architecture is its

complexity.

v [2] has presented an architecture that aims to

dynamically adapt services to the user’s context where

each service is composed of a set of interconnected

components. Several versions of the components of

each service are saved. The service adaptation aims to

select the service components that correspond to the

context.

Indeed, the use of this architecture leads to a server

overload.

v [3] has proposed a generic architecture in order to

provide adaptable services to mobile users. A database

of multimedia data and another database of services

and/or services components are generated by the

service provider. These two databases contain several

versions of service data and components in order to

select the relevant version of the service to user’s

context.

The adaptation method used in this architecture causes

the saturation of the system.

v [6] has proposed the CATIS system which has been

evaluated in the tourism domain. This system adapts

only the result of the services to the user’s context .

Moreover, all the results displayed are always

presented in text mode.

Every framework presented above aims to save multiple

versions of services components and/or data in order to

realize the adaptation process. These methods used in the

previous frameworks usually cause the slow down and the

saturation of system. Moreover, it may happen that no

service could be provided to the user even if he wants to

access to a service at anytime. Therefore, we propose in this

article a new method that aims to treat this problem and to

propose some relevant solutions.

III. CA-WIS PLATFORM

The architecture of our CA-WIS platform is based on the

WS architecture (Figure 1) that is composed of three entities

(provider, user, and registry) and is based on three standards

(WSDL (Web Service Description Language)
[11]

, UDDI

(Universal Description, Discovery and integration) [10] and

SOAP (Simple Object Access Protocol)
[9]

). The service

provider builds the service and publishes its description in a

registry. The user needs are translated into requests that are

transmitted to the WS registry. Once the service is found,

the user will obtain direct interaction with the service
 [5]

.

Fig. 1 Web Service architecture

In our CA-WIS architecture, we extend the WS

architecture by adding an adaptation layer which contains

various components dedicated to the context acquisition and

adaptation. The context, in this architecture, is presented by

a generic model regarding the user and the service (for more

details, see [8] [7]).

Our architecture is thus composed of three layers

depending on each other (Figure 2):

Registry

WSDL

Services Management

Demandeur

Requester

Answer

agement Managem

Context

Services

Context

Management

User Context

Management

UMDM

AnswerAnswer

Serv

Provider

Web Service

Adaptation Model

context

Update

Data , SV et GV

Fig. 2 CA-WS architecture

1) The Registry layer that corresponds to a registry of

service description offering facilit ies that publish services

for prov iders and that searches services for users. This layer

doesn’t play any role in the interaction phase; it is used

exclusively during the research phase.

2) The Services Management layer is responsible for

managing the adaptation process and computing the final

results to the user. This fundamental layer is composed of

two components.

i. The "Requester" that is responsible of verify ing the

user's context evolution by contacting the User

Context Management component.

ii. The "Adaptation Model" that is responsible fo r the

adaptation process.

3) The Context layer is responsible for capturing and

managing the user and the service context. It is composed of

two modules:

i. User Context Management that is responsible for

capturing the user context and storing it in a database

(User Model (UM)). The user context is obtained in

an explicit and implicit way. More precisely, when

the user launches his request, he may express

explicit ly his static characteristics and his

preferences but remaining characteristics

(localization, network, etc) are obtained implicitly.

ii. Services Context Management that is responsible for

the extraction of the Web Services contexts, the

storage of these contexts in a database (Domain

Model (DM)). The service context is expressed

directly by the service provider.

The search of the web services and the interaction

between the user and the service is not direct but is realized

by the Services Management. For each connection from

the user to the services, the Services Management, thanks

to its components , verifies the evolution of the user’s

context and the compatibility between the new user context

and the service context. If the two contexts are not

compatible, the Services Management triggers an

adaptation process by the Adaptation Model component.

Our CA-WIS plat form requests the Web Service

provider to provide several views of its service data

comply ing with different profiles. The adaptation process

realized by the Services Management aims to find the

relevant view that corresponds to the current user profile. If

the Services Management doesn’t find a relevant view, it

can’t realize an adaptation process (for more detail, see [7]).

To solve this problem, we propose, in this paper, a new

method that aims (1) to accelerate the selection of specific

service profiles and views by grouping the profiles and

views provided by the service provider into generic profiles

and views, and (2) to ensure the execution of services by

generating specific v iews from generic views.

In the next paragraph, we detail how the Services

Management uses generic profiles and generic v iews to

adapt dynamically service to the user’s context.

IV. CONSTRUCTING GENERIC PROFILES AND VIEWS

Web Service providers may produce several Web

Service presentations complying with different profiles. For

instance, Figures 3 and 4 illustrate two Web Services

presentations which allow d ifferent kind of iPhone users to

see particular information about a restaurant. Specific

profiles (e.g., Sp1 and Sp2) have been identified in order to

execute the web services correctly on a target device.

Moreover, specific views (e.g., Sv1 and Sv2) comply ing the

specific profiles have been designed accordingly.

In the following, we show how to construct, from

specific profiles and views; generic profiles (§4.1) and

views (§4.2).

(a) Screenshot.

C1: Required bandwidth > 4MO.

C2: Languages = {french}.

C3: Images are prefered.

C4: Video are prefered.

(b) Specific profile1 (Sp1).

(C) Specific View 1 (Sv1).

Restaurant

Part A

Image 1 Image 2 Video 1

Fig. 3 A specific presentation for iPhone

(a) Screenshot.

C1: Required bandwidth > 1MO.

C2: Languages = {english}.

C3: Images are prefered.

C4: Texts are prefered.

(b) Specific profile 2 (Sp2).

Restaurant

Part A Part B

Image 1 Image 2 Image 3 Image 4 Image 5 Text 1 Text2

(C) Specific View 2 (Sv2).
Fig. 4 Another specific presentation for iPhone

A. Constructing Generic Profiles

A profile is a description of all the capabilities and

limitat ions of a given terminal
 [4]

. Usually, profiles contain

the description of both the software and hardware features

of a terminal. Software capabilit ies list, for example, the

supported codecs, whether or not the operating system is

capable of handling parallel v ideos or audio streams, etc.

The hardware capabilit ies are given in terms of the physical

display size, the input modalities, such as keyboard and

pointers. Profiles may also capture user preferences. For

example, the user may prefer a particular text magnification

for readability purposes. In a more abstract way, a profile

can be viewed as a set of constraints on presentations

introduced by profile descriptions. Examples of profiles are

illustrated in Figures 3(b) and 4(b). From such specific

profiles, we propose to compute a generic profile combining

all their constraints.

Definition 1 (A generic profile): A generic p rofile

refers to a list of constraints and groups several specific

contextual informat ion into a global structure.

In order to construct a generic profile Gp from some

specific profiles Spi, we have defined the following

procedure:

v for each constraint Ck in Spi

· if Ck Gp, add Ck into Gp;

· otherwise, merge Ck with its corresponding

constraint C in Gp, e.g., add Ck in the set of

constraints C or relax C in order to take into

account Ck .

Example 1. Suppose that we want to construct a generic

profile Gp from the specific p rofiles Sp1 (Figure. 3(b)) and

Sp2 (Figure. 4(b)). Thanks to our above defined procedure,

all preferred media are added into Gp. Moreover, the

bandwidth constraints and the used languages are merged

into Gp. Actually, the bandwidth should be superior to 1Mo

for executing both presentations. Furthermore, the

presentations may be played in French or in English. Figure

5 presents the overall generic profile Gp integrating all the

specific contextual in formation of Figures 3(b) and 4(b).

c1: Required bandwidth > 1Mo.

c2: Languages = {French, English}.

c3: Images are preferred.

c4: Videos are preferred.

c5: Texts are preferred.

Fig. 5 A generic profile Gp constructed from Fig. 3(b) and Fig. 4(b)

In the next paragraph, we present how to construct from

specific views, generic views and we show our objective of

constructing generic profiles and views.

B. Constructing Generic Views

A view corresponds to a web service presentation

structure. As done, for instance, for XHTML documents, a

view can be composed of elements and sub-elements

characterizing the organization of the presentation. The root

element of a view refers to the whole presentation and each

leaf corresponds to media content.

Examples of specific v iews are presented in Figure 3(c)

and 4(c). From such views, we propose to compute a

generic view combin ing all of their informat ion.

Definition 2 (A generic view): A generic view is a

structure which combines informat ion about specific views .

Moreover, each element of the generic view is associated to

a value which corresponds to its importance. For instance, if

an element appears many times in some specific views, this

will increase the importance of the element inside the

generic view.

Algorithm 1, named ConstructGenericView, constructs

a generic view given different specific v iews.

Example 2. Suppose that we want to construct a generic

view Gv from the specific views Sv1 (Figure 3(c)) and Sv2

(Figure 4(c)). Firstly, we call the algorithm

ConstructGenericView(root(Sv1), root(Gv)) . Actually, it

copies Sv1 into Gv and all arcs in Gv are labeled by the

Value 1. Thereafter, we call the algorithm

ConstructGenericView (root(Sv2), root(Gv)) in order to

update Gv with new in formation coming from other specific

views, here Sv2. From lines 1 to 4, the algorithm in itializes

the following lists: Lch ildsn = {PartA, PartB}, Lch ildgn =

{PartA}, L1 = {PartB} and L2 = {<PartA, PartA>} (The

function identicalNodes returns a list of couples where its

specific and generic elements are identical).

From L1, the algorithm adds into Gv the subtree

corresponding to Part B and all arcs are labeled by 1 (Lines

5 to 8). From L2, we increment the importance of the PartA

(it appears in Sv1 and Sv2, hence v = 2) and the a lgorithm is

calling recursively on the elements of the couple of nodes

<PartA; PartA> (Lines 9 to 12). During this recursive call,

the new values for the lists follow: Lchildsn = {Image1,

Image2, Image3, Image4, Image5}, Lchildgn = {Image1,

Image2, Video1}, L1 = {Image3, Image4, Image5} and L2

= {<Image1, Image1>, <Image2, Image2>}. From L1, its

elements are added into the generic view Gv. From L2, we

increment the importance of the Image1 and Image2, and

the algorithm is calling recursively on its elements . . . This

process is repeated until all elements in L2 have been

treated, i.e., until new information have to be incorporated

into Gv.

When the algorithm stops, it p roduces the generic view

illustrated in Figure 6.

2 1

2
2 1 1 1 1 11

Restaurant

Part A Part B

Image 1 Image 2 Image 3 Image 4 Image 5 Video 1 Text 1 Text 2
Fig. 6 A generic view Gp constructed from Figure 3(c) and figure 4(c).

The construction of generic p rofiles from several

specific profiles, and the generic views from several specific

views helps to simplify and accelerate the adaptation

process. So, the Services Management don't need to

calculate the distance between all the specific profiles and

the user’s context, but it selects, first, a relevant generic

profile and view, then, it searches a relevant specific profile

and view that correspond to the user’s context from the

specific profiles and views attached to the relevant generic

profile and view. In the next paragraph, we exp lain how the

generic profiles are used for selecting specific views.

V. USING GENERIC PROFILES FOR SELECTING SPECIFIC VIEWS

Let consider that many specific views can be specified

by a Web Service provider. Each specific view is linked to a

particular profile. Hence, from a user profile, the goal of

adaptation is to find the specific view that satisfies most of

the target device constraints. That is, compute a distance

between the user profile and the Web Service profile. An

Adapted solution is thus the specific profile (associated with

the specific v iew) that is close to the user profile.

For that purpose, since the user profile and the Web

Service profile have the same s tructure, we have proposed

the following distance between profiles:

Tcu/Tcs: tree of user and service context

Ecui/Ecsi: element i of the service/user context

W(Ecui): weight of Epui element of the user context

 N: number of the context elements

In this equation, we compare the content of each element

of the user's context (Ecui) with the same e lement of the

service context Ecsi calculat ing a degree of correspondence

between the two (DC). If both have the same content, then

DC takes the Value 1, otherwise 0. For example, if the user

uses an operating system such as Windows, while the

service works with a Unix system, the two systems are

different, their DC is equal to 0. To take into account the

degree of importance of the information associated to the

user’s context, we must multip ly DC with W(Ecui). But

sometimes the user does not provide weights for all

preferences in this case and to prevent it assumes 0 ß = 0.01.

However, from a particular user profile it is not suitable

to compute a distance between all the specific profiles.

Actually, the frameworks presented in the Related Work

DC (Epui, Epsi) =
1 if Epui = Epsi

 0 else

section explore indiv idually each service description and

compute such kind of distance in o rder to select the relevant

services. In many cases, this situation could overload the

system. First, because many specific profiles could have

been specified. Second, because the user profile may vary a

lot of t imes. Hence, many comparisons have to be computed

and updated.

Consequently, we propose to group some specific

profiles and views into the generic structures presented in

the previous section. Groups can be formed for part icular

devices, particular characteristics. . . Moreover, groups can
be formed according to the distances between specific

profiles. More precisely, if two profiles are quite similar

thanks to the above defined distance, it means that they

could be grouped into a generic structure.

Thanks to generic profiles and views, we can search

more efficiently an adapted solution by: (1) searching a

generic web service profile that comply most of the user

profile and (2) from the selected generic profile, searching a
corresponding specific web service that comply most of the

user profile. It is obvious that this search complexity is less

than exploring ind ividually all the specific possibilities.

VI. USING GENERIC VIEWS FOR GENERATING SPECIFIC VIEWS

Let consider that it might be possible that no specific

views can be executed from a user profile. For instance, all

specific profiles may have a low distance with the user

profile, even if the distance from the generic profile is better.

This means that from a generic view it is possible to

generate a new specific v iew better than the existing ones.

Example 3. A user which is using his iPhone may prefer

that the service content is in the form of text and video only.

Turn back to the Figures 3 and 4, we note that there isn’t

specific view relevant with the prev ious user profile (neither

Sv1 nor Sv2).

v The first specific view of Figure 3 (c) (i.e., Sv1) is

relevant with the user that prefers a service

displaying images and videos only.

v The second specific view of Figure 4 (c) (i.e. Sv2)

is relevant with the user that prefers a service

presenting images and texts only.

In order to solve such a situation, we have defined the
following procedure for generating specific views from a

generic view:

For each element of the generic view, if it complies with

the user profile, instantiate it, otherwise do not consider it.

Hence, many adapted solutions can be computed from a

generic view. The solutions that contain most of objects that

comply with the targeted profile are p riv ileged solutions.

Hence, a score is computed accordingly. Figure 7 presents

the specific v iew generated by our procedure from the
generic view presented in Figure 6.

Restaurant

Part A Part B

Video 1 Text 1 Text2

Fig. 7 Specific view generated (Sv3)

In many cases, when no specific v iew corresponds to the

current user profile, the frameworks presented in the Related

Work section provide no solution. Our proposal ensures to

the user the usability of Web services at anytime even if no

alternative has been specified in advance according to his

context.

VII. IMPLEMENTATION

A Java-based prototype has been implemented to

validate our proposal. In this prototype, we handle many

Web Services related to restaurants, weather forecast, traffic

informat ion… In Figure 8, we present a Web Service

providing informat ion about a restaurant. More precisely,

we illustrate in the figure one specific view when executing

this Web Service. Each time a new service is imported into

the system, its service description is added to the registery

and the generic profiles and views are updated if needed.

Vidéos

TexteImages

Fig. 8 A Web Service presenting a restaurant

Consider now a user that uses an iPhone and that prefers

contents in the form of texts and images exclusively. All

these contraints are specified in h is profile. In such a case,

the specific view presented in Figure 8 cannot be executed

correctly on his device (because it contains videos that are

not supported). Our prototype will first select a generic

profile close to the user profile , thanks to the distance

detailed in Section 5. Then, it executes the relevant specific

view associated to such a generic profile. Since, a specific

view complies with the user profile, this one is direct ly

presented to the user. Figure 9 illustrates the adapted result,

note that now no videos are presented and that the user

could continue using the Web service with his handled

device.

Fig. 9 Result of service adapted to iPhone

In this first example, an alternative specific view that

corresponds to the user profile has already been designed

beforehand. However, thanks to generic profiles, we do not

search in the set of all the specific service profiles. In fact,

by selecting a relevant generic profile, we search only

specific profiles that are potentially good candidates.

Of course, if the user profile is changing, e.g., the user is

now using a laptop and prefers contents in the form of

videos and images, our CA-WIS plat form detects on-the-fly

and transparently such evolution and, if the prev ious

displayed specific v iew does not comply with the current

user profile, it d isplays another relevant specific view as

shown in Figure 10 by using the same process.

Fig. 10 Result of service adapted to the laptop

Suppose now that the service providers have designed

no alternative beforehand for the following situation: the

user uses his laptop and prefers that contents must be in the

form of texts and video. In contrast with the related work,

our platform selects a generic profile but won’t find a

specific service profile that complies with the user profile.

In such a case, based on the generic view our p latform will

compute a new specific view that does not already exist

thanks to the method presented in Section 6. Concretely, this

method will preserve as much as possible the information

designed by service providers, instead of transforming and

degrading the contents. Figure 11 presents the new

computed specific view. Note that it merges the texts

presented in Figure 9 and the videos presented in Figure 10.

Fig. 11 Result of service adapted to the iPhone

As you can see, our CA-WIS platform is able (1) to

select efficiently specific views thanks to generic service

profiles and (2) to produce new alternatives that has not

been designed beforehand by service providers, thus

ensuring to users the continuity and the usability of Web

Services at anytime, anyhow and anywhere.

VIII. CONCLUSIONS

In this art icle, we proposed a new architecture that

allows adapting automatically a service to changes in the

user's context.

To achieve the adaptation process in this architecture,

we focus on a new method. This method aims to group

some specific profiles and views into generic profiles and

views, in order to accelerate the selection of relevant Web

Service.

Furthermore, if no specific views can be executed from a

user profile, based on generic views, we have proposed to

generate new specific views to ensure users to still interact

with desired services. Finally, our p roposal has been tested

through our CA-WIS platform.

REFERENCES

[1] M. Cremene, M. Riveill, C, Martel, C. Loghin and C. Miron,

“Adaptation dynamique de services”. In DECOR’04,

Grenoble, France, 2004.

[2] O. Fouial, “Découverte et fourniture de services adaptatifs

dans les environnements mobiles”. PHD, Paris, 2004.

[3] Z. Kazi-Aoul, I. Demeure and J.C. Moissiniac, “Une
architecture générique pour la fourniture de services

multimédia adaptables illustration par un scénario”. In

Ubimob'04, June 2004.

[4] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M.H.

Butler, and L. Tran, “Composite Capability/Preference

Profiles (CC/PP): Structure and Vocabularies 1.0”. In W3C,

2001.

[5] T. Melliti, “Interopérabilité des Services Web complexes.
Application aux systems multi-agents”. PHD, Paris IX

Dauphine University, 2004.

[6] A. Pashtan, A. Heusser and P. Scheuermann, “Personal

Service Areas for Mobile Web Applications”. In IEEE

Internet Computing archive, volume 8, n° 6, p. 34-39, USA,

2004.

[7] B. Soukkarieh, F. Sedes, “Dynamic services adaptation to the

user's context”. In Proceedings of the Fourth International
Conference on Internet and Web Applications and Services

(ICIW), p.2236228, IEEE Computer Society 2009.

[8] B. Soukkarieh, “L'adaptation au contexte dans un système

d'information web. Plateforme CA-WIS”. In Ingénierie des

Systèmes d'Information 14(1), p.91-116, 2009.

[9] SOAP, W3C, Recommandation W3C 24 Juin 2003. The last

version: http://www.w3.org/TR/soap12-part0/ (2006).

[10] UDDI, W3Schools,

http://www.w3schools.com/wsdl/wsdl_uddi.asp (2006).

[11] WSDL, W3C Note 15 March 2001, the last version:

http://www.w3.org/TR/wsdl. (2006).

Sébastien Laborie is an associate professor at
the Computer Science Laboratory of the

University of Pau (LIUPPA - France) in the T2i

team. He obtained his Ph.D. degree in

Computer Science from University Joseph

Fourier at Grenoble (France) in 2008. His research topics are at the
crossroads of multimedia document specification and adaptation,

spatio-temporal quantitative and qualitative representation and

reasoning, user profile modeling and Semantic Web technologies.

Bouchra Soukkarieh is a computer engineer in

the IRIT laboratory of the University Paul
Sabatier. She obtained her Ph.D. degree in

Computer Science from University Paul Sabatier

at Toulouse (France) in 2010. Her research

topics are at the context-aware adaptation, user

profile modeling, Web Services and Web Information system.

Pr. Florence Sèdes is a Professor at the

University of Toulouse, Paul Sabatier

University in France. She is deputy director of

the IRIT, Institute of Resarch in Informatics of

Toulouse. She is also head of the national
research network GDR i3 (Information Interacting Intelligence) of

the French CNRS. Her main research topics concern information

systems and databases, with applications dedicated to multimedia,

metadata and SoLoMo (Social, Localization, Mobility) in ambient

intelligence.

