
HAL Id: hal-01193096
https://hal.science/hal-01193096

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taking SPARQL 1.1 extensions into account in the
SWIP system

Fabien Amarger, Ollivier Haemmerlé, Nathalie Jane Hernandez, Camille
Pradel

To cite this version:
Fabien Amarger, Ollivier Haemmerlé, Nathalie Jane Hernandez, Camille Pradel. Taking SPARQL 1.1
extensions into account in the SWIP system. 20th International Conference on Conceptual Structures
(ICCS 2013), Jan 2013, Bombay, India. pp. 75-89. �hal-01193096�

https://hal.science/hal-01193096
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12888

URL: http://dx.doi.org/10.1007/978-3-642-35786-2_7

To cite this version : Amarger, Fabien and Haemmerlé, Ollivier and
Hernandez, Nathalie and Pradel, Camille Taking SPARQL 1.1 extensions into
account in the SWIP system. (2013) In: 20th International Conference on
Conceptual Structures (ICCS 2013), 10 January 2013 - 12 January 2013
(Bombay, India).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Taking SPARQL 1.1 Extensions into Account

in the SWIP System

Fabien Amarger, Ollivier Haemmerlé, Nathalie Hernandez, and Camille Pradel

IRIT, Université de Toulouse le Mirail,
Département de Mathématiques-Informatique, 5 allées Antonio Machado,

F-31058 Toulouse Cedex
fabien.amarger@gmail.com,

{ollivier.haemmerle,nathalie.hernandez,camille.pradel}@univ-tlse2.fr

Abstract. The SWIP system aims at hiding the complexity of express-
ing a query in a graph query language such as SPARQL. We propose a
mechanism by which a query expressed in natural language is translated
into a SPARQL query. Our system analyses the sentence in order to ex-
hibit concepts, instances and relations. Then it generates a query in an
internal format called the pivot language. Finally, it selects pre-written
query patterns and instantiates them with regard to the keywords of the
initial query. These queries are presented by means of explicative natural
language sentences among which the user can select the query he/she is
actually interested in. We are currently focusing on new kinds of queries
which are handled by the new version of our system, which is now based
on the 1.1 version of SPARQL.

1 Introduction

The amount of knowledge available on the semantic web increases everyday.
Many OWL ontologies and RDF triplestores are put online, especially in the
context of the linked open data initiative [1]. Accessing this knowledge is a real
challenge since it is difficult for an end-user to handle the complexity of the
“schemata” of these pieces of knowledge: in order to express a valid query on
the knowledge of the semantic web, the user needs to know the SPARQL query
language, the ontologies used to express the triples he/she wants to query on as
well as the “shape” of the considered RDF graphs.

Extensive work has been carried out in order to help users express queries
in graph formalisms (CGs, SPARQL. . .) during the recent period. The help
provided for the user can rely on graphical interfaces such as [2] for RQL queries,
[3] and [4] for SPARQL queries or [5] for conceptual graph queries. But such
graphical interfaces need the end-user to be familiar with and, moreover, to
understand the semantics of the expression of a query expressed in terms of
graphs. The work presented in [6] aims at extending the SPARQL language and
its querying mechanism in order to take into account keywords and jokers when
the user does not exactly know the schema he/she wants to query on. Here again,
such an approach requires that the user knows the SPARQL language.

Other works aim at the automatic or semi-automatic translation of formal
queries from user queries expressed in terms of keywords. The user expresses
his/her information need in an intuitive way, without having to know the query
language or the knowledge representation formalism used by the system. Some
works have already been proposed to generate formal queries from keywords,
resulting in different languages such as SeREQL [7], SPARQL [8,9] or conceptual
graphs [10].

Our work belongs to this family of approaches. In [10], we proposed a way
of building queries expressed in terms of conceptual graphs from user queries
composed of keywords. In [11] we extended the system in order to take into
account relations expressed by the user between the keywords he/she used in
his/her query. In [12], we adapted our system to the Semantic Web languages
instead of Conceptual Graphs. Such an adaptation was important for us in order
to evaluate the interest of our approach on large knowledge bases. Since then,
our system has taked into account queries expressed in natural language. Our
work is based on two observations. First, end-users want simple query languages
since they are used to this kind of querying on classic search engines on the Web.
Second, in the main real applications, the submitted queries are variations of a
few typical query families. We believe that each family can be prototyped and
represented with a pattern. These observations led us to propose a mechanism
allowing a user query expressed in terms of natural language to be translated into
a SPARQL query built by adapting pre-defined query patterns chosen according
to the natural language query.

The use of patterns allows us to avoid the step which consists in parsing
the ontology in order to find potential relations which can be used to link the
classes and instances identified in the natural language query, since the relevant
relations appear in the pre-defined patterns. The process takes advantage of the
relevant query families, which correspond to an actual information need. One of
the main issues of our approach is therefore to select the pattern which best fits
user needs. For the moment, patterns are built manually by domain experts.

The SWIP system presented in [12] was based on the 1.0 version of the
SPARQL semantic web query language. At the beginning of 2012, SPARQL
1.1 [13] was released by the W3C. This new version features several improve-
ments. We studied the new version and considered that the aggregates – which
are more or less the same as in SQL – offer the possibility of handling new
kinds of queries that were difficult to process in the previous version of SWIP.
This article presents the extension of the SWIP system by taking into account
the SPARQL 1.1 aggregates. For example, we are now capable of dealing with
queries such as “How many artists are involved in a given film?”, “The number
of awards an artist won in a competition?” or “What is the average length of a
film produced in 2012?”.

In section 2, we present the SWIP system briefly. Section 3 introduces the
aggregates in SPARQL 1.1. Section 4 details the extension of SWIP in order to
implement the aggregates. Finally, section 5 describes the implementation of our
system and presents a first experimentation.

2 The SWIP System

2.1 Overview

In order to allow end-users to express queries on knowledge bases expressed in
the Semantic Web languages (RDF triples built on OWL ontologies), we propose
a system by which a query expressed in natural language is translated into a
SPARQL query. The SWIP1 system was first presented in [11] in its preliminary
Conceptual Graph based version, then in [12] in its SPARQL version. We do not
present the SWIP system exhaustively in this article but briefly recall in this
section the main features of the system and how it works, before focusing on the
extensions of SWIP in section 4.

An overview of the process is presented in Figure 1. The global process of the
system is as follows: (i) the user expresses his/her query in terms of a natural
language query; (ii) the natural language query is then transmitted to a syntactic
dependency analyzer which produces a dependency graph. This graph provides
the main keywords of the query as well as the relations linking them ; they
are represented by means of what we call a pivot query; (iii) the keywords and
relations represented in the pivot query are matched to the elements of the
ontology – concepts, instances and relations which seem to correspond to them ;
(iv) the concepts, relations and instances obtained are mapped with the available
query patterns; (v) explicative sentences corresponding to each possible SPARQL
query are generated and proposed to the user, so that he/she can select the final
query which best fits his/her information need; (vi) finally, the actual SPARQL
query is generated and processed. In the following paragraphs, we present the
process of the SWIP system in more details.

Fig. 1. Overview of the process

1 Semantic Web Interface using Patterns.

2.2 From Natural Language Queries to Pivot Queries

Here we describe the first main step of the SWIP process. This step is illus-
trated in Figure 2. The user enters his/her query in natural language into the
system. The first translation is performed to generate the query in a simplified
and synthetic form that we call pivot language. This language is based on key-
words connected with relationships which are more or less explicit. The detailed
grammar of the pivot language is presented in [12]. We use this pivot language in
order to facilitate the implementation of multilingualism by means of a common
intermediate format.

Fig. 2. Interpretation of the natural language query

The pivot language we propose is an extension of the language composed of
keywords. The optional “?” symbol before a keyword means that this keyword
is the focus of the query: we want to obtain specific results corresponding to this
keyword.

A pivot query expressed in the pivot language is composed of a conjunction
of subqueries:

– unary subqueries, like ?"singer" which asks for the list of singers in the
knowledge base;

– binary subqueries which qualify a keyword with another keyword: the query
?"singer": "married" asks for the list of married singers;

– ternary subqueries which qualify, by means of a keyword, the relationship be-
tween two other keywords: the query ?"singer": "married to"=

"Madonna" asks for the singer(s) that is/are/was/weremarried to Madonna.

The translation of a natural language query into a pivot query is based on the
use of a syntactic dependance analyzer which produces a graph where nodes
correspond to the words of the sentence and edges to the grammatical depen-
dencies between them. Before parsing the query with the analyzer, a first stage
identifies in the sentence the named entities corresponding to knowledge base

resources. These entities are then considered as a whole and will not be sepa-
rated by the parser in the next stage. For example, in the sentence “what are the
films of Jean Dujardin”, “Jean Dujardin” will be considered as a named entity
as it is the label of an instance of Actor in the knowledge base. This stage is
particularly crucial when querying knowledge bases containing long labels, such
as group names or film titles made up of several words or even sometimes of a
full sentence.

Once the named entities are identified and the dependency graph is generated,
a set of rules are applied to construct the pivot query. The different clauses of
the sentence are considered. First, the head of the expression playing the role of
the subject in the main clause is identified as the keyword corresponding to the
object of the query. Then, if there is one, the expansion of the expression is used
to complete a binary subquery. For example, for the query “what are the films of
Jean Dujardin”, the generated pivot query will be ?"film": "Jean Dujardin".
If the clause is composed of a verb and a complement, a ternary subquery is con-
structed. For the query “what films were awarded prizes in Cannes?”, the corre-
sponding pivot query will be ?"movie": "awarded prizes in"= "Cannes". If
the query contains relative clauses, the same rules are applied. The entity ref-
erenced by the relative pronoun is expressed in the subquery with the keyword
used in the previous subquery. For example for the query “What are the awarded
films in which Jean Dujardin played?”, the corresponding pivot query will be
?"film": "awarded". "Jean Dujardin": "played in"= ?"film". These
rules might seem simple but we have observed that the structure of queries
expressed by end-users is generally simple. Note that we use a specific syntactic
analyzer, Maltparser [14], trained for each language we consider.

2.3 From Pivot to SPARQL

The second part of the process, which consists in the formalization of the pivot
query, is illustrated in Figure 3. It is divided in four substeps which are described
below. A more precise description of this step is given in [12].

Matching Keywords to Knowledge Base Entities. First, the ontology is
used to determine which elements (concepts, instances or relations) are closest to
the keywords appearing in the pivot query. This notion of closeness is based on
the similarity measure between strings, as the one presented in [15]. However, in
our system implementation, we do not use a classic method such as Levenshtein
distance, but the Lucene score function, saving us the task of implementing a
similarity measure and allowing us to benefit from the powerful Lucene index-
ation and “fuzzy matching” features, to handle different forms of lemmas and
mistypings.

For example, with the pivot query ?"film": "Jean Dujardin’", SWIP
searches for the labels corresponding to "film", then for the labels corresponding
to "Jean Dujardin". For each element of the pivot query, SWIP returns a list of
possible ontology entities weighted with respect to their relevance. The keyword
"film" is associated with the concept “Film” with a weight of 1 since one of

Fig. 3. Formalization of the pivot query

the labels of the concept “Film” is the string “Film”. It is also matched with
the concept “disaster film” because its label “disaster film’ obtained a similarity
measure of 0.625.

Mapping the Query Patterns to the Pivot Query. Once the ontology
elements are identified, SWIP has to find one or more query patterns which
fit these elements. The patterns are formally defined in [11,12]. Each pattern
corresponds to a family of queries which can be asked on the knowledge base.
Roughly speaking, each pattern is composed of: (i) a query graph which is a
pre-written generic query expressed in SPARQL corresponding to an identified
typical family of queries; (ii) a set of concepts and relations which belong to the
query graph and correspond to the characteristic elements of the pattern; (iii) a
model of an explicative sentence which will be used to generate the sentence in
natural language allowing the user to understand the meaning of the SPARQL
query. After the matching step, SWIP tries to associate the highest-weighted
concepts with the different patterns in order to exhibit the patterns which seem
to be used as a basis of relevant final queries.

Evaluating the Generated Mappings. The mapping step leads to a set
of query mappings, each one corresponding to a possible query interpretation.
These candidate interpretations must be ranked in order to present first to the
user the queries which seem to be the most relevant. To this end, this step
will allocate to each query mapping a relevance mark R, made up of several
partial marks, each one taking into account a number of parameters that seem
important to us:

– Element mapping relevance mark Rmap represents how much we trust the
different element mappings involved in the considered query mapping.

– Query coverage relevance mark RQcov takes into account the proportion of
the initial user query that was used to build the mapping.

– Pattern coverage relevance mark RPcov takes into account the proportion of
the pattern qualifying vertices that was used to build the mapping.

Generating the Query and the Explicative Sentence. The last step of
the SWIP process consists in presenting the results to the user, and allowing
him/her to query the knowledge base. For this, for each mapping between a set
of keywords and a pattern we generate a sentence in natural language explaining
the query represented by the mapping. We then present all the sentences to
the user in decreasing relevance order. Thus, reading the explicative sentences,
the user can easily understand the meaning of each query and choose the one
matching his/her need. The system then formulates from the chosen mapping
the final query expressed in SPARQL. Both operations, generating explicative
sentences and formulating the query graph, are trivial, thanks to the explicative
sentence attached to each pattern and to the graph architecture of each pattern.

For each mapping, the generation of an explicative sentence is carried out by
taking the generic sentence attached to the mapped pattern and personalizing it,
i.e. for each element mapping, the substring associated with the mapped pattern
element is replaced by an appropriated string that comes from the matched label
in the case of ontology elements or that is the string representation of the literal
value in the case of literals. As regards pattern elements which are not involved in
any element mapping, we keep the default associated substrings in the sentence.

The mapping generation is made more dynamic by adding the possibility of
using regular expressions on parts of patterns, drawing ideas from [16]; some
parts are omitted in the final mapping. This improves the readability of the ex-
plicative sentences of each mapping and makes patterns more generic (therefore
less numerous).

The query graph of the selected query mapping is the pattern graph, apart
from the odd detail; it is generated using the procedure presented in [10], except
that relation vertices can be modified by specialization or generalization, in the
same way as that for concept vertices.

3 SPARQL 1.1 Evolutions for Dealing with End-User

Queries

3.1 SPARQL 1.1 Update

The W3C SPARQL 1.1 recommendation aims at improving the initial version of
the language with incremental updates offering ascending compatibility with the
first version [17]. The main issue is to ease the generation of queries by expanding
the language syntax.

The most significant update for dealing with end-user queries is the possibility
of using aggregate functions. In the initial version of SPARQL, it was possible to
retrieve a solution set of triples according to a specific query pattern. With the

use of aggregates, it is now possible to partition this set according to specified
criteria and to compute a new solution using an aggregate on these partitions.
When needed, aggregates were previously calculated by the applications. Now,
however, they are calculated by the SPARQL engine.

The aggregate functions available in SPARQL1.1 are COUNT, SUM, MIN,
MAX, AVG, GROUP CONCAT and SAMPLE. As in SQL queries, aggregate
functions can be used either as projection or as selection attributes.

COUNT

The COUNT aggregate enables the counting of the triples contained in the so-
lution set as in the following query.

SELECT COUNT(?film)

WHERE

{

?film rdf:type cine:Film

}

The result of this query will be the integer corresponding to the number of
instances of the class Film in the triplestore.

The aggregate can also be used in the condition defined to select the partitions
to be considered as in the following query.

SELECT ?actor

WHERE

{

?film rdf:type cine:Film.

?actor rdf:type cine:Actor.

?film cine:hasForActor ?actor.

}

GROUP BY ?actor

HAVING COUNT(?film) > 5

This query will give all the actors who have played in more than 5 films. The
“GROUP BY” clause specifies on which attribute the partitions are built and
the “HAVING” clause specifies the condition that has to be satisfied by the
partition.

SUM - AVG - MIN - MAX

The aggregates (“SUM” for sum, “AVG” for average, “MIN” for minimum and
“MAX” for maximum) can be used in the same way as COUNT except that
they have to be applied on numerical attributes.

GROUP CONCAT - SAMPLE

These two aggregates are more specific to SPARQL 1.1. “GROUP CONCAT”
enables the generation of a string from all the triples contained in the solution

set. SAMPLE will randomly select an element in the solution set. The query
below will return the concatenation of the URI of each film contained in the
dataset, separated with the character “|”.

SELECT GROUP_CONCAT(?film ; separator="|")

WHERE

{

?film rdf:type cine:Film

}

3.2 Aggregates in End-User Queries

When generating SPARQL queries from natural language queries, considering
aggregates can be interesting for two reasons. End-users may want to retrieve
data that are not explicitly stated in the triplestore but can be calculated. Ex-
amples of queries can be: (i) “How many artists are involved in a given film?”,
(ii) “The number of awards an artist won in a competition?”, (iii) “What is
the average length of a film produced in 2012?”. As this information may be
calculated, they will most probably not be stated explicitly with an RDF triple
linking the considered resource to a property and to the corresponding value. In
its current state, this is what our system will look for. This kind of information
will have to be retrieved by generating the corresponding SPARQL query using
the aggregate function. For example, in the triplestore we consider for our ex-
periments, the SPARQL query corresponding to query i) will have to count all
the artists involved in a given film. However, for some queries the same question
words will not always lead to the use of aggregate functions. For example, for
the query “How many members are there in the jury of a given competition”,
the use of the aggregate “count” may not be relevant as a property can be ex-
plicitly stated. It is the case for this query as there is often no point in naming
all the jury members, but only the number of members. As there are two ways
of translating question words corresponding to aggregates in natural language
into SPARQL, both possibilities will have to be considered when generating the
SPARQL query. Aggregates will also be needed when the end-user wishes to
select data according to comparison with other data. Examples of queries can be
“What is the longest film ever made?”, “Who are the actors that have obtained
more than 2 awards”, ...

In order to evaluate the added value of considering aggregates in the SWIP
system, we asked 20 people to propose queries in natural language in the field of
the cinema. The queries were manually translated into SPARQL1.1 to query a
triplestore2. Among the 98 queries we collected, 9% of them implied the use of
aggregates in the SPARQL query. Moreover, in all of these queries, aggregates are
used as projection attributes. We thus decided to focus our work on this kind of
query. By considering aggregates as projection attributes, our system is now able
to deal with 99% of the queries asked by users. The remaining 1% corresponds

2 The triplestore is described at http://ontologies.alwaysdata.net/cinema

to queries that contain terms that are not yet in the considered ontology (for
example, SWIP cannot deal with the query “What is the filmography of Jean
Dujardin?” as filmography is not in the ontology).

4 Evolution of SWIP 1.0 into SWIP 1.1

Several extensions to the SWIP system have been proposed in order to generate
SPARQL queries with aggregate functions. The language proposed to represent
pivot queries has been updated. Note that by considering pivot queries it is
possible to dissociate treatments that are language-dependent from those that
transform the pivot query into the SPARQL query. As the interpretation of the
natural language query relies on the use of syntactic analyzers, we have improved
the rules leading to the generation of the pivot query by taking into consideration
typical words that may correspond to aggregates. The process generating the
SPARQL query has also been improved.

Pivot Query Language. The language defined to represent pivot queries has
been extended to take into account aggregate functions.

We propose to extend the pivot language by adding an optional subquery to
the initial grammar described in this section.

This subquery corresponds to the case when an aggregate is used as a projec-
tion attribute. The subquery will be composed of one of the following keywords:
COUNT, SUM, MIN, MAX, AVG. The semantics associated with the new sub-
query is that the aggregate function is applied on the projection attribute rep-
resented by the character ? in the query.

Definition 1. q is a well formed query in the pivot language if it conforms to

the following grammar, given in Backus-Naur form.

query : := subquerySe t (” . ” subquerySe t)∗ (” . ”)? ((”COUNT”
| ”MAX” | ”MIN” | ”AVG” | ”SUM”) (” . ”)?)?

subquerySe t : := keyword (” : ” keyword (”=”keyword (” ,
” keyword)∗)?)?

keyword : := (’ a ’ . . ’ z ’ | ’A’ . . ’ Z ’ | ’ ’) ((’ a ’ . . ’ z ’ |
’A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ” ”))∗

For example, the query “how many artists are involved in The Artist” corre-
sponds to the pivot query : ?"artist":"involved in"="The Artist".COUNT

From the Natural Language Query to the Pivot Query. The pivot query
is built automatically from the query in natural language with rules defined on
the output of a syntactic analyzer.

To detect queries which could need the use of an aggregate once transformed
in SPARQL, we have built a dictionary for each language we consider (French

and English) stating, for each aggregate and condition, terms that may refer
to them. The dictionary has been constructed by analyzing manually a corpus
of approximately 100 queries in each language. A sample of the dictionary for
English is presented in the following table:

Aggregate Corresponding words
COUNT “The number of”, “How many”, ...
SUM “The sum”, “add”, “adding”, ...
MIN “The minimum”, “minimum”,
MAX “The maximum”, “maximum”,
AVG “The average”, “average”, ...

The words defined in the dictionary are searched in the syntactic dependencies
graph given by the analyzer.

If one of them is found to be depending directly on the head of the expression
playing the role of the subject in the sentence (often found after the question
word), a subquery composed of the corresponding aggregate is added to the pivot
query. Dictionary words can be found in the direct context of the subject in the
following queries : “How many artists are involved in a given film?”, “What is
the number of awards an artist won in a competition?”, “What is the average

length of a film produced in 2012?”. The remaining parts of the sentences are
analyzed as in the previous version of SWIP.

In order to deal with the case when the data does not need to be calculated
with an aggregate function because it is explicitly stated in the data set with a
property and its corresponding value, a pivot query is also constructed without
paying any specific attention to words from the dictionary. The pivot query is
thus generated as in the previous version of SWIP. For example, for the query
“What is the number of members in the Oscar jury?”, the second pivot query
will be "member":"?number","member":"jury"="Oscar".

From the Pivot Query to the SPARQL Query. To generate the SPARQL
query, the two pivot queries are mapped to the patterns. For the query contain-
ing the aggregate subquery, the mapping process is the same as in the previous
version of the system as we have chosen to ignore the possible aggregate sub-
queries composing the pivot query during this phase. The main reason is that we
consider than aggregate functions can be used on any of the qualifying concepts
of the patterns and that the need for an aggregate will not be an indication for
discriminating one pattern from another. Patterns represent information needs
that can be expressed differently. The same pattern can map a query which may
or may not need an aggregate in its interpretation.

Once the patterns are ranked according to the pivot query, the eventual ag-
gregate subqueries are considered for completing the generated descriptive sen-
tences. The goal is to show the user how the aggregate has been interpreted.
The name of the aggregate is added in brackets before the term corresponding
to the subject of the aggregate.

The SPARQL query is generated according to the sentence chosen by the user.
The aggregate is added in the SELECT clause.

5 Implementation and Experimentation

5.1 Implementation

The improvements presented in the previous section have been implemented in
the SWIP system. A graphical user interface has been added to the system,
developed with the JQuery technology. We have implemented a simple interface
with two text fields and very few buttons, as can be seen in Figure 4. The first
text field is used so that the user can enter his/her query in natural language.
The “translate” button generates the pivot language query related to the natural
language query. The “search” button generates all the possible SPARQL queries.

When the user clicks on the search button, SWIP searches all the possible
mappings to generate the best SPARQL queries, which are displayed on a dy-
namic table, as can be seen on Figure 5. All the results are displayed sorted by
score (here, the “rel” column) as is the generated sentence associated with the
SPARQL queries directly. To indicate the searched element on the query on the
sentence, it is preceded by the “?” character. There are some selections available
directly on the sentence to allow the user to modify the query. For example, if
he/she wants to generalize a specific element. On each row there is a “+” button
to display all the details of the query, the SPARQL query associated with it

Fig. 4. SWIP interface

Fig. 5. SWIP interface - Generated SPARQL queries

and the mappings generated by SWIP. A double click on a row will execute the
SPARQL query directly on the SPARQL endpoint to finally obtain the answer
to the initial question. The answer is displayed on another table, next to the
“Results” tab.

5.2 Experimentation

As explained in section 3, 9% of the queries collected on the field of the cinema
implied the use of aggregates as projection attributes when translated manually
into SPARQL.

In order to evaluate our approach, we compared the SPARQL queries gener-
ated by the new version of SWIP with the manually written query. For 100%, the
“right” query appears in the first three propositions. This means that the gener-
ated pivot query is mapped relatively correctly with the right pattern. Moreover,
the descriptive sentence obviously shows the right interpretation. This means
that it is not difficult for the end-user to select the right query to generate.

We also considered the generated queries in which a dictionary word suggests
that an aggregate function needs to be used but for which we have not used an
aggregate in the manually built SPARQL query. This kind of query represents
4% of the total queries. For 50% of them, the first proposition made by SWIP is
the correct one. When SWIP gives a wrong interpretation (i.e. an interpretation
considering an aggregate), it is because the label of property that must be used
in the query has not been identified correctly in the query. For example, in the
query “how many members are there in the jury of the oscars” the property
“numberOfMember” is mapped with too low a score to “how many members”.

The evaluation is encouraging but we are currently looking for a larger set of
queries to expand it.

6 Conclusion and Future Work

In this paper, we proposed a development of the SWIP system introduced
in [10,11,12], for the system to take advantage of an enhancement of the SPARQL
1.1 query language: the aggregates. For this, we proposed an evolution of the
pivot query language, and adapted the query interpretation process to make it
take the aggregates into account.

The first evaluation results are very encouraging. We can now handle some
queries that previously could not be processed.

The system has been provided with a graphical user interface which is very
simple: the users are able to express their queries, and then choose the best query
and modify it if necessary.

The preliminary step of building query patterns is done manually and thus
requires a large amount of work. Moreover, this step must be repeated each time
we want to address a new knowledge base. This is why the automatic or assisted
pattern generation is the last important task we need to carry out to obtain a
fully functional system. We have two potential leads for this purpose: building

patterns covering a set of graph queries, or learning these patterns from a set of
natural language queries. At first glance, the first method seems to be the easier
to implement, since the input of this method consists of formal structures which
are easy to handle. However, end user queries expressed in a graph formalism
could be costly to obtain in practice, when natural language queries on a domain
should be easy to find, looking on forums, FAQs, or simply asking users.

Moreover, we plan to extend our work in two other directions:

– we are currently looking for a larger set to evaluate our approach more
precisely in order to identify its drawbacks; we are developing a partnership
with the IRSTEA (a French institute on ecology and agriculture) in order
to build a real application framework concerning French queries on organic
farming.

– in the near future we intend to consider aggregate functions as selection
attributes by means of nested subqueries which are also an evolution of
SPARQL1.1.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

2. Athanasis, N., Christophides, V., Kotzinos, D.: Generating On the Fly Queries for
the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL). In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 486–501. Springer, Heidelberg (2004)

3. Russell, A., Smart, P.R.: Nitelight: A graphical editor for sparql queries. In: Bizer,
C., Joshi, A. (eds.) International Semantic Web Conference (Posters & Demos).
CEUR Workshop Proceedings, vol. 401. CEUR-WS.org (2008)

4. Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and
Exploratory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp.
177–192. Springer, Heidelberg (2011)

5. CoGui. A conceptual graph editor. Web site (2009), http://www.lirmm.fr/cogui/
6. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching rdf graphs

with sparql and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)
7. Lei, Y., Uren, V.S., Motta, E.: SemSearch: A Search Engine for the Semantic Web.

In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245.
Springer, Heidelberg (2006)

8. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword
Query to Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
694–707. Springer, Heidelberg (2007)

9. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp.
405–416. IEEE (2009)

10. Comparot, C., Haemmerlé, O., Hernandez, N.: An Easy Way of Expressing Con-
ceptual Graph Queries from Keywords and Query Patterns. In: Croitoru, M., Ferré,
S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 84–96. Springer, Heidelberg
(2010)

11. Pradel, C., Haemmerlé, O., Hernandez, N.: Expressing Conceptual Graph Queries
from Patterns: How to Take into Account the Relations. In: Andrews, S., Polovina,
S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 229–242.
Springer, Heidelberg (2011)

12. Pradel, C., Haemmerlé, O., Hernandez, N.: A Semantic Web Interface Using Pat-
terns: The SWIP System. In: Croitoru, M., Rudolph, S., Wilson, N., Howse, J.,
Corby, O. (eds.) GKR 2011. LNCS, vol. 7205, pp. 172–187. Springer, Heidelberg
(2012)

13. Harris, S., Seaborne, A.: Sparql 1.1 query language. w3c working draft (July 24,
2012), World Wide Web Consortium, http://www.w3.org/TR/sparql11-query

14. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
Marsi, E.: Maltparser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering 13(02), 95–135 (2007)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

16. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending sparql with regular expression
patterns (for querying rdf). J. Web Sem. 7(2), 57–73 (2009)

17. Kjernsmo, K., Passant, A.: Sparql new features and rationale. World Wide Web
Consortium, Working Draft WD-sparql-features-20090702 (2009)

