
HAL Id: hal-01193095
https://hal.science/hal-01193095v1

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SWIP at QALD-3 : results, criticisms and lesson learned
Camille Pradel, Guillaume Peyet, Ollivier Haemmerlé, Nathalie Jane

Hernandez

To cite this version:
Camille Pradel, Guillaume Peyet, Ollivier Haemmerlé, Nathalie Jane Hernandez. SWIP at QALD-3 :
results, criticisms and lesson learned. 3rd open challenge on Question Answering over Linked Data
(QALD 2013), Sep 2013, Valencia, Spain. pp. 1-13. �hal-01193095�

https://hal.science/hal-01193095v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12892

To cite this version : Pradel, Camille and Peyet, Guillaume and Haemmerlé,
Ollivier and Hernandez, Nathalie SWIP at QALD-3 : results, criticisms and
lesson learned. (2013) In: 3rd open challenge on Question Answering over
Linked Data (QALD 2013), 25 September 2013 - 25 September 2013
(Valencia, Spain).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

SWIP at QALD-3: results, criticisms and lesson

learned

Camille Pradel, Guillaume Peyet, Ollivier Haemmerlé, and Nathalie Hernandez

IRIT, Université de Toulouse le Mirail, Département de
Mathématiques-Informatique, 5 allées Antonio Machado, F-31058 Toulouse Cedex

{camille.pradel, guillaume.peyet, ollivier.haemmerle,

nathalie.hernandez}@univ-tlse2.fr

Abstract. This paper presents the results obtained by the SWIP system
while participating in the QALD-3 (Question Answering over Linked
Data) challenge, co-located with CLEF 2013 (Conference and Labs of the
Evaluation Forum). We tackled task 1, multilingual question answering,
whose purpose is to interpret natural language questions in order to
return the answers contained in a graph knowledge base. We answered
queries of both proposed datasets (one concerning DBpedia, the other
Musicbrainz) and took into consideration only questions in English.
The system SWIP (Semantic Web Interface using Patterns) aims at au-
tomatically generating formal queries from user queries expressed in nat-
ural language. For this, it relies on the use of query patterns which enable
the complex task of interpreting natural language queries.
The results obtained on the Musicbrainz dataset (precision = 0.51, re-
call = 0.51, F-measure = 0.51) are very satisfactory and encouraging. The
results on DBpedia (precision = 0.16, recall = 0.15, F-measure = 0.16)
are more disappointing.
In this paper, we present both the SWIP approach and its implementa-
tion. We then present the results of the challenge in more detail and their
analysis. Finally we draw some conclusions on the strengths and weak-
nesses of our approach, and suggest ways to improve its performance.

1 Introduction

End-users need to access the huge amount of data available over the Internet.
Databases are hidden by means of forms which lead generally to SQL queries.
With the increasing publication of linked data, a need for interfacing SPARQL
engines emerged, since it is impossible for an end-user to handle the complexity
of the “schemata” of these pieces of knowledge.

Our work is situated in this field of research: how can we interpret a natural
language query and translate it into SPARQL? Our main postulate states that,
in real applications, the submitted queries are variations of a few typical query
families. Our approach differs from existing ones in that we propose to guide
the interpretation process by using predefined query patterns which represent
these query families. The use of patterns avoids exploring the ontology to link

the semantic entities identified from the keywords since potential query shapes
are already expressed in the patterns. The process thus benefits from the pre-
established families of frequently expressed queries for which we know that real
information needs exist.

This article presents and analyses the results obtained by the SWIP system
for task 1 of the QALD-3 challenge1. The purpose of this challenge is to evaluate
systems on their ability to retrieve answers to a set of natural language queries
from an RDF dataset. Participants were given a training dataset (a set of ques-
tions with their SPARQL translations) in order to adapt and tune their systems,
and then had to provide the generated interpretations of NL queries from the
test set.

After presenting the main approaches aiming at the same objectives as SWIP
in Section 2, we give an overview of our approach in Section 3. Then, in Sec-
tion 4, we present and analyse the results of the challenge, before concluding
and mentioning potential future improvements to our system in Section 5.

2 Existing approaches

In this section, we present approaches from the literature aiming at helping users
to query graph based knowledge bases. For this, we stick to the classification
proposed in [8], and present them following the formality continuum, from most
formal to most permissive, beginning with the query languages themselves.

On an extreme side of this continuum are the formal graph languages, such
as SPARQL2. They are the targets of the systems we are presenting in this
section. Such languages present obvious usability constraints, which make them
unsuited to end-users. Expressing formal queries implies knowing and respecting
the language syntax used, understanding a graph model and, most constraining,
knowing the data schema of the queried knowledge base. The work presented
in [5] aims at extending the SPARQL language and its querying mechanism in
order to take into account keywords and wildcards when the user does not know
exactly the schema he/she wants to query on. Here again, such an approach
requires that the user knows the SPARQL language.

Similar are approaches assisting the user during the formulation of queries
in such languages. Very light interfaces such as Flint3 and SparQLed4 imple-
ment simple features such as syntactical coloration and autocompletion. Other
approaches rely on graphical interfaces such as [1] for RQL queries, [15,3] for
SPARQL queries or [4] for conceptual graphs. Even if these graphical interfaces
are useful and make the query formulation work less tedious, we believe they are
not well suited to end-users since they do not overcome the previously mentioned
usability limits of formal graph query languages.

1 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=

task1&q=3
2 http://www.w3.org/TR/rdf-sparql-query/
3 http://openuplabs.tso.co.uk/demos/sparqleditor
4 http://sindicetech.com/sindice-suite/sparqled/

Sewelis [6] introduces Query-based Faceted Search, a new paradigm combin-
ing faceted search and querying, the most popular paradigm in semantic data
search, while other approaches such as squall2sparql [7] define a controlled nat-
ural language whose translation into SPARQL is straightforward.

Other works aim at generating automatically – or semi-automatically – for-
mal queries from user queries expressed in terms of keywords or NL. Our work
is situated in this family of approaches. The user expresses his/her informa-
tion need in an intuitive way, without having to know the query language or
the knowledge representation formalism used by the system. Some works have
already been proposed to express formal queries in different languages such as
SeREQL [10] or SPARQL [19,16,2]. In these systems, the generation of the query
requires the following steps: (i) matching the keywords to semantic entities de-
fined in the KB, (ii) building query graphs linking the entities previously detected
by exploring the KB, (iii) ranking the built queries, (iv) making the user select
the right one. The existing approaches focus on several main issues: optimizing
the first step by using external resources (such as WordNet or Wikipedia)[10,18],
optimizing the knowledge exploration mechanism for building the query graphs
[19,16], enhancing the query ranking score [18], and improving the identification
of relations using textual patterns [2].

Autosparql [9] extends the previous category: after a basic interpretation of
the user NL query, the system interacts with the user, asking for positive and
negative examples (i.e. elements which are or are not in the list of expected
answers), in order to refine the initial interpretation by performing a learning
algorithm. In [17] the interpretation process of this same system is improved
by determining a SPARQL template from the syntactic structure of the natural
language question.

3 Overview of the SWIP approach

In the SWIP system, the query interpretation process consists of two main steps:
the translation of the NL user query into a pivot query, and the formalization of
this pivot query, respectively described in subsections 3.1 and 3.2. The first step
roughly consists in the identification of the query focus, a dependency analysis
and the generation of a new query, called pivot query, which explicitly represents
extracted relations between substrings of the NL query sentence. In the second
step, predefined query patterns are mapped to the pivot query; we thus obtain a
list of potential interpretations of the user query, which are then ranked according
to their estimated relevance and proposed to the user in the form of reformulated
NL queries.

3.1 From natural language to pivot query

The user query is translated into a new structure called the pivot query. This
structure is half way between the NL query and the targeted formal query, and
can be expressed through a language, called pivot language, which is formally

defined in [13]. We use this pivot language in order to facilitate the implemen-
tation of multilingualism by means of a common intermediate format: a specific
module of translation of NL to pivot has to be written for each different language,
but the pivot query formalization step remains unchanged. The translation of
a natural language query into a pivot query is based on the use of a syntactic
dependency parser which produces a graph where nodes correspond to the words
of the sentence and edges to the grammatical dependencies between them.

Named entity identification Before parsing the query, a first stage identifies
in the sentence the entities corresponding to knowledge base resources. These
entities are then considered as a whole and will not be separated by the parser in
the next stage. For example, in the sentence “who are the actors of Underworld:
Awakening”, “Underworld: Awakening” will be considered as a named entity
as it is the label of an instance of Film in the knowledge base. This stage is
particularly crucial when querying knowledge bases containing long labels, such
as group names or film titles are that made up of several words or even sometimes
of a full sentence. Once the resource entities are identified and the dependency
graph is generated, a set of rules are applied to construct the pivot query.

Query focus identification First, the focus of the query is searched for in
order to identify the specific information the user is interested in. To do so, the
graph is browsed looking for an interrogative word which will help identify the
query focus either by the nouns linked to it in the graph (for “Which films
did Ted Hope produce?”, the focus will be “film”) or by the type of answer it
expects (for “When did Charles Chaplin die?”, the focus will be “?date”). If no
interrogative word is found, we look for specific phrases (“List”, “What are”,
. . .) introducing list queries, which are queries that also expect a list of resources
fulfilling certain conditions. In this case, the focus of the query will be the lemma
of the noun identified as the direct object of the verb in the clause in which the
phrase is found (for “List all the films in which Charles Chaplin acted”, the focus
will be “?film”). If, after this process, no focus has been identified, we consider
the query as dichotomous which means it will allow only two answers: True or
False (for “Was Jean Dujardin involved in the film The Artist?”: there will be
no focus defined).

Subquery generation The dependency graph is once more browsed in order
to identify from the different clauses of the sentence the possible subqueries
constituting the pivot query, i.e. the elements of the query and their relations.

The following rules are applied. If two nodes are part of a nominal phrase,
a binary subquery is constructed according to the lemma of the head and the
lemma of the expansion. For example, for the query “Give me all the films of Jean
Dujardin”, the generated binary query will be ?"film": "Jean Dujardin". If
three nodes are part of a clause composed of a subject, a verb and an object, a
ternary subquery is constructed according to the lemma of each node. For the

clause “Who played in the Artist?”, the corresponding ternary subquery will be
?"person": "play"= "the Artist". If the part of speech of a node is a relative
pronoun, the keyword used for representing this node in a subquery will be the
lemma of the noun it references. For example, for the query “Who played in a film
in which Jean Dujardin also played?”, the subquery corresponding to the second
clause will be "film": "play"= "Jean Dujardin", the subquery generated for
the first clause is ?"person": "play"= "film". Note that the use of the same
keyword allows us to express that the same film has to be considered in both
subqueries.

For each node, each rule is analyzed. This means that several subqueries can
be generated from one clause. For example, for the clause“Was Jean Dujardin
involved in the film The Artist?”, both subqueries ?"film": "The Artist" and
"Jean Dujardin": "involved"= "The Artist" will be generated.

These rules might seem simple but we have observed that the structure of
queries expressed by end-users is generally simple.

3.2 From pivot to formal query

Formalizing pivot queries using query patterns was the first task we tackled
and is thus extensively described in [12] and [13]. We briefly describe here the
structure of a query pattern and the process of this formalization.

A pattern is composed of an RDF graph which is the prototype of a relevant
family of queries. Such a pattern is characterized by a subset of its elements
– either class, property or literal type –, called the qualifying elements, which
can be modified during the construction of the final query graph. It is also
described by a sentence in natural language in which a distinct substring must
be associated with each qualifying element. For now, the patterns are designed
by experts who know the application domain. The designer of a pattern builds
its RDF graph manually, selects its qualifying elements and gives the describing
sentence.

The formalization of the pivot query is processed as follows. Each element
of the user query expressed in the pivot language is matched to an element of
the knowledge base. Elements of the knowledge base can either be a class, a
property, an instance or a literal type (which can be any type supported by
SPARQL, i.e. any type defined in RDF Schema). Then we map query patterns
to these elements. The different mappings are presented to the user by means
of natural language sentences. The selected sentence allows the final SPARQL
query to be built.

A recent evolution of the pattern structure makes the patterns more modular
and the query generation more dynamic. We can now assign values of minimal
and maximal cardinalities to subgraphs of the patterns, making these subgraphs
optional or repeatable when generating the formal query. The descriptive sen-
tence presented to the user also benefits from this novelty and no longer contains
non relevant parts (parts of the pattern which were not addressed by the user
query), thus making our system more ergonomic.

mo:MusicGroup

c1

bio:Birth
c2

xsd:date

l1

bio:Death
c3

xsd:date

l2
bio:event

bio:date
bio:event

bio:date

Sentence template: [c1] if begin(was formed on/in [l1],) if end(broke up on/in [l2]).

begin× 0..1 end× 0..1

Fig. 1. Examples of complex patterns, containing optional or repeatable subpatterns.

3.3 Example

Figure 1 shows an example of pattern which was built for the Musicbrainz
dataset. In this example and in the rest of this paper, we express URIs with
prefixes without making them explicit; they are common prefixes and must be
considered with their usual value. It covers all questions about creation and dis-
solution dates of music groups, and can be used to interpret, amongst others,
query 33 from the Musicbrainz test query set, “When were the Dixie Chicks
founded?” The pivot translation obtained by the Swip system for this question
is found: Dixie_Chicks= ?date. By mapping qualifying vertex c1 to keyword
Dixie_Chicks, c2 to found and l1 to date, and omitting the subpattern end,
the Swip system generates the SPARQL interpretation presented in Figure 2.

SELECT DISTINCT ?date WHERE
{

? Dix i e Chicks r d f s : l a b e l ”Dix ie Chicks ” .
? found bio : date ? date .
? Dix i e Chicks b io : event ? found .
? found rd f : type bio : Birth .
? Dix i e Chicks rd f : type mo: MusicGroup .

}

Fig. 2. SPARQL interpretation returned by Swip to query 33 “When were the Dixie
Chicks founded?”

4 Evaluation on QALD-3 datasets

A prototype of our approach was implemented in order to evaluate its effective-
ness. It is available at http://swip.univ-tlse2.fr/SwipWebClient. It was
implemented in Java and uses the MaltParser [11] for the dependency analy-
sis of English user queries. The system performs the second main process step
(translating from pivot to formal query) by exploiting a SPARQL server based

on the ARQ5 query processor, here configured to exploit LARQ6, allowing the
use of Apache Lucene7 features, such as indexation and Lucene score (used to
obtain the similarity score between strings).

Experiments were carried out on the evaluation framework proposed in task 1
of the QALD-3 challenge8. The evaluation method was defined by the challenge
organizers. It consists in calculating, for each test query, the precision, the recall
and the F-measure of the SPARQL translation returned by the system, com-
pared with handmade queries of a gold standard document. We participated in
both subtasks proposed by the challenge organizers, one targeting the DBpedia9

knowledge base and the other targeting an RDF export of Musicbrainz10 based
on the music ontology [14]. The quality of the results varies with the target KB;
these results are presented in this section.

4.1 Results overview

The Musicbrainz test dataset was composed of 50 NL questions. We processed 33
of them. 24 were correctly interpreted, 2 were partially answered and the others
failed. The average precision, recall and F-measure, calculated by the challenge
organizers, are all equal to 0.51. It is difficult to evaluate these performances, as
no other challenge participant tackled the Musicbrainz dataset. However, these
results are quite good when compared to those obtained by participants on
the DBpedia dataset. Indeed, among the other participants, the squall2sparql
system showed the best performance by far, but this system does not accept full
NL sentences as an input [7], and then, the second best F-measure is 0.36. Of
course the relevance of such a direct comparison is very questionable, as both
graph bases present significant differences and our system obtained poor results
on DBpedia, for reasons that are explained later.

The results obtained by SWIP on the DBpedia dataset, composed of 100
test questions, are not as good as our results on Musicbrainz. We processed 21
questions, of which 14 were successful, 2 were partially answered and 5 were not
correct. The precision (0.16), the F-measure (0.16) and the recall (0.16) are quite
low.

4.2 Evolution since QALD-1

These results obtained by SWIP can be compared to those we obtained two years
ago, when participating in the first edition of QALD challenge11. Here again, we

5 http://openjena.org/ARQ/
6 LARQ = Lucene + ARQ, see http://jena.sourceforge.net/ARQ/lucene-arq.

html
7 http://lucene.apache.org/
8 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=

task1&q=3
9 http://dbpedia.org

10 http://musicbrainz.org/
11 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=

task1&q=1

cannot make to a direct figure comparison as the evaluation method was slightly
different from the one applied in QALD-3, and the RDF export of Musicbrainz
was not based on the Music ontology as it is now, but rather on a schema which
was basically the translation of the relational schema used by the Musicbrainz
database. The new evaluation measures, when applied to our QALD-1 results,
gave us an average precision (resp. recall, F-measure) of 0.59 (resp. 0.59, 0.58).
The new results could seem lower than the previous ones, but we have to take
into account that the translation step from NL to pivot queries described in 3.1
is now automated, while it was carried out manually for QALD-1. As the task of
natural language interpretation is very complex, we consider these new results
as very encouraging.

4.3 Pattern construction and coverage

The Musicbrainz’s query patterns used for this evaluation were built by adapting
(to fit the new ontology) and updating (to take into account the 50 new training
queries) the ones created for QALD-1. We thus obtained five query patterns. The
one presented in Figure 1 is the simplest of them. The others can be visualized
through the user interface. Among the set of 50 test questions, only two required
query graphs which could not be generated by one of the patterns, without taking
into account the “out of scope” queries whose answer is not in the KB anyway.
This fairly high coverage rate shows that our approach is suitable for closed
domain KB, whose data is consistent with the schema.

For DBpedia, the first patterns were implemented with the QALD training
questions. Without taking into account the “out of scope” questions, we have
implemented all questions in patterns; but when the QALD test questions were
submitted, we noticed that only 19% of them were covered by the training pat-
terns. In comparison, Musicbrainz patterns covered 96% of the test questions.

The main problem for us was the “tidiness” of the processed data. Indeed,
most of the DBpedia knowledge base is automatically generated from infor-
mation written by thousands of contributors and not exported from a consis-
tent database like Musicbrainz. Consequently, we had to deal with the hetero-
geneity and inconsistency of the target KB that SWIP was not able to over-
come. For instance, the nickname of an entity can be expressed in the KB
by four distinct properties (dbo:nickname, dbo:nicknames, dbp:nickname and
dbp:nicknames). As another example, consider the question “Which states of
Germany are governed by the Social Democratic Party?” Its SPARQL transla-
tion is presented in figure 3, the value of the property dbp:rulingParty can be
either a URI referring to the Social Democratic Party, or an RDF plain literal.

We can deduce that our pattern based approach is very well suited for “clean”
KB, with consistent data, domain specific and respecting the schema it is based
on. However, in its current implementation, it is not well suited to KBs containing
many inconsistencies, which are the most popular KB on the Web of linked data.

SELECT DISTINCT ? u r i
WHERE {

? u r i rd f : type yago : StatesOfGermany .
{ ? u r i dbp : ru l ingPar ty ’SPD’@en . }
UNION
{ ? u r i dbp : ru l ingPar ty r e s : Soc ia l Democrat ic Party of Germany . }

}

Fig. 3. Gold standard SPARQL translation of question 8 from DBpedia’s training
dataset.

4.4 Unsupported queries

As explained above, 17 queries about Musicbrainz and 81 about DBpedia were
not processed by the SWIP system. We identified some categories whose ex-
pressivity exceeds that currently handled by our approach. Most of the non-
supported queries contain aggregates, like “Which bands recorded more than
50 albums?” For now, the only aggregate function supported by SWIP is the
counting of the total number of results of a query, as in “How many singles did
the Scorpions release?” because it is easy to spot in a NL query and it seems to
be the most recurrent in user queries. Furthermore, SWIP is not able to handle
queries which require inferences made beforehand, such as “Which artists turned
60 on May 15, 2011?”, and queries implying string comparison, such as “Give me
all bands whose name starts with Play.” Of course, adding the support of these
categories would significantly improve our approach’s results in the challenge,
and the design of these new features is the natural next step for our future work,
starting with the aggregates which seem to us to be the most recurrent in users’
needs.

4.5 Failed queries

We here give details about some queries whose interpretation failed. We explain
why they failed and emphasize some flaws in the current implementation of
SWIP and also some imperfections in the challenge dataset.

Musicbrainz dataset In its SPARQL translation of queries 15 “Who com-
posed the song Coast to Coast?” and 48 “Give me all soundtracks composed
by the Pet Shop Boys.”, SWIP made use of the property mo:composer which
seems to translate the NL query’s information need more appropriately than the
gold standard query which uses foaf:maker. However, the generated SPARQL
queries did not return any result and were thus considered wrong.

Another case of failed queries which were actually correctly interpreted are
queries 19 “With whom did Phil Collins work together?”, 50 “On which sin-
gles did Robbie Williams collaborate with Nicole Kidman?” and 51 “Did Kylie
Minogue ever collaborate with Mariah Carey?” These queries imply parts of

the KB which are not consistent with the involved vocabulary (Relationship12).
Indeed, the Musicbrainz KB (and thus, each gold standard query) misuses the
property rel:collaboratesWith which, according to the Relationship vocabulary,
is not supposed to be used with an intermediary blank node (symmetrical prop-
erty with domain and range foaf:Person).

For question 46 “Give me the titles of all singles by Phil Collins.”, SWIP
returned the resources themselves instead of their titles. Indeed, SWIP ignores
all references to labels (or any lexical representation, like titles or names) for
two main reasons:

– we believe that the values of these properties are naturally used in NL with-
out specifying the nature of the property (we usually say “Michael Jackson”
and not “somebody whose name is Michael Jackson”);

– the user interface uses labels to show results to the user anyway (is this not
what labels are for?).

Questions 32 “How many pieces of work did Mozart create?” and 39 “Does
the song Peggy Sue appear on Buddy Holly’s Greatest Hits compilation?” failed
because of the inaccuracy of the matching step results. In query 32, SWIP
matched the keyword “Mozart” with the resource with this same word as the
label and ignored the label “Wolfgang Amadeus Mozart”. In query 39, the whole
string “Buddy Holly’s Greatest Hits” was recognized as a named entity and was
matched to the resource with the same value as a label, while the gold stan-
dard query makes use of a resource with the label “Greatest Hits” which has for
foaf:maker another resource with the label “Buddy Holly”. To overcome these
ambiguities, work should be done to improve this step which should be more
flexible and maybe take into account the popularity of resources (thus a great
and very famous composer could be favored to an obscure music group).

Question 11, “How long is Louder Than Words by Against All Authority?”,
failed because of a simple typo in the concerned pattern. Indeed, the pattern
used the property duration of Music ontology, instead of that of the timeline
ontology which is actually used in the KB. This error was introduced while
adapting the patterns to the new ontology. The question was actually correctly
interpreted but the generated SPARQL made use of a non-existing property.
This kind of error could be easily prevented by using a simple tool allowing to
edit patterns and check that they fulfill some simple conditions.

Finally, the interpretation of question 5 ”How many tracks does Erotica
have?” was considered as correct according to the gold standard document, but
actually neither the generated SPARQL query, nor the gold standard one is
correct. Indeed, the gold standard translation of question 5 showed in figure 4
returns 40, the total number of tracks in all albums named “Erotica”. In this
case, several instances of the same album by Madonna are considered and each
track is thus taken into account several times. The tracks of another album
named “Erotica” by Roberto Perera are taken into account. All these problems
can be illustrated by the query showed in figure 5. This query returns (logically)

12 http://vocab.org/relationship/collaboratesWith.html

40 results, involving 40 distinct URIs for the variable track, but we can see that
some of these tracks have the same title and do not belong to the same album.

SELECT COUNT(DISTINCT ? track)
WHERE {

?album dc : t i t l e ’ Erot ica ’ .
?album mo: t rack ? t rack .

}

Fig. 4. Gold standard SPARQL translation of question 5 from Musicbrainz test
dataset.

SELECT ∗
WHERE {

?album dc : t i t l e ’ Erot ica ’ .
?album mo: t rack ? t rack .
OPTIONAL {?album f o a f : maker ?maker .

?maker f o a f : name ?makerName .}
OPTIONAL {? t rack dc : t i t l e ? t r a c kT i t l e .}

}

Fig. 5. SPARQL query allowing to emphasize the inaccuracy of query 4.

DBpedia dataset Regarding the DBpedia dataset, we express here only a few
observations about failed queries. The interpretation of the question “Who is the
mayor of Berlin?” does not return any result because the generated SPARQL
query used the property dbo:mayor instead of dbo:leader. Here again SWIP
made use of a property which is closer to the expressed user need but unfortu-
nately not used in the data.

The interpretation of “Who is the husband of Amanda Palmer?” does not
return any result because it makes use of the property dbo:spouse but not the
property dbp:spouse, which is the only property that give us results for this
question.

5 Conclusion and future work

In this paper, we presented the performance of the SWIP approach on the
QALD-3 benchmarking task. The results on Musicbrainz are clearly encour-
aging, those on DBpedia are quite disappointing. It appears that the approach

depends on the quality of the target KB. The data in this KB must be quite
homogeneous and respect the framework fixed by the schema it is based on.
However, most of the triple stores currently available on the Web of linked data
do not fulfill these requirements.

After these observations, we want to explore new leads allowing the approach
to evolve and stick more to the data itself than to the ontology. This aspect will
definitely be added to the objectives of our current work on automatic/assisted
pattern construction. We also intend to improve the matching process and add
the support of aggregates in order to obtain better results for the next challenge
and improve the user experience.

References

1. Athanasis, N., Christophides, V., Kotzinos, D.: Generating on the fly queries for
the semantic web: The ics-forth graphical rql interface (grql). In: International
Semantic Web Conference. pp. 486–501 (2004)

2. Cabrio, E., Cojan, J., Aprosio, A., Magnini, B., Lavelli, A., Gandon, F.: Qakis: an
open domain qa system based on relational patterns. In: International Semantic
Web Conference (Posters & Demos) (2012)

3. Clemmer, A., Davies, S.: Smeagol: a ”specific-to-general” semantic web query in-
terface paradigm for novices. In: Proceedings of the 22nd international confer-
ence on Database and expert systems applications - Volume Part I. pp. 288–
302. DEXA’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/
citation.cfm?id=2035368.2035396

4. CoGui: A conceptual graph editor. Web site (2009), http://www.lirmm.fr/cogui/
5. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching rdf graphs

with sparql and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)
6. Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the

semantic web. International Journal of Metadata, Semantics and Ontologies 7(1),
37–54 (2012)

7. Ferré, S.: Squall: A controlled natural language for querying and updating rdf
graphs. In: Controlled Natural Language, pp. 11–25. Springer (2012)

8. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query
languages and interfaces to semantic web knowledge bases. Web Semantics: Science,
Services and Agents on the World Wide Web 8(4), 377–393 (2010)

9. Lehmann, J., Bühmann, L.: Autosparql: let users query your knowledge base. In:
Proceedings of the 8th extended semantic web conference on The semantic web:
research and applications-Volume Part I. pp. 63–79. Springer-Verlag (2011)

10. Lei, Y., Uren, V.S., Motta, E.: Semsearch: A search engine for the semantic web.
In: EKAW. pp. 238–245 (2006)

11. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for de-
pendency parsing. In: Proceedings of the fifth international conference on Language
Resources and Evaluation (LREC2006), May 24-26, 2006, Genoa, Italy. pp. 2216–
2219. European Language Resource Association, Paris (2006)

12. Pradel, C., Haemmerlé, O., Hernandez, N.: Expressing conceptual graph queries
from patterns: how to take into account the relations. In: Proceedings of the 19th
International Conference on Conceptual Structures, ICCS’11, Lecture Notes in
Artificial Intelligence # 6828. pp. 234–247. Springer, Derby, GB (July 2011)

13. Pradel, C., Haemmerlé, O., Hernandez, N.: A semantic web interface using
patterns: The swip system (regular paper). In: Croitoru, M., Rudolph, S.,
Wilson, N., Howse, J., Corby, O. (eds.) IJCAI-GKR Workshop, Barcelona,
Spain, 16/07/2011-16/07/2011. pp. 172–187. No. 7205 in LNAI, Springer,
http://www.springerlink.com (mai 2012)

14. Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The music ontology. (2007)
15. Russell, A., Smart, P.R.: Nitelight: A graphical editor for sparql queries. In: Inter-

national Semantic Web Conference (Posters & Demos) (2008)
16. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-

didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE. pp.
405–416 (2009)

17. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A., Gerber, D., Cimiano,
P.: Template-based question answering over rdf data. In: Proceedings of the 21st
international conference on World Wide Web. pp. 639–648. ACM (2012)

18. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2semantic: a lightweight keyword
interface to semantic search. In: Proceedings of the 5th European semantic web
conference on The semantic web: research and applications. pp. 584–598. Springer-
Verlag (2008)

19. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: Adapting keyword query
to semantic search. In: ISWC/ASWC. pp. 694–707 (2007)

