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Abstract

Background: Genome-wide association studies (GWAS) aim at finding genetic markers that are significantly
associated with a phenotype of interest. Single nucleotide polymorphism (SNP) data from the entire genome are
collected for many thousands of SNP markers, leading to high-dimensional regression problems where the number of
predictors greatly exceeds the number of observations. Moreover, these predictors are statistically dependent, in
particular due to linkage disequilibrium (LD).

We propose a three-step approach that explicitly takes advantage of the grouping structure induced by LD in order to
identify common variants which may have been missed by single marker analyses (SMA). In the first step, we perform
a hierarchical clustering of SNPs with an adjacency constraint using LD as a similarity measure. In the second step, we
apply a model selection approach to the obtained hierarchy in order to define LD blocks. Finally, we perform Group
Lasso regression on the inferred LD blocks. We investigate the efficiency of this approach compared to state-of-the art
regression methods: haplotype association tests, SMA, and Lasso and Elastic-Net regressions.

Results: Our results on simulated data show that the proposed method performs better than state-of-the-art
approaches as soon as the number of causal SNPs within an LD block exceeds 2. Our results on semi-simulated data
and a previously published HIV data set illustrate the relevance of the proposed method and its robustness to a real

statistic, Penalized regression, Group lasso

LD structure. The method is implemented in the R package BALD (Blockwise Approach using Linkage
Disequilibrium), available from http://www.math-evry.cnrs.fr/publications/logiciels.

Conclusions: Our results show that the proposed method is efficient not only at the level of LD blocks by inferring
well the underlying block structure but also at the level of individual SNPs. Thus, this study demonstrates the
importance of tailored integration of biological knowledge in high-dimensional genomic studies such as GWAS.

Keywords: Genome-wide association studies, Linkage disequilibrium, Hierarchical clustering, Model selection, Gap

Background

With recent advances in high-throughput genotyping
technology, genome-wide association studies (GWAS)
have become a tool of choice for identifying genetic mark-
ers underlying a variation in a given phenotype — typically
complex human diseases and traits. In GWAS, informa-
tion on genetic polymorphisms is collected across the
genome and single nucleotide polymorphisms (SNPs) are
typically used due to their abundance in the genome.
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However, common genetic variants identified by GWAS
only account for a relatively small proportion of the heri-
tability of diseases [1].

The most widely used approach for selecting causal
SNPs is to perform univariate tests of association between
the phenotype of interest and the genotype of each
marker [2,3]. Following [4], this type of approach will be
referred to as Single Marker Analysis (SMA). The results
of SMA are often refined in two-ways. First, due to link-
age disequilibrium (LD) between SNPs, combining the
p-values obtained by SMA into gene-level statistics may
yield more interpretable results [5]. Second, candidate
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markers selected by SMA may be incorporated into a
multi-variable linear models of association. Recent stud-
ies suggest that penalized regression methods such as
Lasso [6] and Elastic-Net [7] may be appropriate to iden-
tify the additive effect of several genetic markers [4,8-10].
Such methods allow multi-variable linear models to be
estimated in high-dimensional situations such as GWAS,
where the number p of variables (i.e., SNP markers)
exceeds the number # of observations (i.e., individuals) by
several orders of magnitude. In this paper, we propose a
penalized regression approach tailored to the dependence
between markers in GWAS induced by linkage disequi-
librium (LD). Our goal is to identify common variants
which may have been missed by SMA because their indi-
vidual effect size is not large enough to pass genome-wide
significance thresholds.

As a motivating example for our contribution, Figure 1
represents the LD (r? coefficients, upper triangular part)
and the sample genotype correlations (lower triangular
part) between the first 256 SNPs of chromosome 6 in
a study on 605 HIV-infected patients [11]. A blockwise
structure can be distinguished, where the average LD
within blocks of 12 to 15 SNPs is approximately 2 = 0.2.
The LD values are notably more contrasted than the cor-
relation values, as many r? coefficients are very close to 0.
In order to account for, and take advantage of this strong

corr

Figure 1 Blockwise dependency in real genotyping data: 256 SNPs
spanning the first 1.45 Mb of Chromosome 6 in [11]. The average
distance between two successive SNPs is approximately 5 kb. The
upper triangular part of the matrix displays measures of LD (r?
coefficients) between pairs of SNPs, while its lower triangular part
displays absolute sample correlations between pairs of SNP
genotypes. Colors range linearly from 0 (white) to 0.4 (black).
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dependency structure between adjacent or nearby SNPs,
it makes sense to focus on the scale of LD blocks, and to
explicitly look for sets of LD blocks jointly associated to the
phenotype of interest.

In order to do so, we propose a three-step method
which consists in (i) inferring groups of SNP —that is, LD
blocks— using a spatially-constrained hierarchical cluster-
ing algorithm, (ii) applying a model selection approach
to estimate the number of groups, and (iii) identifying
associated groups of SNPs using a Group Lasso regres-
sion model [12]. This approach is described in Section
‘A three-step method for GWAS’. Sections ‘Implemen-
tation’, ‘Competing methods’, ‘Performance evaluation’
and ‘SNP and block-level evaluation’ cover a description
of its implementation and of the evaluation methods used
for performance assessment. In Sections ‘Results on sim-
ulated data’ and ‘Results on semi-simulated data’, the
proposed method is compared to state-of-the-art com-
petitors on simulated and semi-simulated data. Section
‘Analysis of HIV data’ describes the application of the pro-
posed method on microarray data from a specific GWA
study on HIV.

Methods

A three-step method for GWAS

The problem of selecting causal SNPs can be cast as a
problem of high-dimensional variable selection. We con-
sider the problem of predicting a continuous response 'y €
R” from covariates X € R"*P. Fori € {1,...,n}, X; isa p-
dimensional vector of covariates for observation i and for
j €{1,...,p}, X,isan-dimensional vector of observations
for covariate j. In GWAS, the covariates are ordinal and
correspond to SNP genotypes: X;; € {0,1,2} correspond
to the number of minor alleles at locus j for observa-
tion i. For each i € {1,...,n}, we assume that X;. has
a block structure with G non-overlapping blocks of sizes
P1,- .. PG, with ZgG:lpg = p. Thus X;. = (X},...,X%)
withX‘f eRPeforg=1,...,G.

We propose a three-step method consisting in (i) per-
forming a spatially constrained hierarchical clustering of
the covariates X, (ii) estimating the number of groups
using (a modified version of) the Gap statistic [13], and
(iii) performing a Group Lasso regression to identify
which of the inferred groups are associated with the
responsey.

Inference of LD blocks from genotypes
The first step of the proposed approach consists in infer-
ring LD blocks using a spatially constrained hierarchical
clustering algorithm. Only the genotype data X are used
at this step.

The proposed clustering procedure is based on the one
of the most widely used methods for cluster analysis:
Ward’s incremental sum of squares algorithm [14]. The
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general goal of sum of squares clustering is to minimize
the total within-group dispersion W for a given number
of groups G. Denoting by Sg. the total squared similarity
(usually, the similarity induced by the Euclidean distance)
between all pairs of items in groups g and g’, and by p, the
size of group g, W may be written as

@ s
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The standard agglomerative hierarchical clustering starts
with p groups of size 1 and successively merges the pair
of groups g and ¢’ leading to the minimal increase in
within-group dispersion. Equivalently, this corresponds to
merging the two closest groups g and g’ that minimize the
following distance:
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This merging process is repeated until a single group of
size p remains.

Our proposed clustering algorithm differs in two
respects. First, instead of the standard Euclidean distance,
we use a measure of the dissimilarity between two SNPs j
and j' based on LD: 1 — r2(j, ;). This is made possible by the
fact that the above-described algorithm depends on the
genotype data X only through the matrix of pairwise sim-
ilarities between variables (by the definition of S,y); this
can be viewed as an instance of kernel trick [15]. Second,
we take advantage of the fact that the LD matrix can be
modeled as block-diagonal (see Figure 1) by only allowing
groups of variables that are adjacent on the genome to be
merged.

Estimation of the number of groups
The choice of the number of groups G is often ambigu-
ous and depends on many parameters of the data set. Any
choice of G corresponds to a tradeoff between compress-
ing the data into few groups or reducing the amount of
error by increasing the number of groups. Several model
selection criteria have already been investigated to make
such a decision [13,16-18]. All of these methods are based
on the above-defined measure of within-group dispersion
(W6)G=1..p

We have chosen to use a modified version of the Gap
statistic [13] as a model selection criterion. The Gap statis-
tic compares W to its expectation under an appropriate
reference null distribution of the data. For a clustering into
G groups, we calculate the following quantity:

B

Gap*(G) = é Z (W(b; - WG) , (1)
b=1
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where forb = 1...B, W/g denotes the within-cluster dis-
persion of clustering the reference data set b in G groups.
For each reference data set, each column is drawn inde-
pendently from a uniform distribution over the range of
observed values for this column. In applications to GWAS,
this corresponds to a uniform distribution over the dis-
crete set of observed genotypes {0, 1,2}. Thus, the refer-
ence data sets correspond to data with no structure among
the variables. We define the optimal number of groups G
as the smallest G such that Gap*(G) > Gap*(G + 1)—sg+1,
where s is a standard error estimate calculated as sg =
(1+ B)~Y2sd, where sdg denotes the standard deviation
of (Wg) 1<b<p- In the classical version of the Gap statistic,
the logarithm of W is used instead of W, and several
alternatives to this original definition have been investi-
gated recently [19]. We decided to use the definition in
Equation 1 as we noticed that it led to better estimation
of the number of groups in our simulation studies, which
were performed under a variety of parameters and on sev-
eral data sets. For the reference distribution, we followed
the initial strategy proposed in the original Gap statistic
paper [13] and simulated each reference feature accord-
ing to a uniform distribution over the discrete set {0, 1, 2}.
We chose to simulate B = 100 reference samples since
we empirically observed that it was sufficient to provide a
stable estimation of the number of groups.

Selection of groups associated with the response

Once LD blocks have been identified, we use Group Lasso
regression [12] to identify blocks associated with the phe-
notype. Well adapted to group-structured variables, the
Group Lasso estimator is defined as:

G
Bai, = argmin [ |ly — XBI3+ 1Y /pellBll2 |,
BeR? g=1

where ||.||2 denotes the Euclidean norm, X is a penalty
parameter, and B¢ denotes the p,-dimensional vector of
regression coefficients corresponding to the g™ group, so
that 8 = (B,...B%). The Group Lasso is a group selec-
tion method: by construction, the estimated coefficients
within a group tend to be either all zero or all nonzero.
In practice, the columns of the design matrix X are scaled
before performing Group Lasso regression.

Implementation

The proposed three-step method has been imple-
mented in an R package called BALD for “Block-
wise Approach using Linkage Disequilibrium”. This
package is available from http://www.math-evry.cnrs.
fr/publications/logiciels. We have used the packages
grplasso for Group Lasso regression and quadrupen
for Lasso and Elastic-Net regression [20], both of which
are available from CRAN at http://cran.r-project.org.
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A naive implementation of the constrained clustering
described in Section ‘Inference of LD blocks from geno-
types’ would consist in (i) calculating the p(p — 1)/2 LD
measures for each pair of SNP and (ii) performing con-
strained hierarchical clustering on the obtained similarity
matrix. As p is typically of the order of 10* to 10° for a
single chromosome in a standard GWAS, such an imple-
mentation with space complexity of O(p?) is not appro-
priate. Indeed, for a single chromosome of length p =
10°, this algorithm would require storing of the order of
10'° numeric values of LD before applying the clustering
algorithm. To overcome this difficulty, our implementa-
tion takes as input the n x p matrix of genotypes X,
and calculates the LD measures incrementally as they are
required by the clustering. The LD measures are calcu-
lated directly from genotypes using the Bioconductor R
package snpStats [21,22], which handles missing val-
ues. For illustration, it takes 4.5 hours (on a standard
2.2 Ghzsingle CPU) to analyze a whole genome of 500k
simulated SNPs (for Affymetrix 500k arrays) genotyped
on 100 individuals. Note that this step is designed to be
applied chromosome by chromosome since it uses the LD
measure as a similarity.

The second step of the proposed algorithm consists
in model selection via the Gap statistic. Using the Gap
statistic for estimating the number of groups requires
the constrained hierarchical clustering algorithm to be
applied to B reference data sets of the same size as X.
Thus the Gap-step is B times longer than the constrained
clustering algorithm and is the computational bottleneck
of the method since the complexity of the clustering is
quadratic in the number of markers. However the par-
allelization of the model selection procedure is straight-
forward.

Competing methods

Various approaches have been proposed to select causal
SNPs from GWAS data. The method described in
Section ‘A three-step method for GWAS’ is compared to
two groups of methods:

e three methods that do not explicitly take a
block-structure information into account: SMA, and
two penalized regression approaches: Lasso [6] and
Elastic-Net [7].

o two methods that do explicitly take the
block-structure information into account: the
haplotype association module of the PLINK genome
association analysis tool [23], and the Group Lasso
applied to the true SNP groups. The latter approach
cannot be applied in practice, but is very useful to
analyze the contribution of the different steps of the
proposed method. We will refer to this approach as
the “oracle Group Lasso”.
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Single Marker Analysis In the standard SMA , for each
variable X j, we fit a single-predictor equation y = o +
BiX; and a p-value from a ¢-test against an intercept-only
model is calculated.

Multi-variable approaches The Lasso [6] is an efficient
sparse variable selection model in high-dimensional prob-
lems. The estimator of Lasso, denoted by B, is defined
as:

Blasso = argmin|ly — XB113 + AlIBIN1,
BeRP

where ||.]|; denotes the £; norm and A is a regularization
parameter. Thanks to the £1 penalty, the Lasso encourages
sparsity by setting many regression coefficients for irrel-
evant SNPs to exactly zero. However, this method does
not incorporate any information on correlation structure
between predictors, and tends to select only one variable
in each group of correlated variables. In order to over-
come this limitation, other methods have been proposed,
including the Elastic-Net [7]. The estimator of Elastic-Net
is denoted by ,BEN and defined as:

Ben = argmin|ly — XB112 + MlIB111 + A2lIB113
BeRP

where A1 and Xy are two regularization parameters. Like
the Lasso, the Elastic-Net simultaneously performs auto-
matic variable selection and continuous shrinkage. Unlike
the Lasso, the Elastic-Net includes a ridge (¢2) penalty
which tends to select groups of correlated variables.
Therefore, the Elastic-Net incorporates some prior infor-
mation regarding the block structure of the data. However,
unlike the proposed method, it does not take advantage of
the fact that in the particular case of GWAS, LD blocks
are adjacent along the genome. In this paper, we chose a
large value for the ridge parameter (A, = 0.8) in order for
the Elastic-Net estimate to be substantially different from
the Lasso estimate (which corresponds to A, = 0).

Haplotype association This competing grouping strat-
egy includes 4 steps, the first 3 being performed using the
PLINK genome association analysis tool. The first step
consists in inferring the LD blocks following the con-
fidence intervals procedure [24]. Then within each LD
block, haplotypes are estimated using an accelerated EM
algorithm similar to the partition/ligation method [25].
In the third step, haplotype-specific tests (with 1 degree
of freedom) for a quantitative trait are performed with
PLINK using the option —hap-assoc. Finally, we define
a block-adjusted p-value by performing a (Bonferroni)
Family-Wise Error Rate correction within each block. The
p-value of a SNP is then defined as the adjusted p-value of
the block it belongs to.
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Performance evaluation

Our performance assessment aims at evaluating the ability
of our proposed method to retrieve causal SNPs. Perfor-
mance is evaluated using partial Areas Under the Curve
(AUC) of the Receiver Operator Characteristics (ROC)
curve. This measure will be denoted by pAUC. We first
evaluate, for each method, the True Positive Rate (TPR)
and False Positive Rate (FPR) for a grid of underlying reg-
ularization parameter values and for each simulation in
order to obtain a ROC curve. Then we calculate the pAUC
in the range FPR €[ 0, lim] for each ROC curve, where lim
is defined as the maximum value of FPR below which the
ROC coordinates of all methods are well defined.

SNP and block-level evaluation

A SNP may be detected by a given method either because
it is a causal SNP, that is truly associated with the pheno-
type, or because it is in LD with such a causal SNP. This
issue is intrinsic to the design of GWAS and thus requires
adapted definitions of true and false positives. A relevant
recent contribution is the recently-introduced notion of
“threshold-specific FDR” (tFDR) [4]. tFDR relies on an
alternate definition of true positives that incorporates not
only “causal true positives” but also “linked true positives”.
In a similar spirit, we consider two definitions of associ-
ated SNPs in our simulation setting. We define a causal
SNP as a SNP that is simulated with a non-zero regres-
sion parameter, and a block-associated SNP as a predictor
that is not a causal marker but simulated in the same LD
block that a causal SNP. This is illustrated by Figure 2.
Importantly, and contrary to tFDR, our definition of a
block-associated SNP does not depend on a correlation
threshold.

Therefore, we consider two types of evaluation differing
in their objective. In the SNP-level evaluation (left panel
in Figure 2), the statistical unit considered is the SNP, and
a true positive (in red) is the discovery of a causal SNP;
the discovery of any other SNP (in blue) is considered as a
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false positive. In the block-level evaluation (right panel in
Figure 2), the statistical unit considered is the LD block,
and a true positive (in red) is the discovery of a block-
associated SNP; the discovery of any other SNP (in blue) is
considered as a false positive. Given these definitions, we
expect better results from the three classical approaches
(SMA, Lasso, and Elastic-Net) for the SNP-level evalua-
tion, and better results from the group-based methods for
the block-level evaluation.

Simulation settings

Our simulation setting is adapted from [26]. For all i €
{1,...,n},X;. is generated from a p-dimensional mul-
tivariate normal distribution whose covariance matrix
is block-diagonal. If j # j are in the same group,
covX;, X)) = p else cov(X, X)) =0. Then, we set
Xjj to 0,1 or 2 according to whether X;; < —¢, —¢ <
X;j < cor X;j > c, where c is a threshold determined
for producing a given minor allele frequency. For example,
choosing ¢ as the first quartile of a standard normal dis-
tribution corresponds to fixing the minor allele frequency
of the corresponding SNP to 0.5. The associated continu-
ous phenotype vector is finally generated according to the
linear regression model:

y=XB +e,

where € € R” is a gaussian error term.

Results and discussion
Results on simulated data
We set n = 100 and p = 2,048, with 192 groups of
sizes 2,2,4,8,16, and 32, replicated 32 times. The order-
ing of the groups is drawn at random for each simulation.
Figure 3 illustrates the type of dependency structure that
is obtained in this setting, using the same type of repre-
sentation as in Figure 1.

In our simulation, the difficulty of the problem is cali-
brated according to the coefficient of determination R? of

Figure 2 Schematics of covariance matrices for illustration of the proposed definition of “causal SNPs” (red area in the left panel) and
“block-associated SNPs” (red area in the right panel) on a toy example with p = 12 SNPs in 3 blocks of size 4, 6, and 2, respectively.
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corr

Figure 3 Blockwise dependency for a simulation run, with p =04,
using the same representation and color scale as in Figure 1. The
average r” within LD block is approximately 0.2. Red dots correspond
to causal SNPs. The blocks in which they are located are highlighted
by red squares.

the model, that is, the ratio of the variance explained by
the model to the total variance. This coefficient quantifies
the ability of a multi-variable model to explain the pheno-
type using the combined effect of all the relevant markers.
It is also called the total heritability 4% in the context of
genetics [4]. This coefficient is not to be mistaken with the
squared Pearson linear correlation coefficient r> between
the phenotype and the genotypes of a single marker. Thus,
in our simulation setting, the absolute value of the regres-
sion coefficients of causal SNPs does not influence the
performance of the methods. In the experiments reported
below, the regression coefficients of the causal SNPs were
randomly set to 1 or —1, and to O for all other SNPs; R2
is set to 0.2, which appeared to be a realistic value for
GWA studies in comparison with the number of individ-
uals 7 = 100. The other parameters of the simulation are
the within-LD-block correlation coefficient p, the number
causalSNP of causal SNPs and the size sigBlock of
the associated block.

We have performed an extensive simulation study,
where causalSNP € {1,2,4,6,8} and sigBlock €
{2,4,8,16,32}. We report average pAUC across 300 sim-
ulation runs. We mainly focus on cases where the corre-
lation coefficient p € {0.2,0.4} as these values yield an
average LD within a block that is consistent with what is
typically observed in real data (see Figure 1).

Block-level versus SNP-level evaluation
We consider a setting where a single SNP is truly asso-
ciated with the phenotype. Figure 4 displays the pAUC
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versus the size sigBlock of the “associated block” (that
is, the LD block containing the causal SNP) for both SNP-
and block-level evaluations. With SNP-level evaluation
(left panel), group-based approaches are outperformed
by the three competitors, and increasingly so as the size
of the associated block increases. This is mainly due to
the high number of false positive SNPs generated by the
group selection. Indeed, selecting a group with only one
causal SNP causes all other SNPs of the group to be
declared as false positives. Conversely, with group-level
evaluation (right panel of Figure 4), group-based meth-
ods show a clear superiority, showing that multi-variable
SNP-based methods (Lasso or Elastic-Net) are generally
unable to select all of the causal SNPs due to the pres-
ence of correlation between the SNPs of the block. The
poor performance of Lasso under correlated designs is not
new [7], but Figure 4 suggests that the proposed approach
even outperforms Elastic-Net. Although the Elastic-Net
has been designed specifically for correlated designs and
has recently been shown to have good performance in
GWAS [4], it seems that it does not take full advantage
of the characteristic block structure of the predictors in
GWAS.

As the size of the associated block increases, the per-
formance of all methods decrease. Indeed, for a given
level of within-block correlation (here, p = 0.4), the
larger the size of the block, the more diluted the infor-
mation about the causal SNP becomes. Thus, a larger LD
block in our simulation setting results in a more difficult
problem. This increase in complexity explains the general
decrease in performance. This decrease in performance is
more severe for the Group lasso. Indeed, it tends to select
small groups of SNPs because its default penalty increases
with block size. The drop in performance of the proposed
approach compared to that of the “oracle” Group Lasso
for sigBlock € {2,4} is discussed in the next subsection
when assessing the efficiency of the block inference step.

In the remainder of this section, we focus on SNP-
level evaluation, which is a priori more favorable to SNP
selection methods than to group selection methods. We
are interested in comparing the methods under this eval-
uation setting which is particularly challenging for the
proposed approach.

Efficiency of LD block inference

The goal of this section is to quantify the inference of
the LD blocks (the first two steps in Section ‘A three-step
method for GWAS’) on the global performance of the
proposed method. In order to do so, we compare the per-
formance of the proposed method to that of the “oracle”
version where the Group Lasso is applied to the true LD
blocks, that is, those defined by the simulation settings.
Figure 5 displays the mean pAUC versus the correlation
level for both methods. When the level of correlation is
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solid lines), oracle Group Lasso (dashed red lines), Lasso (dotted green lines),
lines), for p = 0.4. Left: SNP-level evaluation. Right: block-level evaluation.

Elastic-Net (dash-dotted blue lines) and SMA (“univ’, dashed light blue

less than 0.4, we note that the proposed approach is out-
performed by the “oracle” Group Lasso. In fact, for low
correlation levels, the block inference procedure tends to
under-estimate the number of blocks leading to an esti-
mated group structure with big blocks and thus a high

number of false positives selected by the Group Lasso.
However, the difference between the performance of the
two group-based methods becomes insignificant when
the level of correlation is above 0.4 and when the size
of the associated block is greater than 4. This indicates
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that the proposed LD block inference method, which
combines constrained clustering and model selection, effi-
ciently captures the underlying dependency structure in
this case.

Influence of the number of causal SNPs per block

We investigate the robustness of the 5 approaches to the
parameter causalSNP, that is, the number of relevant
variables within a block of size 8. Figure 6 displays the
PAUC as a function of causalSNP for p = 0.4.

These results illustrate the robustness of the proposed
group approach to an increasing number of causal SNPs,
which is not the case of its 3 competitors. Indeed, the per-
formance of the group strategies remain constant when
that of the classical approaches deteriorate significantly
as soon as the number of relevant SNP within the block
exceeds 2. More specifically, the Group Lasso selects the
associated block of 8 SNPs for both correlation levels. On
the contrary, the Lasso fails to recover the true relevant
SNPs if there are correlations among the variables. As
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expected, the Elastic-Net performs a little better than the
Lasso when the correlation structure is strong enough for
the grouping effect of this model to be effective (p > 0.4).

Influence of the Minor Allele Frequency distribution
Our simulation model adapted from [26] allows to repro-
duce the group-structured correlation that characterizes
the GWAS data (see Figure 3). However, as noted by a
reviewer, fixing the cutoff parameter c at the first quantile
of the standard normal distribution as in [26] generates
unrealistic Minor Allele Frequency (MAF) distributions.
To address this point, we simulated genotype matri-
ces where the MAF of the SNPs are uniformly sampled
between 0.05 and 0.5. This roughly corresponds to the
MAF distribution observed in a real GWA study [11], and
MAF = 0.05 is a commonly-used threshold to partition
variants into rare and common.

We then performed the same simulation study pre-
sented above adapting the dimension parameters to the
new range of MAF. Specifically, we used n = 1,000 in
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Figure 6 The mean pAUC as a function of the number of causal SNPs causalSNP within a block of size 8, for the proposed method (“Id block-GL”,
black solid lines), oracle Group Lasso (dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines) and SMA (“univ”, dashed light
blue lines), for p = 0.4.
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order for variants with a low MAF to be observed fre-
quently enough. Accordingly, the R? ratio was lowered to
0.01 in order for the difficulty of the problem to be sim-
ilar. The number of markers was increased to p = 4,096
in order to maintain p > n. Finally, groups of sizes
2,2,4,8,16, and 32 were replicated 64 times, yielding a
total of 384 groups.

The results and conclusions are almost identical to those
of the previous subsections (see Additional files 1 and 2).
Firstly, for the scenario with an isolated causal SNP as in
Section ‘Block-level versus SNP-level evaluation’ and for
the scenario with an increasing number of causal markers
as in Section ‘Influence of the number of causal SNPs per
block; the ordering of the performance of all the methods
remained unchanged with a general increase for all the
approaches due to the less stringent high-dimensionality
ratio n/p compared to the ratio used in the previous sub-
sections. Secondly, the first two steps of the proposed
approach were able to perfectly retrieve the underlying
block structure, even with low values of the correlation.
In contrast, performance curves in scenario ‘Efficiency of
LD block inference’ were superimposed only for p > 0.4.
This difference can be explained by the fact that increas-
ing the number of individuals # led to a more salient LD
block structure.

Results on semi-simulated data
In order to control the causal SNPs while considering a
realistic dependance structure among the SNPs, we used
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semi-simulated data, where the genotypes come from a
real GWA study and the phenotypes are simulated using
the linear model presented in Section ‘Simulation settings’
with pre-determined causal SNPs. This type of simulation
allows to study a data set with a real linkage disequilibrium
structure while having a ground truth. The genotype data
correspond to the first p = 2,048 SNPs of chromosome
22 for n = 100 individuals from a GWA study on HIV
[11]. This data set is described in more detail in Section
‘Analysis of HIV data! The LD block structure was firstly
inferred using the first steps of the two group-based
approaches:

e CHC-Gap : the proposed constrained hierarchical
clustering followed by the Gap statistic.

e CI: the default confidence intervals method used in
PLINK.

The procedure CHC-Gap estimated 225 blocks and the
procedure CI inferred 993 blocks including 555 blocks
of size 1 (single SNPs). Similar to the previous simula-
tion study, 300 continuous phenotypes were generated by
increasing the number of relevant variables causalSNP
within a block of size 8. Figure 7 displays the pAUC as a
function of causalSNP.

Given the blocks estimated with CHC-Gap, we com-
pared the performance of the proposed method to that
of the non-grouping approaches (left panel of Figure 7).
Asin Section ‘Block-level versus SNP-level evaluation’, for
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causalSNP € {I1,2}, the proposed approach is outper-
formed by its competitors because of the high number
of false positives generated by the group selection. Con-
versely, the performance of the competing methods dete-
riorate significantly as soon as causalSNP> 2 which is
not the case of the Group Lasso. This result is also con-
sistent with those obtained in Section ‘Influence of the
number of causal SNPs per block’.

Similarly, given the block structure inferred with CI, we
investigated the robustness of the oracle Group Lasso, the
haplotype association approach and the 3 non-grouping
methods to the parameter causalSNP (right panel of
Figure 7). Comparing haplotype association and Group
Lasso approaches, we observe a difference of perfor-
mance when one unique causal SNP is included in a
block. The drop in performance of the Group Lasso is
due to the difference in the block structure: as explained
in Section ‘Block-level versus SNP-level evaluation, the
Group Lasso penalty increases with block size, making
it difficult for this method to select the correct block in
presence of many smaller blocks. In practice, this is not
problematic as the block selection step in the proposed
approach yields larger blocks. On the contrary, the hap-
lotype association method performs a p-value correction
that takes the block structure into account, but the p-
value of the causal SNP is so small that the adjustment
hardly reduces the significance of the block. Furthermore,
as in Section ‘Simulation settings, it is remarkable that
Group Lasso outperforms competing approaches as soon
as causalSNP> 2 even for SNP-level evaluation.

The consistency between the results of Sections ‘Results
on simulated data’ and ‘Results on semi-simulated data’
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suggests that the simulation setting used in Section
‘Results on simulated data’ efficiently mimics a realistic
genotyping data set.

Analysis of HIV data
Data set
The HIV data set consists of p = 20,811 SNPs genotyped
for n = 605 Caucasian subjects and the plasma HIV-
RNA level as phenotype. It corresponds to the phenotype
and the genotype data related to the chromosome 6 of the
GWA study conducted by [11]. A small number of SNPs
were discarded from the study because they generated
undefined values of LD. The filtered data set thus con-
tained 20,756 SNPs. Missing values were imputed using
the Bioconductor R package snpStats [21]. For the pro-
posed approach, this imputation was performed after the
constrained clustering described in Sections ‘Inference of
LD blocks from genotypes’ and ‘Estimation of the number
of groups’, as the proposed constrained clustering algo-
rithm handles missing values. The same data set was used
to perform the haplotype association approach. Each of
the compared models was adjusted for the gender of the
patient.

Block inference

The first step of inferring the LD blocks applied to the
HIV data estimated 1,756 blocks with B = 500 null ref-
erence data sets generated in the Gap statistic algorithm.
The distribution of the sizes of the obtained blocks is rep-
resented in the histogram of Figure 8 (left panel). The
median block size is close to 10, and the size of the vast
majority of blocks is less than 30. The first step of the
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proposed method. Right: the histogram of the block sizes estimated by the first step of the haplotype association approach.

4000
|

3000
1

Frequency

2000

1000
|

o J
T

I T T T T 1
0 5 10 15 20 25 30




Dehman et al. BMC Bioinformatics (2015) 16:148

haplotype association method estimated 9,003 haplotype
blocks including 4,699 single SNPs. The size distribution
of the obtained blocks is represented in the histogram
on the right panel of Figure 8. Unlike the LD structure
inferred by the proposed approach, the haplotype blocks
are much smaller with an average block size of 2.

Results on HIV data

We were able to reproduce the results of [11]: the SNPs
identified by SMA correspond to the 15 SNPs selected
by [11] at a target False Discovery Rate (FDR) level of
25%. Most of these SNPs are located in the major his-
tocompatibility complex (MHC) region 6p21. A linkage
disequilibrium plot of a set of 68 contiguous SNPs within
this region is represented in Figure 9. The SNPs marked
with a red star (*) are those selected by SMA. The first 20
SNPs selected by the Lasso are the same as those selected
by the univariate model except for 3 SNPs; the names of
these 3 SNPs are marked with blue dashes (-) in the left
panel of Figure 9.

The local block structures inferred by both the cluster-
ing and model selection steps of the proposed method
and the competing haplotype association method are also
highlighted in this figure (contour lines). The mean LD
within the largest two blocks of the left panel is r> = 0.41
and r2 = 0.55, respectively. The Lasso was able to recover
two of the four SNPs identified by [11] in the first block,
and two of the three SNPs identified by [11] in the sec-
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ond block. This is consistent with the fact that the Lasso
is not designed to select correlated variables, as already
discussed in Section ‘Competing methods’.

Among the four blocks inferred by the proposed
method in this region, the three blocks with a red contour
line are among the first 15 blocks selected by the Group
Lasso (see Additional file 3 for a Manhattan plot). Almost
all of them are of size more than 10 SNPs, except for the
two blocks containing 3 and 4 SNPs already identified by
[11], as displayed in Figure 9. Each of the 8 remaining
SNPs selected by SMA are located in a different LD block
of average size around 18 SNPs. The fact that these SNPs
have not been detected by the Group Lasso is consistent
with the results of our simulation data. Indeed, Figure 4
showed that the Group Lasso tends to select small groups
of SNPs because of its default penalty.

Contrary to the Lasso or the Elastic-Net, the proposed
approach detected groups of SNPs that had not been iden-
tified by [11]. Some of these groups of SNPs may contain
interesting candidates, as further discussed below in the
description of Figure 10.

Similarly to the proposed method, we focused on the
first 15 blocks (including single SNPs) selected by the hap-
lotype association approach. The 5 blocks selected by the
haplotype association method in the same region repre-
sented in Figure 9 are represented with a red contour line.
The competing approach was able to recover all of the 7
SNPs identified by [11] and located in this region. How-
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ever, it detected one group of SNPs that had not been
identified in the previous study. This difference could be
due to strong LD (r> = 0.81) between the SNPs of this
block and the SNPs of the block containing 4 markers
previously identified as associated with the phenotype.
Each of the first 15 LD blocks selected by the two
grouping strategies are represented as a colored horizon-
tal segment in Figure 10, where the x axis corresponds to
the (— log;-transformed) SMA p-values obtained by [11].
For the haplotype association approach (right panel of
Figure 10), 6 of the 15 blocks consist of a single SNP, that
had already been identified in [11]. Moreover, for several
of the 15 LD blocks selected by the proposed approach
(left panel of Figure 10), all of the SMA p-values of the
block are smaller than the (non multiplicity-corrected)
0.05 level (vertical dash-dotted line at —log;,(p) = 1.3).
Therefore, although we do not claim that all of these
groups of SNPs are relevant to HIV, we believe that some
of them might contain interesting candidates. The dashed
vertical line highlights the significance threshold used in
[11]. Therefore, the 4™ and 14" blocks which cross the
vertical dotted line correspond to the two largest blocks
in the left panel of Figure 10, which respectively con-
tain 4 and 3 SNPs previously identified by [11]. We also
believe that Figure 10 is an interesting diagnostic plot to
pinpoint candidate groups of SNPs associated with the
disease. Further replication or meta-analysis work would

be required to confirm the association between these
novel candidates and the phenotype.

Conclusions

In this paper, we have proposed a three-step approach that
takes into account the biological information of the link-
age disequilibrium between variables by firstly inferring
LD blocks, then estimating the number of such blocks,
and finally performing Group Lasso regression on these
inferred groups. This method is implemented as an R
package. Although we have used a continuous pheno-
type in our simulations and applications, the approach
described in this paper can be extended to the study of cat-
egorical phenotypes, by using the logistic version of each
regression model.

We have demonstrated using simulations that the
proposed approach efficiently retrieves the underlying
block structure for realistic levels of LD between SNPs.
Moreover, state-of-the-art SMA and penalized regres-
sion approaches Lasso and Elastic-Net are outperformed
by our proposed method for the purpose of identify-
ing blocks containing causal SNPs. We have argued that
selecting blocks (rather than individual SNPs) associated
with a phenotype is a sensible goal in the GWAS context,
where the proportion of heritability explained by indi-
vidual SNPs is generally low. Interestingly, although the
proposed method can only select groups of SNPs and not
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individual SNPs, our results on simulated data suggest
that this approach performs better than state-of-the-art
approaches in terms of selection of causal SNPs as soon as
the number of associated SNPs within the same LD block
exceeds 2.

We have also applied this method to semi-simulated
data with a real genotype matrix and a simulated pheno-
type. As soon as the number of causal markers within a
block exceeds 2, the proposed approach shows remarkable
performance compared to non-grouping classical strate-
gies, and to an haplotype association method that explic-
itly takes the block structure information into account.
This result suggests that the proposed method is adapted
to a real linkage disequilibrium structure.

Finally, an application of this method to HIV data illus-
trates the ability of the method to (i) partly recover the
signal identified by single-locus methods, and (ii) pin-
point previously overlooked associations. We believe that
these results demonstrate the relevance of the approach,
and thereby illustrate the importance of tailored integra-
tion of biological knowledge in high-dimensional genomic
studies such as GWAS.

A limitation of our proposed method is that it does not
provide a significance assessment for the selected groups.
Deriving reliable p-values for regression coefficients in
high-dimensional, correlated settings is a challenging
research area in the machine learning and statistics fields
in general [27,28].

However, even if such p-values could be obtained for
the groups inferred by our proposed method, we would
like to emphasize that providing an interpretable mul-
tiple testing risk assessment in GWAS would remain
a difficult question. Although several multi-SNP tests
have been proposed to assess the significance of SNP
groups [5,29], no fully satisfactory strategy allows the
control of standard multiple testing error rates such as
the Family-Wise Error Rate (FWER) or the False Dis-
covery Rate (FDR). Indeed, the presence of correlation
among explanatory variables makes causal SNPs indis-
tinguishable from their “neighbors” This issue is not
specific to a particular inference method, but intrinsic
to the design of GWAS. Therefore, we believe that it
should be addressed by adapting the definitions of true
and false positives. In the present paper, we have con-
sidered two types of risk evaluation at different genomic
scales: SNP-level and block-level evaluations. An alter-
native strategy in a similar spirit was recently proposed
[4]. Both strategies rely on a prior definition of the scale
of the signal of interest. For future work, we would
like to develop an evaluation strategy and an associated
inference method that adapts to this scale. A possible
direction is to adapt the notion of hierarchical testing
of variable importance [30,31] to the specific context of
GWAS.

Page 13 of 14

Additional files

Additional file 1: Figure S1. Simulation results with realistic MAF for the
scenario with an isolated causal SNP.

Additional file 2: Figure S2. Simulation results with a MAF uniformly
distributed in [0.05,0.5] for the scenario with an increasing number of
causal SNPs within a block of size 8.

Additional file 3: Figure S3. Manhattan plot of the HIV data results.
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