
HAL Id: hal-01193039
https://hal.science/hal-01193039

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Adaptive Fault Tolerance: From a
Component-Based Approach to ROS

Michaël Lauer, Matthieu Amy, William Excoffon, Matthieu Roy, Miruna
Stoicescu

To cite this version:
Michaël Lauer, Matthieu Amy, William Excoffon, Matthieu Roy, Miruna Stoicescu. Towards Adaptive
Fault Tolerance: From a Component-Based Approach to ROS. CARS 2015 - Critical Automotive
applications: Robustness & Safety, Sep 2015, Paris, France. �hal-01193039�

https://hal.science/hal-01193039
https://hal.archives-ouvertes.fr

 1

Towards Adaptive Fault Tolerance:
From a Component-Based Approach to ROS

M. Lauer1, M. Amy2, W. Excoffon2, M. Roy, M. Stoicescu3

CNRS-LAAS, Toulouse, France
Univ de Toulouse, 1 UPS, 2 INP

3 ESOC/ESA, Darmstadt, Germany, on behalf of GMV

A system that remains dependable when facing changes (new
threats, failures, updates) is resilient. In this paper, we report on
an approach taking advantage of Component Based Software
Engineering technologies for tackling a crucial aspect of resilient
computing, namely the on-line adaptation of fault tolerance
mechanisms. The second part of this paper shows how this
approach can be implemented on ROS that is presently used for
implementing automotive applications, e.g. ADAS. We illustrate
the mapping of ideal components to ROS components and give
implementation details of a fault tolerance design pattern that is
adaptive at runtime. We finally draw the lessons learnt from our
first experiments.
Keywords: fault tolerance; on-line adaptation; CBSE; ROS

I. INTRODUCTION
Systems have to evolve during their service life in order to

cope with additional features requested by users. For
dependable embedded systems, the challenge is greater, as
evolution must not impair dependability attributes. The
persistence of dependability when facing changes is called
resilience [1]. Dependability relies at runtime on Fault
Tolerance Mechanisms (FTMs or Safety Mechanisms) attached
to the application. A challenge of resilient computing is the
capacity to adapt the FTMs during the operational life of the
system.

Adaptive Fault Tolerance (AFT) [2] is gaining importance
and on-line adaptation of FTMs has attracted research efforts
for some time now. However, most solutions [3,4,5,6] tackle
adaptation in a preprogrammed manner: all FTMs necessary
during the service life of the system are known and deployed
from the beginning and adaptation consists in choosing the
appropriate execution branch or tuning some parameters, e.g.,
the number of replicas or the interval between state
checkpoints. Clearly, predicting all events and threats that a
system may encounter throughout its service life and making
provisions for them is impossible. The use of FTMs in real
operational conditions may lead to slight updates or
unanticipated upgrades, e.g., compositions of FTMs that can
tolerate a more complex fault model than initially expected.

In automotive systems, remote changes are of interest for
different purposes: maintenance but also updates and upgrades
of embedded applications (e.g. ADAS). Remote changes
should be partial as it is unrealistic to reload completely an
ECU from small updates. This idea is promoted by some car
manufacturers like Renault, BMW but also TESLA Motors
stating in its website "Model S regularly receives over-the-air
software updates that add new features and functionality".

Remote changes will become very important for economic
reasons, for instance to sell options a posteriori, since most of
the evolution in the next future will rely on software for the
same hardware configuration (sensors and actuators). Car-to-
car applications also imply rapid adaptation of onboard
software to remain consistent with the network of cars.
Consequently, changes imply revisiting the safety analysis (e.g.
FMECA) and thus safety mechanisms may evolve a posteriori.

We propose an alternative to preprogrammed adaptation
denoted agile adaptation of FTMs. The term “agile” is inspired
from agile software development [7]. Agile adaptation of
FTMs enables systematic evolution: according to runtime
observations of the system and of its environment, new FTMs
can be designed off-line and integrated on-line in a flexible
manner, with limited impact on the existing software.

Evolvability has long been a prerogative of the application
business logic, leading to the development of adaptive software
[8]. Consequently, our approach for the agile adaptation of
FTMs leverages advances in this field such as Component-
Based Software Engineering (CBSE) technologies [9]. Using
such concepts and technologies, the idea is to design FTMs as
“Lego”-like brick-based assemblies that can be methodically
modified at runtime through fine-grained changes affecting a
limited number of bricks. This approach maximizes reuse and
flexibility, contrary to monolithic replacements of FTMs. In
automotive embedded systems, the runtime support does not
rely on these software engineering concepts. As shown in [10],
AUTOSAR does not provide today much flexibility.

ROS is a of middleware for robotics applications but also
used in the automotive industry. This open-source component-
based middleware provides means to dynamically manipulate
system configuration. The ROS community is very large and
the system is used in several critical application, e.g. for
unmanned military vehicles at NREC (National Robotics
Engineering Center in Pittsburgh, e.g. the Crusher).

Section II summarizes our CBSE-based approach for adaptive
fault tolerance. The mapping of this approach to ROS is
described in Section III. Conclusion is given in Section IV.

II. ADAPTIVE FAULT TOLERANCE USING CBSE

A. Adaptation and Change Model
The choice of an appropriate fault tolerance mechanism

(FTM) for a given application depends on several parameters:
1) fault tolerance requirements FT; 2) application character-
istics A; 3) available resources R. At any point in time, FTM(s)

 2

attached to an application component must be consistent with
the current values of (FT, A, R). These three parameters enable
to discriminate FTMs and represent our change model.

Among fault tolerance requirements FT, we focus on the
fault model. Our classification is based on well-known fault
types [14]: crash faults, value faults, and development faults.
We focus here on hardware faults but the approach is adaptable
to any type of faults, e.g., development faults.

The application characteristics A that we identified as
having an impact on the choice of an FTM are: application
statefulness, state accessibility and determinism. Mastering
non-determinism or state access for black boxes is impossible!

The available resources R play an important role in the
selection process. FTMs require resources such as bandwidth,
CPU, battery life/energy. In case more than one solution exists,
for a given set of parameters FT and A, the resource criterion
can invalidate some of the solutions (notion of cost function).

Any parameter variation during the service life of the
system may invalidate the running FTM, thus requiring a
transition towards a new one. Transitions may be triggered by
new threats (i.e., fault model change), resource loss or a new
application version with different characteristics.

B. FT Design Patterns and Assumptions
To illustrate our approach, we consider some fault tolerance

design patterns and discuss their underlying assumptions and
resource needs.

Duplex protocols tolerate crash faults using passive (e.g.
Primary-Backup Replication denoted PBR), or active
replication strategies (e.g. Leader-Follower Replication
denoted LFR). Each replica is considered as a self-checking
component. The fault model includes hardware faults or
random operating system faults (no common mode faults). At
least 2 independent processors are necessary to run this FTM.

 Time Redundancy (TR) tolerates transient physical faults
or random runtime support faults using repetition of the
computation and comparison. This is a way to improve the
self-checking nature of a replica.

The above Duplex strategies can be combined to TR to
tolerate both transient and permanent faults.

Assumptions / FTM PBR LFR TR
Fault Model FT crash ü ü

transient ü
Application
behavior A

Deterministic ü ü
State access ü

Resources (R)

Bandwidth high low nil
CPU 2 2 1

Fig. 1. Assumptions and fault tolerance design patterns charateristics

The underlying characteristics of the considered FTMs, in
terms of (FT, A, R), are shown in Fig. 1. For instance, PBR and
LFR tolerate the same fault model, but have different A and R.
PBR allows non-determinism of applications because only the
Primary computes client requests while LFR only works for
deterministic applications as both replicas compute all requests.
PBR requires state access for checkpoints and higher network
bandwidth (in general), while LFR does not require state access
but generally incurs higher CPU cost as both replicas execute
the request.

C. Possible transitions
During the service life of the system, the values of

parameters enumerated in Fig. 1 can change. An application
can become non-deterministic because a new version is
installed. The fault model can become more complex, e.g.,
from crash-only it can become crash and value fault. Available
resources can also vary, e.g., bandwidth drop or constraints in
energy consumption. For instance, the PBR→LFR transition is
triggered by a change in application characteristics (e.g.
inability to access application state) or in resources (bandwidth
drop), while the PBR→PBR+TR (FTM composition) transition
is triggered by a change in the considered fault model (e.g.
value faults). Transitions can occur in both directions,
according to parameter variation. A transition implies remote
loading of additional individual FTM bricks, and on-line
reconfiguration of the FTM bricks assembly.

D. Design for adaptation of FTMs
Our approach relies first on an analysis of the FTMs in

order to extract common parts and variable features between
them. We follow a “design for adaptation” approach
consisting of several design loops. We combine Object-
Oriented concepts and Aspect-Oriented-Programming concepts
to produce componentized fault tolerance design patterns. The
result is a set of elementary reusable components that can be
combined to implement a given fault tolerance or safety
mechanism. For instance, duplex mechanisms can be designed
using the Before-Proceed-After scheme, because an inter-
replica synchronization takes place before request processing
and another one after (Fig. 2).

FTM Before Proceed After
PBR (primary)
PBR(backup)

Forward request Compute Checkpointing
Handle request State update

LFR (leader)
LFR (follower)

Forward request Compute Notify
Handle request Compute Handle notification

TR Get/SetState Compute Compare & repeat

Fig. 2. Generic execution scheme for FT design patterns

Composition implies nesting the Before-Proceed-After
scheme. This approach improves flexibility, reusability,
composability and reduces development time. Updates are
minimized since just few components have to be changed.

E. Runtime support
The above execution scheme was implemented on the

FraSCAti [11], a reflective component-based middleware
providing runtime support for applications designed according
to the Service Component Architecture (SCA) specifications.
FraSCAti enriches the basic SCA specification with support for
on-line exploration and reconfiguration of component-based
assemblies. Our approach is reproducible on any other support
providing control over components and bindings [12].

III. ADAPTIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS
ROS can be viewed as a middleware running on top of a

Unix-based operating system (typically Linux). The main goal
of ROS is to allow the design of modular applications: a ROS
application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

 3

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topics. When
a node publishes a message on a topics, it is delivered to every
nodes subscribing to this topics. Note that neither a publisher is
aware of the subscriber to its topics nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware of
the client nodes that may use its service. These high-level
communication models allow adding, replacing or deleting
nodes in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register their services and topics to the ROS master, having
thus a comprehensive view of the computation graph. When a
node issues a service call, it queries the master for the address
of the service node and then it sends its request to this address.

Fig. 3. Generic computation graph for FTM

In order to be able to add fault-tolerance mechanisms to an
existing ROS application in the most transparent manner, we
need to implement interceptors. An interceptor provides a
means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability. At
launch time, it is possible to reconfigure the name of any
services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

B. Implementing a componentized FT design pattern
1) Generic Computation Graph: We identified a generic

pattern for the computation graph of a FTM. Figure 3 shows its
application in the context of ROS. Node Client uses a service
provided by Server. The FTM computation graph is inserted
between the two thanks to the ROS remapping feature. The
FTM nodes, topics, and services are generic for every FTM
discussed in section II. Implementing a FTM consist in
specializing the before, proceed, and after nodes with its
corresponding behavior (see Fig. 2).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server. Fig. 4
presents the associated architecture. Three machines are
involved: the Client which is also hosting the ROS master, the
Master hosting the primary replica and the Slave hosting the
backup replica. For the sake of clarity, the symmetric topics
and services between Master and Slave are not represented.
Elements of the slave are suffixed with “_S”.

We present the behavior of each node, the topics/services
used through a request/reply exchange between a node Client
and node Server (see Fig. 4).
• Client sends a request to Proxy (service clt2pxy);

• Proxy adds an identifier to the request and transfers it to
Protocol (topics pxy2pro);

• Protocol checks whether it is a duplicate request: if so, it
sends directly the stored reply to Proxy (topics pro2pxy).
Otherwise, it sends the request to Before (service pro2bfr);

• Before transfers the request for processing to Proceed
(topics bfr2prd); no action is associated in the PBR case,
but for other duplex protocol, Before may synchronize with
the other replicas;

• Proceed calls the actual service provided by Server (service
prd2srv) and forwards the result to After (topics prd2aft);

• After gets the last result from Proceed, captures Server state
by calling the state management service provided by the
server (service aft2srv), and builds a checkpoint based on
this information which it sends to node After_S of the other
replica (topics aft2aft_S);

• Protocol gets the result (topics aft2pro) and sends it to
Proxy (topics pro2pxy);

• On the backup replica, After_S transfers the last result to its
protocol node Proto_S (topics aft2pr_S) and sets the state
of its server to match the primary.
In parallel with request processing, the node crash detector

on the Master (noted CD) periodically gives a proof of life to
the crash detector (CD_S) on the Slave to assert its liveliness
(topics CD2CD_S). If a crash is detected, then the slave crash
detector notifies the recovery node (topics CD_S2rcy). This
node has two purposes: (1) in order to enforce the fail-silent
assumption, it must ensure that every node of the Master are
removed; (2) it switches the binding between the Client proxy
and the Master protocol to the Slave protocol. Thus, the Slave
will receive the Client’s requests and will act as the Primary,
changing its operating mode.

Fig. 4. Computation graph of a PBR mechanism

ROS does not provide APIs to dynamically change
bindings between nodes. The node developer must implement
the transition logics. The Slave protocol spins waiting for a

Adaptive Fault-Tolerance: from a Component-Based
Approach to ROS

Michael Shell
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox

Springfield, USA
Email: homer@thesimpsons.com

James Kirk
and Montgomery Scott

Starfleet Academy
San Francisco, California 96678-2391

Telephone: (800) 555–1212
Fax: (888) 555–1212

Abstract—The abstract goes here.

I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

FTM

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy service

topic

Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);

 4

notification from recovery (topics rcy2pro_S). This is done by
background threads within a node independently of its main
functionality, using the ROS API. Upon reception of this topic,
protocol subscribes to topic pxy2pro and publishes to topic
pro2pxy. Further requests from the Client will now be
forwarded by the proxy to the Slave protocol.

2) Impact on the existing application: From the designer
viewpoint, there are two changes required to integrate a FTM
computation graph to its application. First, Client will have to
be remapped to call the proxy nodes service instead of directly
the Server. Second, state management services, to get and set
the state of the node, must be integrated to the Server. Form an
object-oriented viewpoint any server inherits from an abstract
class stateManager providing two virtual methods, getState
and setState, overridden during the server development.
C. Composition of FT mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a request
as input, a reply as output. Hence, a way to compose
mechanisms is to replace the Proceed node of a mechanism by
a Protocol and its associated Before/Proceed/After nodes, as
shown in Fig. 5.

Fig. 5. Composition of FT mechanisms.

D. Dynamic Adaptation of FTM
A set of minimal API required for dynamic adaptation of

FTMs has been established in previous work [14]:
• control over components life cycle at runtime (add, remove,

start, stop);

• control over interactions between components at run- time,
for creating or removing bindings. Furthermore, to ensure
consistency before, during and after reconfiguration, 1)
components must be stopped in a quiescent state, i.e. when
all internal processing has finished, and 2) incoming
requests on stopped components must be buffered, to
ensure consistency of request processing.
With the exception of add and remove, ROS does not

provide this API. This API can be emulated with dedicated
logics in some nodes. For instance, we have described binding
control in the Primary to Backup switch in our example.
Controlling node lifecycle can be done in the same manner and
these principles can be applied in the context of dynamic
adaptation, i.e. add new nodes at runtime and binding them in
the computation graph. In future work, we intend to emulate
the required API to guarantee consistency of reconfiguration.

IV. LESSONS LEARNT AND CONCLUSION
In previous work, we have defined a complete process for

Adaptive Fault Tolerance, starting from a Design for
Adaptation strategy. Then, we have shown that CBSE
technologies and associate reflective middleware enable FTMs
to be adapted off-line and on-line, by changing few
components.

The work reported in this paper aims at evaluating to what
extent ROS is an appropriate runtime support to implemented
Adaptive Fault Tolerance. The result is two-fold. The positive
aspect is that ROS provides a notion of component at runtime
(node) providing time and space partitioning (based on the
notion of Linux process). A second benefit is that it is possible
to map both synchronous and asynchronous interactions on
services and topics, respectively. The negative points are
essentially related to the manipulation of the bindings on-line.
This involves additional customization of the nodes to reach
this aim.

The manipulation of the suspension/activation of the nodes
is problematic at runtime. An ad-hoc solution has to be
developed to handle the quiescent state of the node. Last but
not least, at this stage, performance issues have not been
investigated.

REFERENCES
[1] J.-C. Laprie. From Dependability to Resilience. In 38th IEEE/IFIP Int.

Conf. on Dependable Systems and Networks (DSN), 2008.
[2] K. H. K. Kim and T. F. Lawrence. Adaptive Fault Tolerance: Issues and

Approaches. In Procs of the Second IEEE Workshop on Future Trends
of Distributed Computing Systems. IEEE, 1990, pp. 38–46.

[3] C. Krishna and I. Koren. Adaptive Fault-Tolerance for Cyber-Physical
Systems. In IEEE International Conference on Computing, Networking
and Communications (ICNC), 2013, pp. 310–314.

[4] J. Fraga, F. Siqueira, and F. Favarim. An Adaptive Fault- Tolerant
Component Model. In 9th Workshop on Object-Oriented Real-Time
Dependable Systems. IEEE, 2003, pp. 179–186.

[5] L. C. Lung, F. Favarim, G. T. Santos, and M. Correia. An Infrastructure
for Adaptive Fault Tolerance on FT-CORBA. In 9th Int. Symp. on
Object and Component-Oriented RT Dist. Computing. IEEE, 2006.

[6] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum. Towards Adaptive
Fault-Tolerance for Distributed Multi-Agent Systems. In 4th European
Research Seminar on Advances in Distributed Systems, 2001, pp. 195–
201.

[7] J. Highsmithand and A. Cockburn. Agile Software Development: The
Business of Innovation. In Computer, vol. 34, no. 9, pp. 120–127, 2001.

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng. Composing
Adaptive Software. In Computer, vol. 37, no. 7, pp. 56–64, 2004.

[9] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. In 2nd Computer. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[10] H. Martorell, J.-C. Fabre, M. Lauer, M. Roy and R. Valentin. Partial
Updates of AUTOSAR Embedded Applications — To What Extent? In
European Dependable Computing Conf. (EDCC), 2015, Paris, France.

[11] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B.
Stefani. A Component-Based Middleware Platform for Reconfigurable
Service-Oriented Architectures. In SP&E, 2011.

[12] M. Stoicescu, J.-C. Fabre, M. Roy, From Design for Adaptation to
Component-Based Resilient Computing. In PRDC, 2012: 1-10

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy
aft2srv

P
r
o
t
o
_
S

Before_S

Proc_S

After_S

Server_S

prd2srv_S

pro2bfr_S

aft2pro_S

prd2aft_S

bfr2prd_S

aft2srv_S

MASTER

SLAVE

CLIENT

aft2aft_S

Recovery
CD

CD_S

CD_S2rcy

CD2CD_S

rcy2pro_S

Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

After

FTM1

P
r
o
t
o
c
o
l

Before

After

Proceed

FTM2

Server

Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;

