N
N

N

HAL

open science

Using Model-based Development for ISO26262 aligned
HSI Definition

Georg Macher, Harald Sporer, Eric Armengaud, Eugen Brenner, Christian

Kreiner

» To cite this version:

Georg Macher, Harald Sporer, Eric Armengaud, Eugen Brenner, Christian Kreiner. Using Model-
based Development for ISO26262 aligned HSI Definition. CARS 2015 - Critical Automotive applica-

tions: Robustness & Safety, Sep 2015, Paris, France. hal-01193034

HAL Id: hal-01193034
https://hal.science/hal-01193034

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01193034
https://hal.archives-ouvertes.fr

Using Model-based Development for 1ISO26262
aligned HSI Definition

Georg Macher*”,Harald Sporer*, Eric Armengaud”, Eugen Brenner* and Christian Kreiner*

*Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, sporer, brenner, christian.kreiner} @tugraz.at

IAVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud} @avl.com

Abstract—The ISO 26262 safety standard for road vehicles,
among other engineer standards, was established to provide
guidance for the development of safety-critical systems. Providing
evidence of consistent, correct, and complete system specification
covering different work-products is crucial in this context. One of
these required work-products is the hardware-software interface
(HSI) definition. The HSI definition is especially important since
it defines the interfaces between different engineering domains
(such as system development, HW development, and SW devel-
opment). Model-based development (MBD) is the most promising
approach to support consistent description of the system under
development in a structured way. This paper thus presents an
ISO 26262 aligned hardware-software interface definition tool
approach which bidirectionally combines the versatility and in-
tuitiveness of spreadsheet tools (such as Excel) and the properties
of MDB tools (e.g. different views, levels of abstraction, central
source of information, and information reuse). The approach
presented is capable of defining an ISO 26262 compliant HSI
and enables automatic derivation of basic software configurations
according to these interface definitions.

Index Terms—model-based development,
hardware-software interface.

ISO 26262,

I. INTRODUCTION

Electronic control units (ECU) have steadily increased in
value on the vehicle market over the years. The range of
premium cars software implementations were close to 1 gi-
gabyte code and were spread over more than 90 electronic
control units (ECU) in 2009. By 2018 the cost of vehicle
electronics is forecast to have risen to 30% of the overall
vehicle costs [5]. At the same time the higher degree of inte-
gration and the safety-criticality of the control application is
raising new challenges. Evidence of correctness of the different
applications and safety concepts must be guaranteed and the
increasing demands for safety and security require additional
development efforts. Safety standards such as ISO 26262 [6]
for electrical and electronic systems for road vehicles have
been established to provide guidance during the development
of safety-critical systems. The standards provide a well-defined
safety lifecycle based on hazard identification and mitigation,
and define a long list of work-products to be generated. One
important work-product among the many that are defined here
is the hardware-software interface (HSI) definition. The HSI
specifies the hardware and software interactions in consistency

with the technical safety concept, which includes hardware
components that are controlled by software and support the
software execution. ISO 26262 states the importance and es-
sentiality of the HSI specification by highlighting its definition
during the system design phase and its further refinement
during hardware and software development phase [6]. The
HSI document is the last development artifact of the system
development and the starting point for parallel development
of hardware and software. The HSI definition thus requires
mutual domain knowledge of hardware and software and
is usually the result of a collective workshop of hardware,
software, and system experts. The HSI is the linkage between
different levels of development and is used to align topics rel-
evant to both hardware and software development. Insufficient
definition of the HSI can cause several additional iteration
cycles and communication issues between development teams.
Model-based development (MBD) supports the description of
the system under development in a more structured way, which
enables different perspectives for different stakeholders, differ-
ent levels of abstraction and a central source of information,
moreover it also appears to be the best approach for handling
these HSI definition issues. Nevertheless, seamless model-
based solutions have not been achieved so far, mainly due to
inadequate tool-chain support (e.g. redundancy, inconsistency
and lack of automation), which hampers the MBD approach
in tapping its full potential. This paper thus presents a tool
approach for ISO 26262 aligned hardware-software interface
definition. The approach presented combines the versatility
and intuitiveness of spreadsheet tools (such as Excel) and
the properties of MDB tools (e.g. different views, levels of
abstraction, central source of information, and information
reuse) bidirectionally.

The document is organized as follows: The next section
describes related works and the state of the art of hard-
ware/software interface definition. The III section provides a
description of the proposed enhancement for HSI definition.
Section IV evaluates the presented approach with an automo-
tive use case. Finally, the last section concludes this work with
an overview of what has been achieved.



II. STATE-OF-THE-ART HSI DEFINITION

Although the topic of defining hardware/software interface
definitions is of great importance for the automotive domain,
only few recent publications exist. King et. al [7] postulate
the problematic of defining HW/SW interfaces in early de-
velopment steps for of System on Chip (SoC)development.
First, a detailed interface is difficult to specify without detailed
knowledge of software and hardware. Second, these detailed
interfaces prevent a later migration of interface functionality
and addition of features.

In the automotive domain hardware and software develop-
ment cycle times differ significantly in length and software
development is typically separated into several abstraction lay-
ers (such as application software, microcontroller abstraction
layers, basic functionality drivers). This approach conceals
hardware specific details and enables the establishment of
focused software development teams (e.g., basic software de-
veloper, application software engineers, software integrators),
but on the other hand it sometimes obfuscates the importance
HSI development.

The AUTOSAR architectural approach [1] explicitly forces
an approach of this kind to support hardware independent
development of application software modules until a very late
development phase. The AUTOSAR specifications intention
is to support exchange and reuse of software, by defining
software architectures, interfaces, and exchange formats and
enable parallel working of application software developers,
basic software developers, and hardware developers.

A comprehensive overview of hardware/software co-design
methods and tools can be found in [9]. Teich’s work exploits
the synergies of hardware and software with focus on cost
and performance constraints and highlights major research
directions and achievements.

Contract-based design paradigms are an emerging domain-
independent paradigm for interface definition. The contracts
specify the input and output behavior of a component and
provide a guaranteed behavior [3]. Such an approach can
be used for software component safety contracts [8] as well
as contract-based embedded system development [4]. These
contract-based approaches foster model-based development
and traceability of development decisions. Nevertheless, this
approach is not simple and easy enough to be used of HSI
definition workshops. Because of its simplicity and easy to
use nature many hardware/software interface definitions are
still done within spreadsheet tools or in textual form within a
requirement management tool. Although Chen et. al [2] claim
that social and text-based communication does not scale for
the handling of future embedded automotive systems and their
advanced interface definition constraints.

III. THE HSI DEFINITION APPROACH

The HSI definition tool presented in this work allows the
definition of ISO 26262 aligned hardware-software interfaces
in a practicable and intuitive way in a spreadsheet tool (such
as Excel). The tool presented enables the transformation of
these HSI definitions in a reusable and version-able model

TE CONFIGURATION
BRIDGE

25

RUNTIME ENVIRONMENT

SPREADSHEET TDOL-BRIDGE

Fig. 1. Conceptual Overview of the HSI Definition Approach

representation in a MDB tool(such as Enterprise Architect).
The spreadsheet tool and the MBD tool can be bidirectionally
aligned via program-specific APIs, which supports the tool-
independence of the approach presented.

An overview of the main parts of the contribution is shown
in Figure 1, the following sections describe each part in more
detail.

A. Application SW Modeling Framework

The first part of the approach is a specific UML modeling
framework developed to enable an AUTOSAR-like repre-
sentation of software architecture designs within the system
development tool (Enterprise Architect). The UML profile
takes advantage of the AUTOSAR virtual function bus (VFB)
abstraction layer and enables an explicit definition of AU-
TOSAR components, component interfaces, and connections
between interfaces. The AUTOSAR-aligned representation can
be linked to system development artifacts and requirement
representations, which eases the traceability between these
different types of development artifacts. These explicit links
can further be used for automated constraints checking and
ease the confirmability of development decisions (e.g. for
safety case generation). This provides the possibility to define
software architecture and ensures a proper definition of the
communication between the architecture artifacts, including
interface specifications (e.g. upper limits, initial values, for-
mulas).

Figure 2 shows the EA model profile for the modeling of
the software module (AUTOSAR composition) and its signal
interface definitions. As can be seen in the figure, software
modules contain a declaration of their related ASIL and a



ametaciasss AUTO SARComponent g$

Class

- _imege :int = <Image type="EA...
- _metstype stiing = AUTOSARCempenent

< ASIL :ASILKind = QM

+ Characteristic :CompenentTypekind = AUTOSAR Apglicstion

+ isActive ‘Boolean wextendss

AUTOSARPort g»

- _imags iint= <imags type="EA. .
- _metatyps istring = AUTOSARPart
- _sizeX int=18

_size¥ int=18

DastaType :DataTypeKind = float
DefaultValus cint=10
‘PortDirectionkind = in

wmetaclasss
Port

+ isBehavior
+ isConjugste
+ isService ‘Boole

wextendss

PortType :PortTypekind = AUTOSAR Sender ...
ScalingLSE it

ScalingOffset cint=0

SignalUnit string

upperLimit :int

Fig. 2. EA Model for Modeling of Software Architectures

characteristic declaration. This characteristic determines the
module either as a hierarchical composition or an atomic
software module, which comprises additional benefits for SW
allocation and analysis. The ASIL assignment supports the
work of safety engineers by adding values and visual labels
for safety-relevant software modules. The port configuration
artifact (lower part of figure 2) implies the definition of the
interface specification and enables the automatic generation
of interfaces to BSW modules. The model representation of
SW architectures and module interfaces in the MBD tool
enables constraint checking features and supports traces to HSI
definition and requirements.

B. Basic SW and HW Module Modeling Framework

To also model basic software (BSW) and hardware module
representations additional model artifacts are defined. These
representations are assigned to establish links from ASW
modules to the underlying basic software and hardware layers.
Thereby the hardware profile enables an intuitive graphical
way of establishing hardware-software interfaces (HSI) and
linking of SW signals of BSW modules to HW port pins
via dedicated mappings. Figure 3 depicts the HW and BSW
artifacts required to complete HSI model representation. The
BSW module representation is shown in the upper part of the
picture, this enables the modeling of interfaces between ASW
and BSW layer (runtime environment). The second artifact
is a representation of HW pins with a listing of the possible
pin configurations. HSI configurations of the HW pin can be
modeled using the third artifact.

C. HSI Definition Exporter and Importer

The HSI exporter MBD-tool extension establishes a links
to the spreadsheet tool via API calls and enables the export of
modeled HW/SW interfaces to spreadsheet documents (.csv
or .zls files). The MBD-tool extension is developed in form
of a dll class library and via API links, which provides

Safety SoftwareArchitecturezAUTOSAR e}
BSW Interface

«metaclasss
SafetySoftwareArchitecture:
Class

- _image :int=<Image type="EA...
wextendsy - _metatype :string = Autosar BSW Int...
+ isActive :Boolean + ASIL ASILKind = QM

+ Modul Type :ModulTypes

ConnectorPin [

_metatype :string = ConnectorPin
Analog_IN :sfring = false
Analog_OUT :string = false
DataDirectionReglD :int=0
Digital_IN :boolean = true
Digital_OUT :boolean = true
Direction :PortDirectionKind = in_out
HighSideSwitch :boolean = false
LowSideSwitch :boolean = true
maxSamplesPerSecond :int = 100000
PinMode :PinMode

PinNumber :string = 0

PinReglD :int=0

Port :string = P00

PortReglD :int=10

PWM_IN :boolean = false
PWM_OUT :boolean = false
SpecialFunctions :string = non
Supply :boolean = false

umetaclasss
Class

+ isActive :Boolean «extendss

ConnectorPinSetting €$

_metatype :string = ConnectorPinSetting
Accuracy int

HWCycleTime :int

/PhysicalLimitLow int
fPhysicalLimitUpper :int
PhysicalUnit :string

Resolution :HW Resolution = 12 bit
fSignaTolerance int
HWSupplyVolage :int

RefreshRate :int

RegisterType :string = RAM

Source :ConnectionTypeKind = Digital OUT
VariableName :string

umetaclasss
Interface

wextendss

Fig. 3. EA Model for Modeling of Information of BSW and HW Represen-
tation

means for reuse by multiple programs and ensures MDB-
tool independence of the exporter respectively of the specific
spreadsheet tool.

The HSI spreadsheet importer is the HSI exporter’s coun-
terpart. Also implemented as a dll class library using the
spreadsheet tools API it enables the import of information and
selective update of HW/SW interface model artifacts, which
enables round-trip engineering between spreadsheet and MDB
tool HSI representations. Common spreadsheet file extensions
(such as .csv or .xls) are importable, which correspond to the
generic structure of the spreadsheet template.

D. Spreadsheet Template

The spreadsheet template defines the structure of the data
representation in a generic, project-specific and customizable
way. This ensures the practicable and intuitive method of en-
gineering HSI definitions with spreadsheet tools. Additionally,
the machine- and human-readable notation of spreadsheets
enables the transformation of this information to a reusable and
version-able representation in the MDB tool. This approach
thus unifies the project-dependent process of HSI definitions
across the variety of different projects and contributing part-
ners without requiring exactly the same development tools or
processes to be in place which ensures a cost- and time-saving
alternative to what are usually complex special-purpose tools.



TABLE I
ADDITIONAL FEATURES PROVIDED BY THE APPROACH AND NUMBER OF
EMERGES FOR THE BMS USE-CASE

Provided features Number of emerges for BMS

use-case

extracted settings to Excel 437
consistency checks of ASW 54
signal mappings

modeled ASW artifacts
modeled BSW artifacts
modeled HW/SW interface ar-

10 modules + 86 signal ports
7 modules + 38 signal ports
19 HW pins + 19 pin configu-

tifacts rations
generated LoC for ASW/BSW 33
mapping

E. SW/SW Interface Generator

The SW/SW interface generator generates .c and .h files
defining SW/SW interfaces between application software sig-
nals and basic software signals from the modeled HSI arti-
facts. This eliminates the need of manual SW/SW interface
generation without adequate syntax and semantic support and
ensures reproducibility and traceability of these configurations.
This generator is another dlI class library based MBD tool ex-
tension, which can also be implemented by other frameworks
or reused by other tools.

IV. EVALUATION OF THE HSI DEFINITION APPROACH

For evaluation of the approach an automotive use-case of
a central control unit (CCU) in a battery management system
(BMS) prototype for (hybrid) electric vehicle has been chosen.
Project-specific details have been abstracted for reasons of
commercial sensitivity. The CCU SW architecture of the use-
case consists of 10 SW modules on ASW layer and 7 SW
modules on BSW layer. The ASW modules count 54 inputs
and 32 outputs, which define 48 SW/SW interfaces on ASW
layer and 19 interfaces to BSW and HW connections.

This adds up to more than 30 lines of code (LoC) for
HW/SW interface definition, which can be generated automat-
ically into interface.c and interface.h files with the approach
presented. Consistency checks for the 32 output interfaces and
54 input interfaces on the ASW layer can ensure point-to-
point consistency of these signal routings. This adds up to
774 definitions, for 9 definable features per signal, which are
automatically checked for consistency with this approach.

The HW/SW interface mapping consists of 19 interfaces
for this specific SW architecture. The mappings include 23
settings per pin, which can be automatically exported into a
spreadsheet and kept consistent with the model-representation
via the importer functionality. This ensures actuality of depen-
dent development artifacts and simplifies tracing of develop-
ment decisions.

Table I sums up the additional features provided by the
presented approach for the BMS use-case.

V. CONCLUSION

This paper presented a tool approach for ISO 26262 aligned
hardware/software interface definition. The approach combines
the versatility and intuitiveness of spreadsheet tools (such
as Excel) and the properties of MDB tools (e.g. different
views, levels of abstraction, central source of information, and
information reuse) and does so in a bidirectional manner. This,
enables a practicable, tool-independent, and intuitive method
of engineering HSI definitions with spreadsheet tools and
transformation of the generated information into a reusable and
version able model representation. The machine- and human-
readable notation of spreadsheets ensures a cost- and time-
saving alternative to what are usually complex special-purpose
tools (such as AUTOSAR tools). Furthermore, the capability
of the approach for defining an ISO 26262 compliant HSI
and automatic derivation of basic software configurations
according to these interface definitions has been evaluated with
a brief BMS use-case.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of the "COMET K2 - Competence Centers for Excellent
Technologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWEFJ),
the Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency (SFG).
We are grateful for the contribution of the SOQRATES Safety
AK experts and the expertise gained in SafEUr professional
trainings. Furthermore, we would like to express our thanks
to our supporting project partners, AVL List GmbH, Virtual
Vehicle Research Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] DelJiu Chen, Rolf Johansson, Henrik Loenn, Yiannis Papadopoulos,
Anders Sandberg, Fredrik Toerner, and Martin Toerngren. Modelling
Support for Design of Safety-Critical Automotive Embedded Systems.
In SAFECOMP 2008, pages 72 — 85, 2008.

[3] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-
Based Design. In Software Engineering and Advanced Applications
(SEAA), 2012 38th EUROMICRO Conference on, pages 21-28, Sept
2012.

[4] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing and
architecture design. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pages 1-6, March 2011.

[5] Christof Ebert and Capers Jones. Embedded Software: Facts, Figures,
and Future. IEEE Computer Society, 0018-9162/09:42-52, 2009.

[6] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[7] Myron King, Nirav Dave, and Arvind. Automatic Generation of Hard-
ware/Software Interfaces. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 325-336, New York, NY, USA,
2012. ACM.

[8] A. Soderberg and R. Johansson. Safety contract based design of software
components. In Software Reliability Engineering Workshops (ISSREW),
2013 IEEE International Symposium on, pages 365-370, Nov 2013.

[9] Juergen Teich. Hardware/Software Codesign: The Past, the Present, and
Predicting the Future. Proceedings of the IEEE, 100(Special Centennial
Issue):1411-1430, May 2012.



