
HAL Id: hal-01193025
https://hal.science/hal-01193025

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of Linux Kernel Features for
Embedded Software Systems in Vehicles

Ludwig Thomeczek

To cite this version:
Ludwig Thomeczek. Security Analysis of Linux Kernel Features for Embedded Software Systems
in Vehicles. CARS 2015 - Critical Automotive applications: Robustness & Safety, Sep 2015, Paris,
France. �hal-01193025�

https://hal.science/hal-01193025
https://hal.archives-ouvertes.fr


LUDWIG THOMECZEK, SUBMISSION FOR CARS 2015 1

Security Analysis of Linux Kernel Features
for Embedded Software Systems in Vehicles

Ludwig Thomeczek

Abstract—This paper describes different safety and security
mechanisms implemented in the Linux kernel to prevent and
protect against accidental or malicious misbehaviour in user
applications.

First, we present a generic system model for user applications
with different levels of criticality and deterministic behaviour.
From this, a theoretical model for failure modes and attack
scenarios on the stability of the operating system and concurrently
executed user applications is derived. Then, technologies in the
Linux kernel to counter the identified failure modes and attack
scenarios are examined and compared.

Current work in progress is to implement requirement-based
tests for these security measures and assess their effectiveness,
efficiency and limits.

Keywords—security, safety, embedded, vehicle, operating systems,
Linux

I. INTRODUCTION

W ITH the on-going miniaturization and improvement
both in computing power and energy efficiency, elec-

tronics in vehicle systems become more integrated and con-
nected. Real-time reporting of process metrics and the ability
to alter system settings as well as remote servicing and
software updates often call for connection to remote corporate
networks, commonly realised via internet connections. This
presents a challenge to current vehicle software and hardware
designs, which are optimized for safe deterministic behaviour
and small footprint size to run in an embedded environment
where CPU power and memory are scarce (either due to cost
savings, energy concerns or the plain size requirements).

Often new features and services are introduced into these
conventional vehicle systems without proper understanding of
their implications. In industrial systems, this removal of the
air gap between embedded systems and the internet to allow
remote access is one of these features. As certain systems
never were designed to run in any other environment than
a hermetically-sealed network, several prominent industrial
SCADA vendors had to deal with vulnerabilities exposing
complete power plants and other apparel on the internet for
everybody to control [CER] [SE].

With more powerful hardware and an ever-increasing
amount of features needed, software designs for new industrial
and vehicle components include general-purpose operating
systems, in contrast to the traditional software designs with

Ludwig Thomeczek is currently studying at the University of Applied
Sciences Landshut and works on his master’s thesis at BMW Car IT GmbH.

His supervisors are Tilmann Ochs and Lukas Bulwahn from BMW Car IT
and Gernot Hillier and Gudrun Schiedermeier from the University of Applied
Sciences Landshut.

specialised real-time operating systems or bare-metal appli-
cations, i.e., application code directly accesses the hardware
without using a hardware abstraction layer. General-purpose
operating systems provide up-to-date security mechanisms, and
useful features for new technological trends, such as Internet-
of-Things, Industry 4.0 or Industrial Internet.

An established and widely-used general-purpose operating
system is the Linux kernel and its surrounding software ecosys-
tem, often just referred to as Linux or GNU/Linux. As Linux
is deployed in systems with a wide range of computing capac-
ities, from large HPC systems to low-power mobile phones,
the Linux kernel is versatile and can be extensively adapted
for various use cases. Its source code and documentation is
provided under an open-source license and is continuously
developed for over 20 years.

It can readily be adapted to be deployed onto embed-
ded computers that provide relatively low computing power,
comparable to current low-end smartphones. These embedded
computing units (CU) are integrated into a certain system
environment. In this paper, the assumed system environment
is a vehicle, but we recognised that many insights also apply
to other industrial environments. The assumed system environ-
ment is a network of embedded computers and devices, such
as internet gateways or control computers.

The paper’s main focus are means for configuration of the
Linux Kernel to achieve a safe and secure system in the
assumed environment. In this paper, we limit the scope of our
analysis: we assume the use of an Preempt-RT Linux kernel
and we do not consider special-purpose hardware, hard-disk
encryption, redundant disk storage and the bootloader.

II. THEORETICAL MODEL BASED ON POSIX
Figure 1 shows a schematic representation depicting a basic

system with the most important interacting entities.
Several processes running on the platform (labeled P1,P2

. . .PN ) are executed simultaneously with multicore and pre-
emptive symmetric multiprocessing (SMP) scheduling. The
kernel controls all external interactions, hardware accesses and
execution flow of these processes.

Applications request hardware access from the kernel using
abstract functions defined by the POSIX API, e.g., the pthread
or signals API. For interaction with the storage devices (DISK),
the kernel provides a file system (Files) with the corresponding
abstract functions to the processes. To use networking hard-
ware (NET) and access the connect networks, Berkeley sockets
(Sockets) are presented to the application.

While the underlying hardware may be different depending
on the platform, the POSIX abstraction provided to the appli-
cations stays the same. For CPU or memory, no abstractions



LUDWIG THOMECZEK, SUBMISSION FOR CARS 2015 2

P1 P2 PN

Kernel

HARDWARE

Posix Interface

NETDISK

SocketsFiles

Fig. 1. POSIX based system model

are presented. Each application is agnostic to other running
processes, as the kernel and the MMU arrange everything for
the application to perceive as if it is the only one running
on the system. This is indeed a gross oversimplification, but
the separate address space and the interrupt behaviour that
facilitate this are commonly not perceived by the application.

III. TECHNICAL USE CASES

Based on the system model from section II and the context
provided in I, the main system workflow is built around the
following key use cases.

A. SMP Software Execution
The basic state of the system as depicted in Figure 1 consists

of the processes P1, P2, . . .PN running on the system, sharing
the common resources.

Managing the usage of these is the applications responsi-
bility, the OS only providing upper boundaries. As all appli-
cations assume that they are the only running program on
the system, the kernel has to provide the SMP scheduling
functionality by rotating control of the CPU between the
currently executing processes.

B. Filesystem Usage
Using the filesystem abstraction to access data stored on the

disk is one use case.
Configuration data, executables and other data needs to be

stored permanently on the system, and applications need to
read and write this data. Access to this data is provided with the
POSIX filesystem abstraction, which the kernel then translates
to disk read/writes.

C. External Communication
Programs running on the system often actively need to

establish connection to external services, mostly IP-based
connection through common internet infrastructure. Further-
more, external services often need to contact the running
processes and request information or send control commands.
Examples for this use case are system updates, cloud-based
synchronisation or remote control services.

D. Internal Communication

As seen in the context model(section I), the CU is not the
only control component in the vehicle. Therefore, another use
case is communication to other CUs, actuators or sensors on
the same vehicle. In this environment, real-time boundaries
may apply to some of these communication paths.

E. Machine-Local Communication

Several different software components will be running si-
multaneously on the CU represented by the processes P1,P2

. . .PN , thus internal communication between the processes
needs to be available.

IV. SAFETY ANALYSIS

The safety analysis is not the main focus of this paper.
Hence, only the most relevant requirements for the Linux
kernel are highlighted here. The assumed safety requirements
are:

1) Correct software code execution
2) Correct integration and execution of hardware acceler-

ation
3) Correct execution of POSIX API calls and kernel func-

tions
4) Freedom from interference between POSIX API calls

and kernel functions
5) Freedom from interference between software compo-

nents
6) Freedom from interference between hardware compo-

nents
For this paper, correct integration and execution of hardware
acceleration is out of scope. Correct software or Kernel/POSIX
call execution (Items 1 and 3) can only be proven through
formal verification and validation, or a sufficient trust level can
be achieved with thorough testing. Freedom from interference
by POSIX calls or kernel functions may need to be tested and
handled on the source-code level. Freedom from interference
between software components (Item 5) is analogous to the
SMP use-case described in section III-A. For the last two safety
requirements (Items 5 and 6), there exist several technologies
in the Linux kernel that may help provide them. We discuss
these in the next section.

Freedom from interference between software components:
One of the OS scheduler’s main objective is to guarantee
interruption-free execution of high-priority tasks. To opti-
mize for the specific real-time requirements, programs re-
quiring realtime scheduling have to run at highest prior-
ity under a realtime-capable scheduler (SCHED FIFO or
SCHED RR) [KZL+].

To further minimize unexpected latencies due to migrations
between cores, the program can be pinned to a specific CPU
core, isolated from other processes [Core Isolation].

To prevent memory or CPU cycle shortage due to demands
by other tasks, the cgroup controllers for cpusets, memory and
block IO can enforce limits for other processes [CGroups].



LUDWIG THOMECZEK, SUBMISSION FOR CARS 2015 3

Filesystem

Backend Framework Algorithm
1 2

3

Computing UnitWAN

Trust Boundary

Fig. 2. External Communication Threat Model

Freedom from interference by hardware components: The
Linux kernel can only slightly reduce the hardware’s influence
because many components work independently (e.g., DMA
controllers, network cards) and may interrupt the CPU or block
other resources at any time.

One possibility to minimize interruptions by hardware is
to mask interrupts on a CPU core running real-time critical
software. The interrupts then are handled on a different core
and hence, do not interrupt critical code. However, not all
interrupts can be masked [Core Isolation].

V. SECURITY ANALYSIS

For the security analysis, we determine assets and threats
with the STRIDE (Spoofing, Tampering, Repudiation, In-
formation Disclosure, Denial of Service, and Elevation of
Privilege, the threats used in the analysis) approach.

The threat modeling approach STRIDE developed by Mi-
crosoft models a system and its threats from an attacker’s
perspective by representing the system with a Data Flow
Diagram (DFD). Elements in this diagram (either a process,
data flow, data store or interactor) reside inside security-
relevant regions that are separated by trust boundaries. Data
flows may cross these trust boundaries. However, if they do
they are especially prone to threats.

Following a first draft of the diagram, the processes and
stores are either further broken down into sub-diagrams until
a desired level of complexity is reached, or analysed directly
according to their corresponding STRIDE threats. The DFD in
Figure 2 depicts some of the assets examined in this analysis,
based on the use cases defined in Section III-C. For each use
case, we perform a basic security analysis.

Further detailed information about the STRIDE approach is
described in [HLOS].

Based on the DFD in Figure 2, we review all compo-
nents against the applying STRIDE metrics. For example, the
”Framework” process in the DFD is vulnerable to all STRIDE
threats, and we evaluate for mitigations. For example, picking
tampering (the T in STRIDE) as a threat, which in this case
most likely happens through buffer overflow or similar memory
tampering techniques on running processes, we search for
available technologies to counter that threat, in this case ASLR
or DEP. We repeat this for the remaining threats (SRIDE),
and all other elements of the DFD. Ultimately, we achieve a
certain level of security by applying mitigations for each threat.
If a higher confidence is required, the components and the
DFD can be further refined and re-examined. A full analysis

covering all use cases and DFD elements will be described in
the author’s master thesis.

VI. TECHNOLOGIES

This section provides an condensed overview of most safety
and security features present in the kernel that were identified
in the analysis.

Adress Space Layout Randomisation

ASLR is a mitigation technique to reduce the probability of
a successful exploitation of buffer overflow weaknesses.

Control Groups

Cgroups are a Linux kernel subsystem to partition tasks into
different logical groups. These groups then can be subjected
to rules regarding resource consumption or allocation.

Core Isolation

Real-time critical programs can be isolated onto one CPU
core and interrupts generated by the hardware can be routed to
CPU cores not assigned to real-time critical program execution
to minimize program execution interruptions.

Data Execution Prevention and W⊕X

DEP encompasses several features to prevent the execution
of memory that is not designed to be executable, such as
static data segments or program buffers. This protects against
attacks which insert malicious code and trick the program into
executing it.
W⊕X is the principle to never allow writeable memory to
be executable at the same time, preventing effective code
injection.

Dm-verity

Dm-verity provides block-based integrity checking for read-
only filesystems.

Grsecurity

Grsecurity is an extensive patchset for the Linux kernel to
improve its resilience against known attack vectors, adding a
Role-based Access Control system (RBAC), chroot restrictions
and a wide array of miscellaneous hardening features.

Integrity Measurement Architecture / Extended Verification
Module

The IMA/EVM subsystem provides file-level monitoring
against accidental or malicious changes.

Linux / Posix Capabilities

Capabilities in Linux implement a least privilege principle
for processes needing superuser access by allowing finer
granularity granting rights.



LUDWIG THOMECZEK, SUBMISSION FOR CARS 2015 4

ListenerTester Client
Network

Socket
IPC

1
2

3

4

5

6

Fig. 3. Test Program Schematic

Linux Security Modules
With Linux security modules, the kernel implements a

framework to allow the inclusion of one or several secu-
rity extensions facilitating Mandatory Access Control (MAC),
RBAC or other access control mechanisms that restrict access
to internal kernel objects.

Namespaces
Namespaces are a Linux-specific resource isolation feature

to compartmentalize system resources, such as Process IDs or
networks.

Secure computing filters
Secure Computing (Seccomp) Filtering allows to restrict the

use of system calls by processes through a Berkeley Packet
Filter (BPF)-based program language, minimizing the kernel’s
attack surface.

VII. EVALUATION OF SELECTED FEATURES

Current work in progress is to cover the selected kernel
features chosen from the techniques described in section VI
in-depth, extending and completing the initial assessment. This
includes prototypes and tests designed to test the effectiveness,
impact on system efficiency and deployment footprint.

A. Test Program Design and Implementation
The test program for the effects of the different kernel con-

figurations/technologies is shown schematically in Figure 3.
Each circle depicts a running process: Listener and Tester run
on the machine under test; the Client process runs on a testing
machine. (1) To take a measurement, the client sends a request
for a test run to the listener process, noting the timestamp.
(2) The Listener accepts the request on the network side and
passes it through to the Tester via Inter Process Communica-
tion (IPC). (3) The tester then runs the interruption/preemption
test to check for any occuring interruption that could occur
while an algorithm is processing data for a response. (4) After
a successful test run, the Tester replies to the Listener, which
(5) then notifies the Client. The client again takes a timestamp,
computes the difference with the first timestamp to acquire
the elapsed runtime, and stores it in a histogram. (6) After a
specified time, the test run is started again until a sufficient
number of measurements are obtained.

After finishing the test runs, the client requests the inter-
ruption histogram from the server and stores it locally for
further analysis. This test program depends highly on the type

of machine both tested server and testing client are deployed
on, and results are only comparable, when one parameter is
changed between test runs on the same hardware setup.

So far, as of the time writing this workshop proposal, the
tests have not been performed on the target system, and there
is no evaluation to present at the current stage. However,
we expect to present tests and an evaluation in time for the
workshop in September, and update this paper if possible.

VIII. RELATED WORK

Most security assessments are done with a concrete product
in mind and usually not published as they are considered
differentiating intellectual property of the assessors. Hence,
we believe that as a consequence, the development of a more
generic security analysis of an abstract system model has
not been in the main focus of current security assessments.
Our paper provides a basic analysis to argue the use of
certain Linux kernel features for security means. As the Linux
kernel is open-source software, there is also a large amount
of literature describing the Linux kernel in versatile technical
depth. Considering security features, we are only aware of the
kernel developer James Morris’ overview of the Linux kernel’s
security features [MORR].

IX. CONCLUSION

We have describe a generic system model, derived possible
attack vectors on this system model and selected the different
safety and security mechanisms implemented in the Linux
kernel to prevent and protect against these possible attacks.
In our current work in progress, we are implementing tests
for these safety measures and evaluate their effectiveness,
efficiency and limits.

With our effort to make these preliminary results and work
in progress public, we hope to provide first steps for a generic
and common security assessment for future vehicles, which
can be publicly assessed by security experts. This collaborative
activity hopefully increases the security in all vehicles and
reduces damage and harm of the public due to compromised
remote-controlled vehicles.

REFERENCES

[CER] ICS CERT. Advisory (icsa-11-356-01) - Siemens Simatic Hmi
Authentication Vulnerabilities. https://ics-cert.us-cert.gov/advisories/
ICSA-11-356-01. accessed 2015-06-24.
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/
stuxnet-malware-targets-scada-systems. accessed 2015-06-24.

[SE] Louis-F. Stahl and Ronald Eikenberg. Fuenf nach zwoelf - Die Gefahr
im Kraftwerk ist noch nicht gebannt. http://www.heise.de/ct/ausgabe/
2013-15-Die-Gefahr-im-Kraftwerk-ist-noch-nicht-gebannt-2319254.
html. accessed 2015-06-24.

[HLOS] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack. Uncover
security design flaws using the stride approach. https://msdn.microsoft.
com/en-us/magazine/cc163519.aspx. accessed 2015-04-20.

[KZL+] M. Kerrisk, P. Zijlstra, J. Lelli, et al. Linux programmer’s manual
- overview of scheduling APIs. http://man7.org/linux/man-pages/man7/
sched.7.html. accessed 2015-06-22.

[MORR] J. Morris Overview of Linux Kernel Se-
curity Features. http://www.linux.com/learn/docs/
727873-overview-of-linux-kernel-security-features/. accessed 2015-06-
22.

https://ics-cert.us-cert.gov/advisories/ICSA-11-356-01
https://ics-cert.us-cert.gov/advisories/ICSA-11-356-01
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems
http://www.heise.de/ct/ausgabe/2013-15-Die-Gefahr-im-Kraftwerk-ist-noch-nicht-gebannt-2319254.html
http://www.heise.de/ct/ausgabe/2013-15-Die-Gefahr-im-Kraftwerk-ist-noch-nicht-gebannt-2319254.html
http://www.heise.de/ct/ausgabe/2013-15-Die-Gefahr-im-Kraftwerk-ist-noch-nicht-gebannt-2319254.html
https://msdn.microsoft.com/en-us/magazine/cc163519.aspx
https://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html
http://www.linux.com/learn/docs/727873-overview-of-linux-kernel-security-features/
http://www.linux.com/learn/docs/727873-overview-of-linux-kernel-security-features/

	Introduction
	Theoretical Model based on POSIX
	Technical Use Cases
	SMP Software Execution
	Filesystem Usage
	External Communication
	Internal Communication
	Machine-Local Communication

	Safety Analysis
	Security Analysis
	Technologies
	Evaluation of Selected Features
	Test Program Design and Implementation

	Related Work
	Conclusion
	References

