N
N

N

HAL

open science

Using formal methods for the development of safe
application-specific RTOS for automotive systems

Kabland Toussaint Gautier Tigori, Jean-Luc Béchennec, Sébastien Faucou,

Olivier Roux

» To cite this version:

Kabland Toussaint Gautier Tigori, Jean-Luc Béchennec, Sébastien Faucou, Olivier Roux. Using formal
methods for the development of safe application-specific RTOS for automotive systems. CARS 2015

- Critical Automotive applications: Robustness & Safety, Sep 2015, Paris, France. hal-01193023

HAL Id: hal-01193023
https://hal.science/hal-01193023

Submitted on 5 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01193023
https://hal.archives-ouvertes.fr

Using formal methods for the development of safe
application-specific RTOS for automotive systems.

Kabland Toussaint Gautier Tigori !, Jean-Luc Béchennec?, Sébastien Faucou?®, Olivier Henri Roux!
LUNAM Université. CNRS2, Ecole Centrale de Nantes!, Université de Nantes?
IRCCyN UMR 6597 (Institut de Recherche en Communications et Cybernétique de Nantes),
Nantes, FRANCE.

Abstract—This paper focuses on the development of system
software for resource constrained embedded systems such as
automotive systems. In these systems, the real-time operating
system (RTOS) needs to be highly configurable and tailorable
according to the application requirements, the dependability
constraints, and the hardware constraints. In this paper, we
propose a safe solution to this challenge. We describe a method to
generate application-specific RTOS based on formal models. This
method allows to verify the correctness of the generated RTOS
and to guarantee that it does not contain dead code.

I. INTRODUCTION
A. Context

During the past 15 years, the increase of software based
functions provided in vehicles has provoked a paradigm shift,
from the federated architecture (one function per Electronic
Control Unit (ECU)) to the integrated architecture (several
functions per ECU based on more powerful microcontrollers).
This evolution has been formalized with the release of AU-
TOSAR (AUTomotive Open System Architecture[2]). At the
same time, ensuring the functional safety of these systems has
been recognised as a major concern, so the ISO 26262 standard
has been established.

AUTOSAR defines a layered architecture, where each layer
is populated with components. These components are very
configurable so as to be usable with a broad variety of require-
ments. If we focus on functional safety, one component is of
primary importance: the real-time operating system (RTOS),
because it is responsible for managing the execution of the
other components on the shared hardware platform.

Different challenges arise when implementing an AU-
TOSAR OS [2] compliant component: 1) it must be config-
urable to meet a broad variety of application requirements;
2) its design must provide evidences of its safety, as these
evidences are required to write the safety arguments of the
systems that use it; 3) being used in an embedded context, the
component must be tailorable to meet the resource constraints
usually imposed by ECU hardware platforms, such as limited
memory footprint and CPU overhead.

To tackle all these challenges, implementations of AU-
TOSAR OS components are usually obtained from a software
product line. Unfortunately, these software product lines do not
allow to easily address the safety requirements. For instance,
most of them use the C preprocessor to perform at least a
part of the configuration. In this context, it becomes difficult
to apply static analysis tools to verify the correctness of the
configured component.

In this paper, we propose an alternative approach, based on
formal methods. The software product line that we describe
allows to automatically generate the configured component
from formal models, and at the same time to verify its
correctness against a set of safety properties. It also provides
a guarantee that the configured component contains no dead
code.

B. Related Works

Several studies have been dedicated to the specialization
of operating systems according to application-specific require-
ments.

In [9], aspect oriented programming is used for the de-
velopment of a configurable operating system. This approach
consists in a precise encapsulation of each part of the operating
system in an aspect. More precisely, each aspect implements a
part of the operating system that provides exactly one feature.
The overall operating system is obtained by weaving the
aspects corresponding to the required features. In this work, no
solution is provided to verify the correctness of the generated
component.

In [5], a configuration technique based on a software-
component library called DREAMS is presented. DREAMS
offers a set of components that can be customized at source
code level and configured according to the application require-
ments with a configuration tool called TEReCS. The system
to be generated is specified by two graphs: a Resource graph
which represents the hardware components with their available
connections in the system; and a Process communication graph
which describes the communication behavior of the application
(the communication between each process in the application).
In addition to this, a Universal Resource Service graph de-
scribes the library of all available components. Then, these
three graphs are composed to form a Resource Service Graph
which describes all the required services and resources of
the system. Eventually, the configured component is generated
from this graph.

In [7], a technique of customization for operating system
services by combining two approaches is presented. The first
approach consists in using an object-oriented operating sys-
tem architecture that relies on composition to facilitate code
reuse and configuration [8]. The second approach proceeds by
putting a minimal set of trusted functions in the kernel protec-
tion domain and all remaining operating system functionalities
in the user-level domain [1]. The final kernel is minimal but for
this approach, the application developer must be an operating

system expert since he should be able to manipulate low-level
operating system mechanisms.

C. Contributions and outline

In this paper, we present a new approach based on formal
methods for the automatic generation of safe application-
specific RTOS. From an existing RTOS, a formal model is
built. This model implements all the features and observable
behaviours of the RTOS. A model of the application layer is
built and combined with the RTOS model in order to produce a
model of the overall software system. A reachability analysis
is performed on this model in order to detect all infeasible
paths that correspond to the part of the operating system code
that is never executed (also called dead code). These paths
are removed in order to obtain a model that supports only the
features used by the application. Our approach being based on
formal methods, it is possible to verify the correctness of the
generated component with static analysis techniques. In our
approach, we propose to use a model-checker to verify the
model against a set of logic formulas that capture the expected
behaviour of the RTOS. Lastly, the entire source code of the
application-specific RTOS is generated from the model.

The paper is organized as follows: section II presents
the problem of a configuration process based on the C pre-
processor; section III describes a model-based approach for
application specific configuration of RTOS; section IV presents
the model that have been built from the source code of Trampo-
line RTOS [3], an AUTOSAR and OSEK compliant operating
system; section V explains how verification is performed; the
final section concludes the paper.

II. PROBLEM ANALYSIS

In automotive embedded systems, the RTOS are designed
to be highly configurable for the reasons exposed in the
previous section. In current practices, it is common to make
an extensive use of the C preprocessor to achieve this goal.

A. Why configuration based on the C preprocessor does not
scale?

Consider the excerpt of a function of the Trampoline RTOS
shown in figure 1. Within this function, #if statements are used
to select or dismiss pieces of code at compile time when some
condition is true. For instance, all the code presented in figure
1 will be compiled in the RTOS object code if Task_count >
0 is true. This kind of implementation seems unsafe for several
reasons.

First, the preprocessor does not enforce strict syntaxic and
semantic rules, so it is quite easy to make a mistake in the
expression of the condition. Second, the mix of preprocessor
statements and C code decrease the readability of the code
and thus the efficiency of code reviews. Quoting[9] “this
approach does not scale -it quickly leads to #ifdef hell and a
bad separation of concerns”. This is also a problem for static
analysis tools: state-of-the-art tools such as Frama-C [6] need
to preprocess the files before to analyze them and thus are not
able to detect mistyped expressions in the preprocessor code.

The consequences of a mistyped preprocessor statement
can range from the insertion of dead code in the RTOS object

code, to erroneous algorithms. Erroneous algorithms might
be detected by subsequent verification and validation steps.
However, only static analysis techniques can provide strong
evidences of correctness. Dead code is much more difficult to
detect and should not be considered as inoffensive. It impacts
the memory footprint of the RTOS, and its runtime perfor-
mances as well (by impacting the i-cache and the pipeline
states). Moreover, it could become a serious problem from a
security point-of-view.

Going back to our example, one can notice that even if the
preprocessor directives are correct, this implementation does
not tailor perfectly the RTOS. In a static system, it is possible
to know at compile-time if the result of the test (result
= (tpl_status)E_OK_AND_SCHEDULE) is always false. In this
case, the inner branch is never taken: it is dead code. If this
situation occurs for a lot of functions, the amount of dead
code can become important. Unfortunately, detecting such a
problem requires to perform a semantic interpretation of the
system, which is out of reach of the preprocessor.

FUNC (StatusType, OS_CODE) tpl_activate_task_service (
CONST (tpl_task_id, AUTOMATIC) task_id)
{

#if TASK_COUNT > 0
IF_NO_EXTENDED_ERROR (result)
result = tpl_activate_task (task_id);
if (result == (tpl_status)E_OK_AND_SCHEDULE)
{
tpl_schedule_from_running();
if WITH_SYSTEM_CALL == NO
if (tpl_kern.need_switch != NO_NEED_SWITCH)
{
tpl_switch_context (
& (tpl_kern.s_old->context),
& (tpl_kern.s_running->context)
)i
}
endif

}
IF_NO_EXTENDED_ERROR_END ()
#endif

}

Fig. 1. An excerpt of tpl_activate_task_service function

B. Why model-based approach is promising?

As an alternative to preprocessor-based tools, we propose to
use model-based methods. In these methods, the configuration
is performed on a model, which is then used to generate the
code of the configured component. We advocate that these
methods are promising, for several reasons.

First, when the model is executable, it provides the possi-
bility to simulate the system.

Second, in the case of a static system and if the model
is designed with care, static analysis can be used to detect
the branches that are never used. Then, it is straightforward to
prune these branches from the model. The resulting model can
be used to generate a source code where all instructions are
useful. The corresponding object code is smaller and exhibits
better performances.

Third, static analysis techniques can also be used to verify
the correctness of the pruned model. This verification should

ensure that no expected behaviours of the RTOS have been
broken during the configuration process, thus increasing the
confidence in the correctness of the generated component.
ITI. OUR APPROACH
Our approach is illustrated by figure 2.

Complete system Application Synthesized
model l Reachability specific - Code Operating
analysis Operating generator System Source

system model code

Operating

Pruning of
system model

unfeasible paths

Application || Complete system model

model \\,
\3 Application Proof of
Application specific Model
gl Operating Y ch:ckeer correctness
system model

Fig. 2. Application-specific RTOS generation and verification process.

Modelling: In a first step, a model of the system must be
established. It is obtained by combining a detailed model of the
RTOS and an abstract model of the application requirements.
To write these models, we use networks of finite automata
extended with variables. The variables are bounded integers,
so as to ensure that the models have a finite state space. The
model of the RTOS is written once and re-used for every
configuration. The variables and the imperative code blocks
of the RTOS are an integrated part of this model. More
informations on this model are given in section IV. Conversely,
the model of the application requirements is defined for each
configuration. In this model, for each tasks of the application,
an extended finite automaton is provided. This automaton
describe all the possible sequences of calls to RTOS API
functions performed by the tasks. The model of the system
is obtained by synchronizing the automata of the model of
the RTOS and the automata of the model of the application
requirements.

Reachability analysis: In a second step, a set of reach-
ability analysis are performed in order to detect unreachable
states in the RTOS model. When a state is unreachable, its
incoming and outgoing instructions can be removed. Once all
these states and transitions have been removed, the resulting
model contains only the parts of the RTOS that are really used
by the application. Removed parts can be as small as a branch
in a function and as big as a service, ie. a set of functions
with their associated data structures. The last work consists in
extracting the configured RTOS model from the model of the
system.

This whole step is carried by our tool written in Python,
that uses the UPPAAL model checker verifyTA (despite the
fact that for the moment, our models are untimed). The pruned
model computed by the tool can now be used as an input to
the remaining steps: verification and code generation. Code
generation is briefly described in the next paragraph, whereas
verification is described with more details in section V.

Code generation: As explained in the next section, the
model of the RTOS is a code level model: transitions are
associated with sequential code blocks, nodes are associated
with branching. Given that some branches have been pruned,

some sequential code blocks can be merged. Then, the code
generation is straightforward. Our code generator reads the
label of the transitions in the model and outputs the corre-
sponding C code in the relevant files.

IV. RTOS MODEL

Trampoline is an open-source AUTOSAR OS compliant
RTOS developed by the Real-Time Systems group at IRCCyN
in Nantes, France. Initially developed for an academic use, it
has also been transferred to industry and used in production.

Following AUTOSAR OS standard, Trampoline is a static
RTOS (all objects are created at compile time) dedicated
to control-command systems. It is mainly written in C and,
as illustrated in figure 1, it makes an extensive use of the
preprocessor. The current version contains 174 functions for a
total of 4530 lines of code.

The model of Trampoline has been built within UP-
PAAL [4], an integrated environment for the modelling and
verification of timed systems. An UPPAAL model is a network
of timed automata communicating over synchronous channels
and extended with variables and functions. Each function of
Trampoline is modeled by an automaton. The discrete structure
of this automaton corresponds to the control flow graph of the
function. Each transition is attached to a set of instructions
corresponding to a basic block of the source code of the
function. Thus, all the branches and all C statements of the
source code of Trampoline are present in the model. Each
location corresponds either to a test or to a function call. Test
are translated in guards over the control variables. Function
calls are mimicked by a two step mechanism. In a first step, the
caller automaton releases the execution of the callee by taking
a transition guarded by a synchronization over a channel. When
this transition is taken, a shared variable is set to 0. The caller is
blocked in the target location of the transition while the shared
variable equals to 0. In a second time, after the execution of the
function, the callee sets the shared variable to 1 to release the
caller. This mechanism allows to obtain a sequential execution
conforming to the real execution.

Fig.3 shows the model of tpl_activate_task_service
function (see figure 1). This function calls others functions
such as tpl_activate_task that activates a task and inserts
it into the list of ready task and tpl_schedule_from_running
that performs a rescheduling if needed. Double circle repre-
sents initial location and each location describes the function
execution state. A transition can be labelled by a synchro-
nisation (channel name with “2” or “!”), a guard (comma
separated logical terms) and an assignment (comma separated
assignments by “:=").

Let us use this example to illustrate the function call
mechanism. The call to tp1_activate_task is emitted through
a synchronization over channel tpl_activate_task. Once the
call has been emitted, the automaton is blocked in location
tpl_a_t_s2 until the callee (ie. the automaton that describes

tpl_activate_task function) notifies the termination of the
function by setting the shared variable activate_task.

V. VERIFICATION AND CERTIFICATION

An OSEK/VDX certification consists in the execution of a
test suite, i.e. a set of applications. Each test outcome may be a

Wlit,tpl,activate,las k_service

lock_kernel :=0,
activate_task_service := 1,
result := E_OK

Task_count > 0 && lock_kernel==

tpl_activate_task_service?

! 1
result|== E_OK_AND_SCHEDULE tplats

tpl_activate_task!
activate_task:=0
tpl_a_t_s2

result==E_OK_AND_SCHEDULE &&
activate_task==1

result '=E_OK_AND_SCHEDULE &&,

tpl_schedule_from_running!
activate_task==1

schedule_from_running:=0
tpl_a_t_s3 tpl_a_t_s4

schedule_from_running==1

result 1= E_OK_AND_SCHEDULE P12t

lock_kernel :=0,
activate_task_service := 1

Fig. 3. model of tpl_activate_task_service function

success or a failure. The test suite specification is available on
the OSEK/VDX portal. A first document [10] describes about
250 test cases. Each test case corresponds to a service call in
a known state and its expected result. For instance test case 2
and test case 34 are as follow:

Case | Action

2 Call ActivateTask() from non-
preemptive task on suspended
basic task
34 Call Schedule() from task.

Expected result

No preemption of running
task. Activated task becomes
ready. Service returns E_OK
Ready task with highest prior-
ity is executed. Service returns
E_OK

A second document[11] describes the test procedure: 37
test sequences that concatenate up to 20 test cases. Based
on this specification it is possible to build a model of each
test sequence and an observer that will allow to verify the
properties corresponding to each test case in the sequence.
For instance, test sequence 2 is an application with 3 tasks
as modeled in figure 4 with priority(ts) > priority(ts) >
priority(t;). The expected execution sequence is modeled
by the observer shown in figure 5. If the expected sequence
occurs, the observer reaches its final state. Then the following
property is verified: AF observer.success or “All paths lead
fatally to state success”.

All the test suite can be modeled by a combination of ob-
servers and test sequences models. On the complete operating
system model, the full OSEK/VDX certification test suite may
be applied. On a pruned model specialized for an application,
all the test sequences corresponding to services used for this
specialization can be checked to ensure that the specialization
did not introduced unwanted behaviours, nor suppress expected
ones.

VI. CONCLUSION

We have proposed a safer method for the generation
of application-specific RTOS based on formal methods. A
complete model of the operating system is built with finite au-
tomata extended with variables. Variables are used to model all
RTOS object descriptors such as tasks, resources, alarms etc.
RTOS service and functions are modeled by a combination of
finite automata and imperative code. The application require-
ments are also modeled by a set of finite automata extended

run_id == task_1 && lock_kernel ==
ActivateTask! run_id == task_1 && lock_kernel == 0
TaskPar := 2

©0—0—0

StartOS == 1 task13
task1l task12

Schedule! task16

g0

TaskPar := 3 task14 task15

ActivateTask! TerminateTask!
run_id == task_1 && lock_kernel == 0 run_id == task_1 && lock_kernel == 0

(@) t1

run_id == task_2 && lock_kernel == 0 run_id == task_3 && lock_kernel ==
TerminateTask!

: T teTask!
© erminateTask O

task21 task211 task31 task311

(b) t2 (©) t3

Fig. 4. Model of the tasks used in test sequence 2.

run_id == task_1 && lock_kernel == 0 run_id == task_1 && lock_kernel ==
ActivateTask? ActivateTask?

o

scsO scsl

scs2

run_id == task_1 && lock_kernel == 0
Schedule?

scs3
run_id == task_1 && lock_kernel == 0
TerminateTask?
T

run_id == task_3 && lock_kernel == 0
TerminateTask?
scs4

success scss TerminateTask?
un_id == task_2 && lock_kernel == 0

Fig. 5. Observer of the model.

with variables, and then combined with the RTOS model. The
resulting model describes the application deployment on the
RTOS. By using a reachability analysis, all unwanted behaviors
are remove from this model. The resulting model contains only
the paths that are traversed during the RTOS execution. Model-
checking is used to formally verify that a set of properties
describing the expected behavior of the RTOS hold in this
model. Finally, the entire code of the corresponding RTOS is
generated from the pruned model.

REFERENCES

[1] T. E. Anderson, “The case for application-specific operating systems,”
in Workshop on Workstation Operating Systems (WWOS), 1992.

[2] AUTOSAR GbR, “Specification of operating system,” 2009.

[3] J.-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet, “Trampoline an
open source implementation of the OSEK/VDX RTOS specification,” in
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2006.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL — a Tool Suite for Automatic Verification of Real-Time
Systems,” in Workshop on Verification and Control of Hybrid Systems
111, ser. LNCS, no. 1066, 1995.

[5] C. Boke, M. Gotz, T. Heimfarth, D. El Kebbe, F. Rammig, and S. Rips,
“(re-) configurable real-time operating systems and their applications,”
in IEEFE International Workshop on Object-Oriented Real-Time Depend-
able Systems (WORDS), 2003, pp. 148-155.

[6] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c,” in Software Engineering and Formal Meth-
ods. Springer, 2012.

[7]1 P. Druschel, “Efficient support for incremental customization of os
services,” in International Workshop on Object Orientation in Operating
Systems, 1993.

[8] G. Kiczales, M. Theimer, and B. Welch, “A new model of abstraction
for operating system design,” in International Workshop on Object
Orientation in Operating Systems, 1992.

[9] D. Lohmann, W. Hofer, W. Schroder-Preikschat, J. Streicher, and
O. Spinczyk, “Ciao: An aspect-oriented operating-system family for
resource-constrained embedded systems.” in USENIX Annual Technical
Conference, 2009.

[10] OSEK Group, “OSEK/VDX OS test plan version 2.0,” April 1999.

[11] ——, “OSEK/VDX OS test procedure version 2.0,” April 1999.

