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Stabilization of a linear Korteweg-de Vries equation with a saturated internal control

This article deals with the design of saturated controls in the context of partial differential equations. It is focused on a linear Korteweg-de Vries equation, which is a mathematical model of waves on shallow water surfaces. In this article, we close the loop with a saturating input that renders the equation nonlinear. The well-posedness is proven thanks to the nonlinear semigroup theory. The proof of the asymptotic stability of the closed-loop system uses a Lyapunov function.

I. INTRODUCTION

In recent decades, a great effort has been made to take into account input saturations in control designs (see e.g [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] or [START_REF] Grimm | Antiwindup for stable linear systems with input saturations: an LMI-based synthesis[END_REF]). Indeed, in most of systems, actuators are limited due to some physical constraints and the control input has to be bounded. Neglecting the amplitude actuator limitation can be source of undesirable and catastrophic behaviors for the closed-loop system. The standard method follows a two steps design. First the design is carried out without taking into account the saturation. In a second step, a nonlinear analysis of the closed loop system is made when adding the saturation. In this way, we often get local stabilization results. Tackling this particular nonlinearity in the case of finite dimensional systems is already a difficult problem. However, nowadays, numerous techniques are now available (see e.g. [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF], [START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF]) and such systems can be analyzed with an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF].

To the best of our knowledge, there are few papers studying this topic in the infinite dimensional case. Among them, we find [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] and more recently [START_REF] Prieur | Well-posedness and stability of a 1D wave equation with saturating distributed input[END_REF], where a wave equation equipped with a saturated distributed actuator is considered. Note that saturation function can be defined with a sign function, which is also used in sliding mode control design theory. The interest reader can refer to [START_REF] Pisano | Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques[END_REF], [START_REF] Cristofaro | Robust tracking control for a class of perturbed and uncertain reaction-diffusion equations[END_REF], where a wave and a reaction-diffusion equations are stabilized with a sliding mode controller. The present paper aims at contributing to the study of the saturated input case in the framework of partial differential equations.

Let us note that in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] the case of a priori bounded feedback is studied for abstract linear systems. To be more specific, for compact control operators, some conditions are derived to deduce, from the asymptotic stability of an infinite-dimensional linear system in abstract form, the asymptotic stability when closing the loop with saturating controller (see [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 5.1] for a precise statement of this result). The aim of our article is to study a particular partial differential equation without seeing it as an abstract control system and without checking the very specific assumptions of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF].

The Korteweg-de Vries equation (KdV for short)

y t + y x + y xxx + yy x = 0, (1) 
is a mathematical model of waves on shallow water surfaces. Its controllability and stabilizability properties have been deeply studied in the case with no constraints on the control, as explained in [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF], [START_REF] Coron | Control and Nonlinearity[END_REF], [START_REF] Rosier | Control and stabilization of the Kortewegde Vries equation: recent progresses[END_REF]. In this article, we focus on the following controlled linear KdV equation

     y t + y x + y xxx + f = 0, (x, t) ∈ [0, L] × [0, +∞), y(t, 0) = y(t, L) = y x (t, L) = 0, t ∈ [0, +∞), y(0, x) = y 0 (x), x ∈ [0, L], (2) 
where y stands for the state and f for the control. As studied in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], if f = 0 and

L ∈ 2π k 2 + kl + l 2 3 k, l ∈ N * ,
then, there exist solutions of (2) for which the energy does not decay to zero. For instance, if L = 2π and y 0 = 1cos(x) for all x ∈ [0, L], then y(t, x) = 1 -cos(x) is a stationary solution of (2) conserving the energy for any time t. In the literature there are some methods stabilizing the KdV equation (2) with boundary [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF], [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF] or internal controls [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF]. Here we focus on the internal control case. In fact, as proven in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF], the feedback control f (t, x) = a(x)y(t, x), where a = a(x) is a positive function whose support is a nonempty open subset of (0, L), makes the origin an exponentially stable state.

The question we want to address is the following. Given a feedback control f stabilizing the equation, what do we get if we saturate it? Is the equation still stable? We deal with the case in which f (t, x) = ay(t, x) with a positive constant a and we show that the origin is asymptotically stable for the closed-loop system with a saturated input.

This article is organized as follows. In Section II, we present our main results about the well posedness and the stability of this equation in presence of saturation. Section III is devoted to prove these results by using the nonlinear semigroup theory and Lyapunov techniques. In Section IV, we give some simulations of the equation looped by a saturated feedback. Section V collects some concluding remarks and possible further research lines.

Notation: y t (resp. y x ) stands for the partial derivative of the function y with respect to t (resp. x) (this is a shortcut for ∂y ∂t , resp. ∂y ∂x ). R (resp. I) denotes the real (resp. imaginary) part of a complex number. Given L > 0, • L2 (0,L) denotes the norm in L 2 (0, L) and H 3 (0, L) is the set of all functions u ∈ L 2 (0, L) such that u x , u xx , u xxx ∈ L 2 (0, L). Finally H1 0 (0, L) is the closure in L 2 (0, L) of the set of smooth functions that are vanishing at x = 0 and x = L. It is equipped with the norm u 2

H 1 0 (0,L) := L 0 |u x | 2 dx. The associate inner products are denoted •, • L 2 (0,L) and •, • H 1 0 (0,L) . H 3 L (0, L) denotes the set H 3 L (0, L) := {w ∈ H 3 (0, L), w(0) = w(L) = w (L) = 0}.

II. MAIN RESULTS

For any a > 0, if we take f (t, x) := ay(t, x) in ( 2), then we get that the equation is stabilized. Indeed, any solution of     

y t + y xxx + y x + ay = 0, y(t, 0) = y(t, L) = 0, y x (t, L) = 0, (3) 
satisfies

1 2 d dt L 0 |y(t, x)| 2 dx = - 1 2 |y x (t, 0)| 2 -a L 0 |y(t, x)| 2 dx ≤ -a L 0 |y(t, x)| 2 dx, (4) 
which ensures an exponential stability with respect to the L 2 (0, L)-norm. Note that the decay rate can be selected as large as we want by tuning the parameter a. Such a result is refered to as a rapid stabilization result.

Let us assume now that the control is constrained and that we have to consider the following feedback law

f (t, x) = a • sat(y(t, x)) (5) 
where the function sat is defined by

sat(s) =    -u min if s < -u min , s if -u min ≤ s ≤ u max , u max if s > u max . (6) 
To ease the lecture, we assume same levels of saturation, which means that u max = u min = u 0 .

We can write the KdV equation controlled by a saturated control as follows

         y t + y xxx + y x + asat(y) = 0, y(t, 0) = y(t, L) = 0, y x (t, L) = 0, y(0, x) = y 0 (x). (7) 
Let us state the main results of this paper.

Theorem 1 (Well-posedness). For any initial condition y 0 ∈ H 3 L (0, L), there exists a unique strong continuous solution

y : [0, ∞) → H 3 L (0, L) to (7) that is continuous from [0, ∞) to H 3 L (0, L) and continuously differentiable from [0, ∞) to L 2 (0, L).
Moreover, for any initial condition y 0 in L 2 (0, L), there exists a unique weak solution y

: [0, ∞) → L 2 (0, L) to (7) that is continuous from [0, ∞) to L 2 (0, L).
Theorem 2 (Asymptotic stability). For any constant a > 0, the equation ( 7) is globally asymptotically stable. More precisely, the following property holds. For any initial condition y 0 in L 2 (0, L), the weak solution to [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lenghts[END_REF] satisfies

y(t, •) L 2 (0,L) ≤ y 0 L 2 (0,L) , ∀t ≥ 0, (8) 
together with the attractivity property

y(t, •) L 2 (0,L) → 0, as t → ∞. (9) 
Remark 1. The exponential stability of the closed-loop system with a saturating control is an open problem for the KdV equation.

III. PROOF OF THEOREMS 1 AND 2 A. Well-posedness (Theorem 1)

Let A denote the operator Aw = (-w -w -asat(w))

on the domain D(A) ⊂ L 2 (0, L) defined such that D(A) := H 3 L (0, L). Lemma 1. Operator A is closed. Proof. Let {u n } n∈N be a sequence in D(A) such that lim n→+∞ u n = u (10) 
and

lim n→+∞ Au n = v (11) 
for some u, v ∈ L 2 (0, L). To prove that A is closed, we have to prove that u ∈ D(A) and that Au = v. Let us note that

à : w ∈ D(A) ⊂ L 2 (0, L) → (-w -w ) ∈ L 2 (0, L) (12 
) is already closed in D(A). Moreover, we know that the function sat is globally Lipschitz 1 . Thus 2 A is closed.

Lemma 2. Operator A is dissipative. Proof. Let us consider sat C (s) := sat(R(s)) + isat(I(s)) (13) 
which we will denote by sat(s) to ease the notation. Given u, ũ ∈ D(A), we have that

ψ(u, ũ) := Au -Aũ, u -ũ L 2 (0,L) is equal to ψ(u, ũ) = - L 0 (u (x) + u (x) + asat(u(x)) -(ũ (x) + ũ (x) + asat(u(x))) .((u -ũ)(x))dx = -a L 0 (sat(u) -sat(ũ))(u -ũ)dx - L 0 (u -ũ )(u -ũ)dx (14) 
Integrating by parts

L 0 (u -ũ )(u -ũ), we get R L 0 (u -ũ )(u -ũ) = -|u (0)| 2 ≤ 0. ( 15 
)
Then we have

R Au -Aũ, u -ũ L 2 (0,L) ≤ -aR L 0 (sat(u) -sat(ũ))(u -ũ)dx . (16) 
By definition of the saturation function, we get that for all (s, s)

∈ C 2 R (sat(s) -sat(s))(s -s) ≥ 0. (17) 
Thus, thanks to the positivity of a, we get that

R Au -Aũ, u -ũ L 2 (0,L) ≤ 0, (18) 
which means that the operator A is dissipative. It concludes the proof of Lemma 2.

In order to conclude the proof of the well-posedness, we have to verify whether the operator A generates a semigroup of contractions which will be denoted in the following by S(t). Following [START_REF] Miyadera | Nonlinear semigroups[END_REF], we see that it is enough to prove that for all λ > 0 sufficiently small

D(A) ⊂ Ran(I -λA), (19) 
where Ran stands for the range and I for the identity operator. In other words, for each u ∈ D(A), there exists ũ ∈ D(A) such that

(I -λA)ũ = u, (20) 
which is equivalent to prove the existence of a solution of a nonhomogeneous nonlinear equation in the ũ-variable with boundary conditions as considered in the following lemma.

Lemma 3. Let us introduce λ := 1 λ . If a is strictly positive and λ > 0, then there exists ũ solution of

λũ + ũ + ũ + asat(ũ) = λu, ũ(0) = ũ(L) = ũ (L) = 0. (21) 
Proof. The proof of this lemma follows from classical technics (see e.g. [14, Page 179]) and uses the Schauder fixedpoint theorem (see e.g. [START_REF] Coron | Control and Nonlinearity[END_REF]Theorem B.19,]). First, following [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lenghts[END_REF], let us focus on the spectrum of à which is defined by [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]. Since the operator à has a compact resolvent, its spectrum denoted by σ( Ã) consists only of eigenvalues. Futhermore, the spectrum is a discrete subset of iR.

Since λ belongs to R + , then λ / ∈ σ( Ã). Hence ( Ã -I λ) is invertible and there exists a unique function z = z(x) solution of

λz + z + z = g, z(0) = z(L) = z (L) = 0, (22) 
where g(y) := -asat(y) + λu.

Then we can focus on the map

T : L 2 (0, L) → L 2 (0, L) y -→ z = T (y) (23) 
where z = T (y) is the unique solution to [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]. We define

C = {u ∈ H 1 0 (0, L)/ u H 1 0 (0,L) ≤ M } (24) 
where M > 0. From the theorem of Rellich (see [2, Theorem 9.16, p. 285]), the injection of H 1 0 (0, L) in L 2 (0, L) is compact, then C is bounded in H 1 0 (0, L) and is relatively compact in L 2 (0, L). Moreover, it is a closed subset of L 2 (0, L). Thus C is a compact subset of L 2 (0, L). In order to apply the Schauder theorem, we have to prove that T (L 2 (0, L)) ⊂ C for a suitable choice of M > 0. We multiply the first line of ( 22) by z and then integrate between 0 and L. After some integrations by parts, we get

λ z L 2 (0,L) = - L 0 zz dx - L 0 zz dx -a L 0 sat(y)zdx + λ L 0 uzdx = -z (0) 2 -a L 0 sat(y)zdx + λ L 0 uzdx ≤ -a L 0 sat(y)zdx + λ L 0 uzd (25)
The Young inequality leads us to the following inequality

λ z 2 L 2 (0,L) ≤aε 1 sat(y) 2 L 2 (0,L) + a ε 1 z L 2 (0,L) + λ ε 2 z 2 L 2 (0,L) + λε 2 u 2 L 2 (0,L) (26) 
where ε 1 , ε 2 > 0 are to be chosen later.

The function sat(•) being bounded, we get

λ - a ε 1 - λ ε 2 z 2 L 2 (0,L) ≤ aε 1 Lu 2 0 + λε 2 u 2 L 2 (0,L) (27) We choose ε 1 and ε 2 such that α := λ -a ε1 -λ ε2 > 0. Thus we obtain z 2 L 2 (0,L) ≤ aε 1 Lu 2 0 α + λε 2 α u 2 L 2 (0,L) (28) 
and therefore the L 2 -norm of z is bounded by a constant. Now, let us multiply the first line of ( 22) by xz and then integrate between 0 and L to get

L 0 xzz dx + L 0 xzz dx + λ L 0 xz 2 dx = L 0 xzgdx (29)
After some integrations by parts, we get

L 0 xzz dx = - L 0 zz dx - L 0 xz z dx = 3 2 z 2 L 2 (0,L) (30) 
and

L 0 xzz dx = - 1 2 z 2 L 2 (0,L) . (31) 
Thus, plugging (30) and ( 31) in (29), we obtain

3 2 z 2 L 2 (0,L) = 1 2 z 2 L 2 (0,L) -λ L 0 xz 2 dx + L 0 xzg ≤ 1 2 z 2 L 2 (0,L) + 1 2 z 2 L 2 (0,L) + L 2 2 g 2 L 2 (0,L) ≤ z 2 L 2 (0,L) + L 2 2 g 2 L 2 (0,L) ≤M ( 32 
)
where M is a constant which depends only on u 0 , L and a.

In this way we see that z 2 L 2 (0,L) is also bounded. From the Poincaré inequality, we have the equivalence between z 2 L 2 (0,L) and z 2 H 1 0 (0,L) . Thus, for any λ > 0, a > 0 and y ∈ L 2 (0, L), there exists M > 0 such that we have z ∈ C, i.e. T (L 2 (0, L)) ⊂ C. Then we apply the Schauder theorem (see e.g. [START_REF] Coron | Control and Nonlinearity[END_REF]Theorem B.19]). Hence it concludes the proof of Lemma 3. Thus, from [14, Theorem 4.2], using the Lemma 1, 2 and 3, A generates a semigroup of contraction T (t). With [1, Theorem 3.1], the proof of Theorem 1 is achieved.

B. Asymptotic stability (Theorem 2)

The Lyapunov function related to [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lenghts[END_REF], which we will denote by E, is given by

E := 1 2 L 0 y(t, x) 2 dx, (33) 
and its derivative with respect to the time variable gives

Ė ≤ -a L 0 y(t, x)sat(y(t, x))dx. ( 34 
)
Since sat is an odd function, thus, for all

(t, x) ∈ R + × [0, L] y(t, x)sat(y(t, x)) ≥ 0 (35) Therefore we get Ė ≤ 0, (36) 
which means that, for all initial conditions in D(A), the solutions of ( 7) are stable. The attractivity has to be inspected too in order to finish the proof of the stability. Since we are in an infinite dimensional context, using the LaSalle's Invariance Principle needs us to check whether the trajectories are compact. This precompactness is a corollary of the following lemma (which is very similar to [9, Lemma 2], where a wave equation is considered). Lemma 4. The canonical embedding from D(A), equipped with the graph norm, into L 2 (0, L) is compact.

Proof. Before proving this lemma, recall that its statement is equivalent to prove, for each sequence in D(A), which is bounded with the graph norm, that it exists a subsequence that (strongly) converges in L 2 (0, L).

Let us recall the definition of the graph norm

u 2 D(A) := u 2 L 2 (0,L) + Au 2 L 2 (0,L) = L 0 |u| 2 + | -u -u -asat(u)| 2 dx = L 0 |u| 2 + |u + u + asat(u)| 2 dx. (37) 
Since for all (s, s) ∈ C 2 , |s + s| 2 ≤ 2|s| 2 + 2|s| 2 , we get the following two inequalities

u 2 D(A) ≥ u 2 L 2 (0,L) (38) 
and

u 2 D(A) ≥ min 1, 1 a L 0 | -asat(u)| 2 dx + min 1, 1 a L 0 |u + u + asat(u)| 2 dx ≥ min 1 2 , 1 2a L 0 |u + u | 2 dx. ( 39 
) Noticing that u 2 L 2 (0,L) = u + u -u 2 L 2 (0,L) , we have u 2 L 2 (0,L) ≤ 2 u + u 2 L 2 (0,L) + 2 u 2 L 2 (0,L) , (40) and using that u 2 L 2 (0,L) = u + u -u + xu - xu 2 L 2 (0,L) , we obtain u 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 2 u -xu + xu 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 4 u -xu 2 L 2 (0,L) + 4 xu 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 4 u 2 L 2 (0,L) -8 L 0 xu udx + 8 xu 2 L 2 (0,L) .
From (30), we get

L 0 xu udx = 3 2 u 2 L 2 (0,L)
and therefore

u 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 4 u 2 L 2 (0,L) -12 u 2 L 2 (0,L) + 8 xu 2 L 2 (0,L) . (41) 
Thus:

13 u 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 4 u 2 L 2 (0,L) + 8L 2 u 2 L 2 (0,L) (42) 
Plugging inequality (40) in (42), we have

13 u 2 L 2 (0,L) ≤2 u + u 2 L 2 (0,L) + 4 2 u + u 2 L 2 (0,L) + 2 u 2 L 2 (0,L) + 8L 2 u 2 L 2 (0,L) ≤10 u + u 2 L 2 (0,L) + 8 u 2 L 2 (0,L) + 8L 2 u 2 L 2 (0,L) . and therefore u 2 L 2 (0,L) ≤ 2 u + u 2 L 2 (0,L) + 8L 2 5 u 2 L 2 (0,L) (43) 
Considering Equations ( 38) and (39), it leads us to the following inequality, for all u ∈ D(A)

u 2 L 2 (0,L) ≤ ∆ u 2 D(A) ( 44 
)
where ∆ is a term which depends on L and a. Thus, if we consider now a sequence {u n } n∈N in D(A) bounded for the graph norm of D(A), we have from (44) that this sequence is bounded in H 1 0 (0, L). Since the canonical embedding from H 1 0 (0, L) to L 2 (0, L) is compact, there exists a subsequence still denoted {u n } n∈N such that u n → u in L 2 (0, L). Thus u belongs to L 2 (0, L), which concludes the lemma. Now we apply the LaSalle's Invariance Principle. Using the fact that A generates a semi-group of contraction, then from [1, Théorème 3.1, Page 54], we get, for all t ≥ 0 and for all y(0,

•) ∈ D(A), y(t, •) L 2 (0,L) ≤ y(0, •) L 2 (0,L) (45) 
and

Ay(t, •) L 2 (0,L) ≤ Ay(0, •) L 2 (0,L) . (46) 
Therefore, thanks to Lemma 4, we see that the trajectory {v(t) = S(t)v 0 , t ≥ 0} is precompact in L 2 (0, L), then the ω-limit set w[(y(0, •))] ⊂ D(A), is not empty and invariant to the nonlinear semigroup S(t) (see [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 3.1]).

Let us consider a strong solution such that Ė(t) = 0, for all t ≥ 0. It follows from (34) that y(t, x) = 0 for almost x in (0, L). Therefore the convergence property (9) holds along the strong solutions to the nonlinear equation [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lenghts[END_REF].

Using the density of D(A) and the existence of weak solutions, we end the proof by extending the result to any initial condition in L 2 (0, L).

IV. SIMULATION

Let us discretize the PDE ( 7) by means of finite difference method (see e.g. [START_REF] Sepulveda | Numerical Methods for Generalized KdV equations[END_REF] for an introduction on the numerical scheme of a generalized Korteweg-de Vries equation). The time and the space steps are chosen such that the stability condition of the numerical scheme is satisfied.

We choose L = 2π, y 0 (x) = 100(1 -cos(x)) for all x ∈ [0, 2π] and a = 1. Let us numerically compute the solution of (7). On Figure 1, there is no saturation in the dynamics. On Figure 2, there is a saturation with a level u 0 = 1. On Figure 3, the feedback law is saturated with a level u 0 = 3. Figures 4 and5 illustrate the evolution of the Lyapunov function E with respect to the time (without saturation and with a saturation level equals to 3). 

V. CONCLUSION

In this paper, we have studied the well-posedness and the asymptotic stability of a linear Korteweg-de Vries equation with a saturated distributed control. The well-posedness issue has been tackled by using the nonlinear semigroup theory and we proved the stability by using a sector condition and Lyapunov theory for infinite dimensional system. We illustrate our result on some simulations, which show that the smaller is the saturation level, the slower is the convergence to zero.

To conclude, let us state some questions arising in this context: 1. Can we extend our theorems to the nonlinear Korteweg-de Vries equation? 2. As mentioned in the introduction, even if the internal control (without any constraints) acts only on a part of the domain, the stability still holds. Is it true with a saturated control? 3. Can we recover the exponential stability with the saturated input? 4. Can we apply the same method for other partial differential equations? An interesting model could be the onedimensional Kuramoto-Sivashinky equation.

Fig. 1 .

 1 Fig. 1. Solution y(t,x) with a feedback law without saturation

Fig. 3 .

 3 Fig. 3. Solution y(t,x) with a saturated feedback law and u 0 = 3.

Fig. 4 .

 4 Fig. 4. Time evolution of the Lyapunov function E without saturation.

Fig. 5 .

 5 Fig. 5. Time evolution of the Lyapunov function E with a saturation u 0 = 3.

Indeed, we know from[START_REF] Khalil | Nonlinear Systems Second Edition[END_REF] Page 73] that for all (y, ỹ) ∈ L

(0, L)[START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] and for all x ∈ [0, L], |sat(y(x))sat(ỹ(x))| ≤ |y(x) -ỹ(x)|. Thus we get sat(y)sat(ỹ) L 2 (0,L) ≤ y -ỹ L 2 (0,L) .[START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] Given T 1 closed and T 2 globally Lipschitz, and un → u and (T 1 + T 2 )un → w, we have |T 1 un + T 2 u -w| ≤ |T 1 un + T 2 un -w| + |T 2 un -T 2 u|. Thus, the left member of the inequality is bounded by a term which converges to 0.
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