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Abstract—Application download is a promising concept for 
embedded systems in safety-critical domains such as automotive. 
Systems could be kept up to date without maintenance visits and 
new business models could be developed. However, the protection 
of safety-critical software against applications that are not known 
at system design time is rarely addressed. This paper presents a 
concept for downloading non-safety-critical software applications 
into a safety-critical system. The platform´s partitioning is 
realized via memory, execution time, and service protection. 
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I.  INTRODUCTION 
In recent years, we have witnessed the establishment of 

dynamic installation of software applications on electronic 
devices such as mobile devices and personal computers. 
Installing dynamic applications (new software at product 
lifetime) in the domain of critical embedded systems bears 
huge potential and could have a significant impact on our daily 
lives. Embedded systems could be kept up to date without 
visiting a shop. In the context of cyber-physical systems, where 
openness accompanies the need for software updates, 
application download to embedded systems could be an 
enabling technology. Furthermore, it could enable users to 
extend the system's functionality, allowing new business 
models; e.g., parking assistance or infotainment updates could 
be offered via an app (application) store. However, from a 
safety perspective, this trend also raises huge challenges since 
safety-critical software has to be protected. The state of the 
practice is to integrate applications and to argue about safety at 
development time. The current Automotive open system 
architecture (AUTOSAR) for instance allows only static 
configuration [1]. 

Deploying an untrusted application during runtime can 
interfere with safety-critical software. In addition, embedded 
systems for safety-critical tasks are often low-resource systems. 
These technical limitations (small amount of memory, 
processing power, etc.) are a further challenge for dynamic 
software installation. This paper presents an approach that 
allows dynamic deployment of applications to embedded 
systems, especially those with low resources, and automatic 
integration of non-safety-critical applications into a platform 

containing safety-critical software. To achieve this, freedom 
from interference between the non-safety-critical app and the 
safety-critical software running on the platform must be 
guaranteed. The presented solution uses three sets of protective 
measures to achieve this: a) measures against spatial memory 
corruptions, b) measures against temporal scheduling 
interferences and c) measures against corruptions via shared 
services. 

II. RELATED WORK 
For decades, desktop computers – usually standard 

x86/AMD64 hardware – allowed dynamic installation of new 
software. Next on the consumer market were smartphones, e.g. 
with a Linux-based operating system, and mobile devices that 
allowed downloading software with restricted user rights in 
terms of system resources. Called applications or apps, these 
can be created using a software development kit, e.g. for Java, 
and can be installed from the desktop, from an app store, or 
from websites. 

With regard to other embedded systems, Han et al. 
introduced the SOS operating system for sensor nodes [2]. The 
key idea of SOS is to provide support for dynamically loadable 
modules. SOS enables engineers to download new modules to 
the target system during runtime. Contiki is an operating 
system for sensor network nodes consisting of a small event-
driven kernel. The approach of Dunkels et al. enables dynamic 
applications for resource-constrained wireless sensor nodes 
through dynamic linking and locating on the target node [3]. 
LyraOS is an operating system for embedded systems. It has 
been ported to several architectures (e.g., ARM, x86), supports 
its own file system (LyraFile), and provides a subset of the 
POSIX standard for applications. Shen and Chiang extended 
LyraOS to support dynamic software components by pre-
linking on the server side [4]. In contrast, the solution 
presented here makes it possible to download untrusted 
applications dynamically to a low-resource embedded system. 
In addition, the system can contain safety-critical software. 

III. APPLICATION AND PLATFORM 
In this section, we introduce the working environment and 

basic approach of the concept. The working environment 
includes the host system and the target system. The host system 



contains applications that could be downloaded to an 
embedded system; e.g., the host system could be a standard 
desktop computer, additionally including a complete C 
development environment for embedded software for the 
purpose of developing applications. The platform is the target 
system that is selected to run this software, e.g. a 
microcontroller with an operating system. The connection 
between these two systems is established by a communication 
channel, e.g., via CAN (Controller Area Network). 

The approach enables automated integration of new 
functionality. An interface description between the application 
and the underlying platform enables this automated integration. 
The interface is used to arbitrate between a downloaded 
application and the corresponding platform. It must be 
formalized in such a way that existing applications are not 
influenced inappropriately. To achieve this, we propose a 
vertical interface description according to [5]. The description 
follows a modular, contract-based approach for specifying 
demands and guarantees in order to form a so-called vertical 
interface between application and platform. VerSaI (Vertical 
Safety Interface) is our language approach for describing 
demands and guarantees [5]. 

A. Application demands and platform guarantees 
The demands define the safety-related behavior of the 

platform requested by the application. Note that the demands 
result from higher-level safety requirements of an application 
and have to be derived by the application developer. 
Consequently, a demand is linked to a specific application. An 
example of a safety demand is: “The application must be 
protected from temporal CPU interferences (ASIL C).” 

The guarantees are related to a specific platform and define 
the actual safety-relevant capabilities of the platform. With 
regard to app downloads, a platform-guarantee satisfies an 
application demand depending on the service guarantees 
already assigned to other applications. An example of a safety 
guarantee is: “The platform is capable of protecting core0 from 
temporal interferences (ASIL C).” 

When developing safety-critical systems, the requirements 
used to specify the safety concept of the existing applications 
must be considered as application demands that have to be 
covered by platform guarantees. Safety has to be re-evaluated 
whenever the system changes. An example of a requirement is 
a residual failure rate of a platform sub-system with respect to 
random hardware failures lower than or equal to 0.5 FIT 
(Failure In Time: number of failures that can be expected in 109 
hours of operation). 

Zimmer [5] proposes the following safety-related demand-
guarantee dependencies for the vertical interface: platform 
service failures, health monitoring, service diversity, and 
resource protection. 

Platform service failure detection or avoidance deals with 
failures caused by the platform; for instance, a value failure of 
analog-to-digital converter signals larger than a specified 
threshold must be detected within a defined period of time.  

The opposite of platform service failure detection is health 
monitoring. It focuses on trapping and encapsulating 

application and execution failures. As an example, the platform 
has to detect and arbitrate whether an application/task is 
scheduled too frequently. 

Service diversity, also known as independency or 
dissimilarity, deals with systematic failures in redundant 
components. Service diversity methods reduce the likelihood of 
common-cause systematic failures via independence of 
communication links, input and output services; e.g., an 
application could request an analog input channel to calculate a 
physical value in different ways in order to avoid a systematic 
value failure. 

Resource protection aims at achieving freedom from 
interferences. We define an interference as a cascading failure 
via a shared resource that potentially violates safety 
requirements. The interference propagates among several 
applications via a commonly used resource instead of a private 
resource for every application. 

The presented work focus on resource protection, because 
protection regarding freedom from interference is a key issue. 
Service diversity for instance requires further investigation to 
be compatible with the notion of generic platform. Design 
patterns, e.g. with respect to failure detection and monitoring 
need to be elaborated. The potential solution space of patterns 
can be assumed as a platform resource that need to be 
mitigated between application demands and guaranties. 

Application software download 
Once an application has been developed and its demands 

have been specified, the app can be downloaded to a platform 
with defined guarantees. A software component called app 
manager automatically evaluates whether the demands and 
guarantees for a specific platform are compatible. The app 
manager consists of two parts: on the host system, it builds the 
technical basis for registering applications and starting the 
download process. On the target system, the app manager 
receives and installs the application. In addition, the app 
manager on the target system needs to ensure at runtime that 
applications do not consume more platform resources than 
demanded by the application.  

The compatibility arbitration between demands and 
guarantees can be located at the host as well as at the target. 
We propose keeping as little overhead as possible on the target 
in order to be efficient regarding low-resource embedded 
systems. Our aim is to keep as much information on the target 
system as needed to allow a target to connect with different 
host systems. Hence, we have to store information regarding 
the installed applications on the target. 

The app download procedure is illustrated in figure 1. The 
first check is if it is possible to install further applications. The 
restriction results in the maximum number of applications that 
can be handled by the target system’s app manager, e.g., 
memory slots storing administrative application information 
such as a function pointer to the application’s main function or 
its execution time. Thereupon, the host system sends the 
resource demands, such as memory requirements and timing 
properties, to the target system. If the target has enough 
resources available, it will send the host system an 



acknowledgment and the required information to generate the 
application executable. Such information could be information 
to resolve symbols for platform system services of a re-
locatable object file mapping them to the correct target 
memory addresses. It depends on the embedded system used 
whether the addresses are physical or virtual addresses. The 
last activities of the host system are the generation of an 
application executable and its transmission together with the 
necessary information, e.g., regarding memory segments or the 
location of the application’s main and init functions. 

Fig. 1. Applicastion download:, the host system is shown in the left part of 
the activity diagram and the target system on the right part. 

IV. SHARED RESOURCE PROTECTION 
Our app download concept scales to all four of the vertical 

safety requirement categories presented in the previous section. 
However, our work focuses on resource protection as resource 
protection is the technical basis from both the app download 
perspective and the mixed-criticality perspective. In our 
concept, we consider platform service failure detection, health 
monitoring, and platform components for supporting service 
diversity as special platform services and consequently as a 
shared resource. 

The safety demands and guarantees in relation to shared 
resources focus on freedom from interferences, which is also 
called segregation or partitioning. In [6], we presented an 
analysis method for detecting interference channels and, based 
on our work related to analysis methods, we identified three 
categories of shared resources for an app download. 

A. Memory protection 
Spatial memory interference, i.e., memory corruption, 

occurs if an (application) task erroneously writes to a memory 
region belonging to another task. Potential memory regions 
belonging to a task include the task’s stack, its data and code, 
as well as registers for controlling peripherals that are 
exclusively assigned to the task of the application, respectively. 

The effect of arbitrary memory interference on the behavior 
of the affected program is not always predictable, which is the 
reason why memory interferences are typically prevented 
before the memory is modified. The corresponding 
mechanisms for protecting the system against memory 
corruptions usually demand close interaction between the 
operating system and dedicated memory protection hardware. 
There are two ways to support memory protection in hardware: 
the memory protection unit (MPU) and the memory 
management unit (MMU). The latter does not only provide 
memory protection but also the very flexible tool of memory 
virtualization. This facilitates the creation of relocatable apps 
and simplifies app download. On the other side, MMUs have 
several disadvantages since they make timing predictability 
more difficult, require more complex handling by the OS, and 
increase hardware costs. Although MMU in combination with 
an extended OS like Linux simplifies app download, the 
described implementation uses an MPU, which is common in 
platforms for safety-critical embedded systems. 

Using an MPU or an MMU to separate different programs’ 
memories has one other major consequence. If an application 
task needs to call a module using memory that the current task 
cannot access, we need a system call feature to make the call. 
This is, for example, necessary if an untrusted task wants to 
call a shared service such as the OS and corruptions of the 
shared services are to be avoided. In the app download 
scenario, both concepts are required. The MPU is required to 
protect the legacy platform from the app, especially its safety-
critical parts, such as the OS. As a consequence, the 
applications require a system call interface in order to interact 
with the system as well. 

B. Execution time protection 
In real-time systems, the computing time of a process is as 

important as its computational results. In this context, a 
deadline violation means a timing fault occurring when a task 
or interrupt service routine takes more time to complete than 
allowed, delivering the result at a later time. To ensure that the 
amount of processing resource of a platform is enough, a 
sufficient and necessary response time test analysis, made 
according to the scheduling algorithm implemented, must be 
done. Besides the response analysis, a run time monitor must 
also ensure that the task does not take more computational time 
during run time, than it was considered by the response time 
analysis. Our platform implements the rate monotonic 
scheduler algorithm, with periodic fixed priority tasks. To 
develop a reliable system, the system designer specifies certain 
timing requirements, such as the worst-case execution time and 
period for each task. Based upon this information, the platform 
analyzes whether all tasks are able to meet their deadlines [7]. 
To allow dynamic app download, the response time analysis is 
shifted to the app manager as part of the check on whether the 
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target resources are sufficient. In addition, a concept for 
guaranteeing that an application task cannot extend its 
execution time is needed. Possibilities include monitoring 
approaches and preemptive scheduling algorithms. We will 
present our implementation in more detail in section V. 

C. Service Protection 
We define a service as software when it abstracts from the 

platform and is provided to applications as part of the 
infrastructure. An example is a driver for the peripheral ADC 
(analog to digital converter). The ADC driver can be used by 
several applications to access the shared ADC. A protection 
service provides mechanisms for segregating the service in a 
way that guarantees its functionality. This service functionality 
must also be ensured for the applications to detect a faulty 
application that could misuse the service. Such a service 
misuse should not lead the service to fail or make it 
unavailable. The state of the art is that the system architect 
analyzes the system’s services w.r.t. interferences. Regarding 
the app download, we aim to achieve service protection via 
plausibility checks of the service call parameters. How to 
develop a service that is free of interferences and is intended 
for app download is our ongoing research. In general, services 
have to be protected against spatial, temporal, and behavioral 
interferences [6]. We use memory protection to ensure spatial 
service protection. An application only has access to a reduced 
part of the memory map. The service itself is typically located 
in a protected memory region. If an app needs to access a 
service via the corresponding service function, there has to be 
an interaction between the application’s and the service’s 
memory regions. We use the concept of the so-called Service 
Call (SVC), which is to use an interrupt called from the non-
privileged application code to access the protected memory 
region. The interrupt is a software interrupt designed for a user 
(application) piece of code to invoke the operating system and 
request the execution of a routine in privileged mode that has 
access to the protected memory region. 

V. IMPLEMENTATION ASPECTS 
The prototypical implementation uses the STM32F103RF 

microcontroller. The microcontroller has a 72MHz Cortex-M3 
CPU with MPU and 768 Kbytes of Flash, 96 Kbytes of SRAM, 
and various peripherals. Our prototype software comprises the 
FreeRTOS open source real-time operating system and the 
STM32 peripheral library. The host system is realized in 
eclipse with the Eclipse and OpenOCD for developing and 
testing the embedded software. In addition, the toolchain 
contains the GNU (cross) Compiler Collection, the GNU 
Linker, and the GNU Binutils. 

A. Execution time protection 
To install a new application, this application must have 

sufficient time to be executed. Conclusions before runtime are 
calculated by the Response Time Analysis if all tasks assigned 
to the system meet their deadlines. The scheduling algorithm 
implements the rate monotonic scheduler. Tasks with a lower 
period have higher priority. The algorithm runs at a base time 
(quantum) of 1 ms (the scheduler interrupt). At each interrupt, 
the scheduler checks which is the highest-priority task to run. If 

more than one task has the same highest priority, and they are 
ready to run, they will share the processing time in a round 
robin fashion.  

Our implementation extends the FreeRTOS kernel and 
enables it to calculate the schedulability described in the 
previous section.  Two new parameters were added to the task 
structure: the period and the worst-case execution time. Now 
the task extends the former functionality and the kernel is able 
to calculate the response time for all tasks in the system based 
on the rate monotonic scheduler algorithm. For each new app 
to be installed, a new response time analysis must be 
performed to check if the new set, including the new app task 
to be installed, is still schedulable (i.e., checking whether all 
tasks from the set meet their deadlines). 

If a task cannot be executed within its deadline (execution 
time exceeds period), the function returns with a false answer, 
meaning that the task set is not schedulable. Only if the new 
task set is schedulable is the new task included on the 
permanent task system list and the FreeRTOS scheduler can 
run again, now with the new task included. The execution time 
monitor is realized through a down-counter timer interrupt that 
is set when its timer reaches the value zero, and a variable that 
contains the value that must be loaded into this down-counter. 
If the current executing task exceeds its time budget, it is 
preempted and another task is scheduled. This avoids temporal 
interferences. 

VI. CONCLUSION 
In this paper, we presented a concept for downloading 

applications to an embedded system containing safety-critical 
software. The concept reacts to low-resource systems typical 
for safety-critical systems in the automotive domain. 
Furthermore, the demand and guarantee relation of safety 
interfaces (between applications and a platforms) is regarded to 
enable downloading safety-critical applications. As future 
work, we plan to further develop the idea of runtime arbitration 
between application demands and platform guarantees and 
fairly automated platform service interference analysis in 
combination with a service protection assignment. 

ACKNOWLEDGMENT 
This research was funding from the DNT – ‘DIGITAL 
ENGINEERING FOR COMMERCIAL VEHICLES’ project.  

REFERENCES 
[1] Wagner, M., et. al., "Towards runtime adaptation in AUTOSAR: Adding 

Service-orientation to automotive software architecture," ETFA 2014 
[2] Chih-Chieh Han et al. “A Dynamic Operating System for Sensor 

Nodes", MobiSys 2005 
[3] Adam Dunkels et al. “Run-time Dynamic Linking for Reprogramming 

Wireless Sensor Networks”, SenSys 2006 
[4] Bor-Yeh Shen and Mei-Ling Chiang. “A Server-Side Pre-linking 

Mechanism for Updating Embedded Clients Dynamically,  2007 
[5] B Zimmer, “Efficiently Deploying Safety-Critical Applications onto 

Open Integrated Architectures”,Fraunhofer IESE 2014 
[6] Bastian Zimmer et. Al. “A Systematic Approach for Software 

Interference Analysis”, ISSRE 2014 
[7] Hansson, Hans, Jan Carlson, and Damir Isovic, “Real-Time Systems”, 

Fraunhofer IESE 2010 


