
HAL Id: hal-01193016
https://hal.science/hal-01193016

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An application software download concept for
safety-critical embedded platforms

Christoph Dropmann, Drausio Linardi Rossi

To cite this version:
Christoph Dropmann, Drausio Linardi Rossi. An application software download concept for safety-
critical embedded platforms. CARS 2015 - Critical Automotive applications: Robustness & Safety,
Sep 2015, Paris, France. �hal-01193016�

https://hal.science/hal-01193016
https://hal.archives-ouvertes.fr

An application software download concept for safety-
critical embedded platforms

Christoph Dropmann
Fraunhofer IESE

Kaiserslautern, Germany
christoph.dropmann@iese.fraunhofer.de

Drausio, Linardi Rossi
Fraunhofer IESE

Kaiserslautern, Germany
drausio.rossi@iese.fraunhofer.de

Bastian Zimmer

Abstract—Application download is a promising concept for
embedded systems in safety-critical domains such as automotive.
Systems could be kept up to date without maintenance visits and
new business models could be developed. However, the protection
of safety-critical software against applications that are not known
at system design time is rarely addressed. This paper presents a
concept for downloading non-safety-critical software applications
into a safety-critical system. The platform´s partitioning is
realized via memory, execution time, and service protection.

Keywords—Embedded Application Download, Safety, Software
Interferences, Segregation, Partitioning

I. INTRODUCTION
In recent years, we have witnessed the establishment of

dynamic installation of software applications on electronic
devices such as mobile devices and personal computers.
Installing dynamic applications (new software at product
lifetime) in the domain of critical embedded systems bears
huge potential and could have a significant impact on our daily
lives. Embedded systems could be kept up to date without
visiting a shop. In the context of cyber-physical systems, where
openness accompanies the need for software updates,
application download to embedded systems could be an
enabling technology. Furthermore, it could enable users to
extend the system's functionality, allowing new business
models; e.g., parking assistance or infotainment updates could
be offered via an app (application) store. However, from a
safety perspective, this trend also raises huge challenges since
safety-critical software has to be protected. The state of the
practice is to integrate applications and to argue about safety at
development time. The current Automotive open system
architecture (AUTOSAR) for instance allows only static
configuration [1].

Deploying an untrusted application during runtime can
interfere with safety-critical software. In addition, embedded
systems for safety-critical tasks are often low-resource systems.
These technical limitations (small amount of memory,
processing power, etc.) are a further challenge for dynamic
software installation. This paper presents an approach that
allows dynamic deployment of applications to embedded
systems, especially those with low resources, and automatic
integration of non-safety-critical applications into a platform

containing safety-critical software. To achieve this, freedom
from interference between the non-safety-critical app and the
safety-critical software running on the platform must be
guaranteed. The presented solution uses three sets of protective
measures to achieve this: a) measures against spatial memory
corruptions, b) measures against temporal scheduling
interferences and c) measures against corruptions via shared
services.

II. RELATED WORK
For decades, desktop computers – usually standard

x86/AMD64 hardware – allowed dynamic installation of new
software. Next on the consumer market were smartphones, e.g.
with a Linux-based operating system, and mobile devices that
allowed downloading software with restricted user rights in
terms of system resources. Called applications or apps, these
can be created using a software development kit, e.g. for Java,
and can be installed from the desktop, from an app store, or
from websites.

With regard to other embedded systems, Han et al.
introduced the SOS operating system for sensor nodes [2]. The
key idea of SOS is to provide support for dynamically loadable
modules. SOS enables engineers to download new modules to
the target system during runtime. Contiki is an operating
system for sensor network nodes consisting of a small event-
driven kernel. The approach of Dunkels et al. enables dynamic
applications for resource-constrained wireless sensor nodes
through dynamic linking and locating on the target node [3].
LyraOS is an operating system for embedded systems. It has
been ported to several architectures (e.g., ARM, x86), supports
its own file system (LyraFile), and provides a subset of the
POSIX standard for applications. Shen and Chiang extended
LyraOS to support dynamic software components by pre-
linking on the server side [4]. In contrast, the solution
presented here makes it possible to download untrusted
applications dynamically to a low-resource embedded system.
In addition, the system can contain safety-critical software.

III. APPLICATION AND PLATFORM
In this section, we introduce the working environment and

basic approach of the concept. The working environment
includes the host system and the target system. The host system

contains applications that could be downloaded to an
embedded system; e.g., the host system could be a standard
desktop computer, additionally including a complete C
development environment for embedded software for the
purpose of developing applications. The platform is the target
system that is selected to run this software, e.g. a
microcontroller with an operating system. The connection
between these two systems is established by a communication
channel, e.g., via CAN (Controller Area Network).

The approach enables automated integration of new
functionality. An interface description between the application
and the underlying platform enables this automated integration.
The interface is used to arbitrate between a downloaded
application and the corresponding platform. It must be
formalized in such a way that existing applications are not
influenced inappropriately. To achieve this, we propose a
vertical interface description according to [5]. The description
follows a modular, contract-based approach for specifying
demands and guarantees in order to form a so-called vertical
interface between application and platform. VerSaI (Vertical
Safety Interface) is our language approach for describing
demands and guarantees [5].

A. Application demands and platform guarantees
The demands define the safety-related behavior of the

platform requested by the application. Note that the demands
result from higher-level safety requirements of an application
and have to be derived by the application developer.
Consequently, a demand is linked to a specific application. An
example of a safety demand is: “The application must be
protected from temporal CPU interferences (ASIL C).”

The guarantees are related to a specific platform and define
the actual safety-relevant capabilities of the platform. With
regard to app downloads, a platform-guarantee satisfies an
application demand depending on the service guarantees
already assigned to other applications. An example of a safety
guarantee is: “The platform is capable of protecting core0 from
temporal interferences (ASIL C).”

When developing safety-critical systems, the requirements
used to specify the safety concept of the existing applications
must be considered as application demands that have to be
covered by platform guarantees. Safety has to be re-evaluated
whenever the system changes. An example of a requirement is
a residual failure rate of a platform sub-system with respect to
random hardware failures lower than or equal to 0.5 FIT
(Failure In Time: number of failures that can be expected in 109
hours of operation).

Zimmer [5] proposes the following safety-related demand-
guarantee dependencies for the vertical interface: platform
service failures, health monitoring, service diversity, and
resource protection.

Platform service failure detection or avoidance deals with
failures caused by the platform; for instance, a value failure of
analog-to-digital converter signals larger than a specified
threshold must be detected within a defined period of time.

The opposite of platform service failure detection is health
monitoring. It focuses on trapping and encapsulating

application and execution failures. As an example, the platform
has to detect and arbitrate whether an application/task is
scheduled too frequently.

Service diversity, also known as independency or
dissimilarity, deals with systematic failures in redundant
components. Service diversity methods reduce the likelihood of
common-cause systematic failures via independence of
communication links, input and output services; e.g., an
application could request an analog input channel to calculate a
physical value in different ways in order to avoid a systematic
value failure.

Resource protection aims at achieving freedom from
interferences. We define an interference as a cascading failure
via a shared resource that potentially violates safety
requirements. The interference propagates among several
applications via a commonly used resource instead of a private
resource for every application.

The presented work focus on resource protection, because
protection regarding freedom from interference is a key issue.
Service diversity for instance requires further investigation to
be compatible with the notion of generic platform. Design
patterns, e.g. with respect to failure detection and monitoring
need to be elaborated. The potential solution space of patterns
can be assumed as a platform resource that need to be
mitigated between application demands and guaranties.

Application software download
Once an application has been developed and its demands

have been specified, the app can be downloaded to a platform
with defined guarantees. A software component called app
manager automatically evaluates whether the demands and
guarantees for a specific platform are compatible. The app
manager consists of two parts: on the host system, it builds the
technical basis for registering applications and starting the
download process. On the target system, the app manager
receives and installs the application. In addition, the app
manager on the target system needs to ensure at runtime that
applications do not consume more platform resources than
demanded by the application.

The compatibility arbitration between demands and
guarantees can be located at the host as well as at the target.
We propose keeping as little overhead as possible on the target
in order to be efficient regarding low-resource embedded
systems. Our aim is to keep as much information on the target
system as needed to allow a target to connect with different
host systems. Hence, we have to store information regarding
the installed applications on the target.

The app download procedure is illustrated in figure 1. The
first check is if it is possible to install further applications. The
restriction results in the maximum number of applications that
can be handled by the target system’s app manager, e.g.,
memory slots storing administrative application information
such as a function pointer to the application’s main function or
its execution time. Thereupon, the host system sends the
resource demands, such as memory requirements and timing
properties, to the target system. If the target has enough
resources available, it will send the host system an

acknowledgment and the required information to generate the
application executable. Such information could be information
to resolve symbols for platform system services of a re-
locatable object file mapping them to the correct target
memory addresses. It depends on the embedded system used
whether the addresses are physical or virtual addresses. The
last activities of the host system are the generation of an
application executable and its transmission together with the
necessary information, e.g., regarding memory segments or the
location of the application’s main and init functions.

Fig. 1. Applicastion download:, the host system is shown in the left part of
the activity diagram and the target system on the right part.

IV. SHARED RESOURCE PROTECTION
Our app download concept scales to all four of the vertical

safety requirement categories presented in the previous section.
However, our work focuses on resource protection as resource
protection is the technical basis from both the app download
perspective and the mixed-criticality perspective. In our
concept, we consider platform service failure detection, health
monitoring, and platform components for supporting service
diversity as special platform services and consequently as a
shared resource.

The safety demands and guarantees in relation to shared
resources focus on freedom from interferences, which is also
called segregation or partitioning. In [6], we presented an
analysis method for detecting interference channels and, based
on our work related to analysis methods, we identified three
categories of shared resources for an app download.

A. Memory protection
Spatial memory interference, i.e., memory corruption,

occurs if an (application) task erroneously writes to a memory
region belonging to another task. Potential memory regions
belonging to a task include the task’s stack, its data and code,
as well as registers for controlling peripherals that are
exclusively assigned to the task of the application, respectively.

The effect of arbitrary memory interference on the behavior
of the affected program is not always predictable, which is the
reason why memory interferences are typically prevented
before the memory is modified. The corresponding
mechanisms for protecting the system against memory
corruptions usually demand close interaction between the
operating system and dedicated memory protection hardware.
There are two ways to support memory protection in hardware:
the memory protection unit (MPU) and the memory
management unit (MMU). The latter does not only provide
memory protection but also the very flexible tool of memory
virtualization. This facilitates the creation of relocatable apps
and simplifies app download. On the other side, MMUs have
several disadvantages since they make timing predictability
more difficult, require more complex handling by the OS, and
increase hardware costs. Although MMU in combination with
an extended OS like Linux simplifies app download, the
described implementation uses an MPU, which is common in
platforms for safety-critical embedded systems.

Using an MPU or an MMU to separate different programs’
memories has one other major consequence. If an application
task needs to call a module using memory that the current task
cannot access, we need a system call feature to make the call.
This is, for example, necessary if an untrusted task wants to
call a shared service such as the OS and corruptions of the
shared services are to be avoided. In the app download
scenario, both concepts are required. The MPU is required to
protect the legacy platform from the app, especially its safety-
critical parts, such as the OS. As a consequence, the
applications require a system call interface in order to interact
with the system as well.

B. Execution time protection
In real-time systems, the computing time of a process is as

important as its computational results. In this context, a
deadline violation means a timing fault occurring when a task
or interrupt service routine takes more time to complete than
allowed, delivering the result at a later time. To ensure that the
amount of processing resource of a platform is enough, a
sufficient and necessary response time test analysis, made
according to the scheduling algorithm implemented, must be
done. Besides the response analysis, a run time monitor must
also ensure that the task does not take more computational time
during run time, than it was considered by the response time
analysis. Our platform implements the rate monotonic
scheduler algorithm, with periodic fixed priority tasks. To
develop a reliable system, the system designer specifies certain
timing requirements, such as the worst-case execution time and
period for each task. Based upon this information, the platform
analyzes whether all tasks are able to meet their deadlines [7].
To allow dynamic app download, the response time analysis is
shifted to the app manager as part of the check on whether the

Execution of
applications and app-

manager

app instalation possible

Receiving resource
demands

target resources suffcient

Receiving executable
properties and

executable

transmission complete

Finalization:
instalation and

update application
registry

application
development

application demands specified
Receive app

instalation request
Send app instalation

request

host comunication request

Send
acknowledgement

Receive reply

Send resource
demands

installation request acknowledged

Send resource
infromations

Receive resource
information

Generate application
executable

Send executable
properties and

executable

Send installation
acknowledge

Receive reply

installation acknowledged

target resources are sufficient. In addition, a concept for
guaranteeing that an application task cannot extend its
execution time is needed. Possibilities include monitoring
approaches and preemptive scheduling algorithms. We will
present our implementation in more detail in section V.

C. Service Protection
We define a service as software when it abstracts from the

platform and is provided to applications as part of the
infrastructure. An example is a driver for the peripheral ADC
(analog to digital converter). The ADC driver can be used by
several applications to access the shared ADC. A protection
service provides mechanisms for segregating the service in a
way that guarantees its functionality. This service functionality
must also be ensured for the applications to detect a faulty
application that could misuse the service. Such a service
misuse should not lead the service to fail or make it
unavailable. The state of the art is that the system architect
analyzes the system’s services w.r.t. interferences. Regarding
the app download, we aim to achieve service protection via
plausibility checks of the service call parameters. How to
develop a service that is free of interferences and is intended
for app download is our ongoing research. In general, services
have to be protected against spatial, temporal, and behavioral
interferences [6]. We use memory protection to ensure spatial
service protection. An application only has access to a reduced
part of the memory map. The service itself is typically located
in a protected memory region. If an app needs to access a
service via the corresponding service function, there has to be
an interaction between the application’s and the service’s
memory regions. We use the concept of the so-called Service
Call (SVC), which is to use an interrupt called from the non-
privileged application code to access the protected memory
region. The interrupt is a software interrupt designed for a user
(application) piece of code to invoke the operating system and
request the execution of a routine in privileged mode that has
access to the protected memory region.

V. IMPLEMENTATION ASPECTS
The prototypical implementation uses the STM32F103RF

microcontroller. The microcontroller has a 72MHz Cortex-M3
CPU with MPU and 768 Kbytes of Flash, 96 Kbytes of SRAM,
and various peripherals. Our prototype software comprises the
FreeRTOS open source real-time operating system and the
STM32 peripheral library. The host system is realized in
eclipse with the Eclipse and OpenOCD for developing and
testing the embedded software. In addition, the toolchain
contains the GNU (cross) Compiler Collection, the GNU
Linker, and the GNU Binutils.

A. Execution time protection
To install a new application, this application must have

sufficient time to be executed. Conclusions before runtime are
calculated by the Response Time Analysis if all tasks assigned
to the system meet their deadlines. The scheduling algorithm
implements the rate monotonic scheduler. Tasks with a lower
period have higher priority. The algorithm runs at a base time
(quantum) of 1 ms (the scheduler interrupt). At each interrupt,
the scheduler checks which is the highest-priority task to run. If

more than one task has the same highest priority, and they are
ready to run, they will share the processing time in a round
robin fashion.

Our implementation extends the FreeRTOS kernel and
enables it to calculate the schedulability described in the
previous section. Two new parameters were added to the task
structure: the period and the worst-case execution time. Now
the task extends the former functionality and the kernel is able
to calculate the response time for all tasks in the system based
on the rate monotonic scheduler algorithm. For each new app
to be installed, a new response time analysis must be
performed to check if the new set, including the new app task
to be installed, is still schedulable (i.e., checking whether all
tasks from the set meet their deadlines).

If a task cannot be executed within its deadline (execution
time exceeds period), the function returns with a false answer,
meaning that the task set is not schedulable. Only if the new
task set is schedulable is the new task included on the
permanent task system list and the FreeRTOS scheduler can
run again, now with the new task included. The execution time
monitor is realized through a down-counter timer interrupt that
is set when its timer reaches the value zero, and a variable that
contains the value that must be loaded into this down-counter.
If the current executing task exceeds its time budget, it is
preempted and another task is scheduled. This avoids temporal
interferences.

VI. CONCLUSION
In this paper, we presented a concept for downloading

applications to an embedded system containing safety-critical
software. The concept reacts to low-resource systems typical
for safety-critical systems in the automotive domain.
Furthermore, the demand and guarantee relation of safety
interfaces (between applications and a platforms) is regarded to
enable downloading safety-critical applications. As future
work, we plan to further develop the idea of runtime arbitration
between application demands and platform guarantees and
fairly automated platform service interference analysis in
combination with a service protection assignment.

ACKNOWLEDGMENT
This research was funding from the DNT – ‘DIGITAL
ENGINEERING FOR COMMERCIAL VEHICLES’ project.

REFERENCES
[1] Wagner, M., et. al., "Towards runtime adaptation in AUTOSAR: Adding

Service-orientation to automotive software architecture," ETFA 2014
[2] Chih-Chieh Han et al. “A Dynamic Operating System for Sensor

Nodes", MobiSys 2005
[3] Adam Dunkels et al. “Run-time Dynamic Linking for Reprogramming

Wireless Sensor Networks”, SenSys 2006
[4] Bor-Yeh Shen and Mei-Ling Chiang. “A Server-Side Pre-linking

Mechanism for Updating Embedded Clients Dynamically, 2007
[5] B Zimmer, “Efficiently Deploying Safety-Critical Applications onto

Open Integrated Architectures”,Fraunhofer IESE 2014
[6] Bastian Zimmer et. Al. “A Systematic Approach for Software

Interference Analysis”, ISSRE 2014
[7] Hansson, Hans, Jan Carlson, and Damir Isovic, “Real-Time Systems”,

Fraunhofer IESE 2010

