
HAL Id: hal-01192987
https://hal.science/hal-01192987

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RACE RTE: A Runtime Environment for Robust
Fault-Tolerant Vehicle Functions

Klaus Becker, Jelena Frtunikj, Meik Felser, Ludger Fiege, Christian Buckl,
Stefan Rothbauer, Licong Zhang, Cornel Klein

To cite this version:
Klaus Becker, Jelena Frtunikj, Meik Felser, Ludger Fiege, Christian Buckl, et al.. RACE RTE: A
Runtime Environment for Robust Fault-Tolerant Vehicle Functions. CARS 2015 - Critical Automotive
applications: Robustness & Safety, Sep 2015, Paris, France. �hal-01192987�

https://hal.science/hal-01192987
https://hal.archives-ouvertes.fr


RACE RTE: A Runtime Environment for Robust
Fault-Tolerant Vehicle Functions

Klaus Becker∗, Jelena Frtunikj∗, Meik Felser†, Ludger Fiege†, Christian Buckl∗,
Stefan Rothbauer†, Licong Zhang‡ and Cornel Klein†
∗fortiss GmbH, Guerickestr. 25, 80805 Munich, Germany

†Siemens AG, Corporate Research and Technologies, Otto-Hahn-Ring 6, 81730 Munich, Germany
‡Institute for Real-Time Computer Systems, TU Munich, Arcisstr. 21, 80333 Munich, Germany
Email: ∗ name.surname@fortiss.org; † name.surname@siemens.com; ‡ name.surname@tum.de

Abstract—The degree of automated operation in vehicles is
increasing continuously. Manufacturers want existing and new
functions to be integrated, which drives engineering costs. On
the other hand, customers grow accustomed to a steady flow
of new functionality on smart phones, partially integrated into
their vehicles. In this paper, the Runtime Environment (RTE)
of the RACE project is presented. Based on a cross-domain
system topology, the RTE executes real-time applications of mixed
criticality up to fail-operational behavior. It offers communication
and safety mechanisms that are configurable in-field to support
Plug&Play scenarios. Since integrated functions often require
access to different vehicle domains, the vehicle runtime and
configuration data model is reified in the RTE to enable test
and verification of all these mechanisms.

I. INTRODUCTION

The number of complex functions of high-end vehicles is
steadily increasing. As a result, the complexity of the IT archi-
tecture implementing these functions has reached a level that
is increasingly difficult to manage. Upcoming functions such
as connected mobility and autonomous driving will further
increase the functional complexity and safety requirements.
Hence, it is necessary to rethink today’s E/E architectures.

Within the RACE project (Robust and Reliant Automotive
Computing Environment for Future eCars) such an E/E archi-
tecture was developed. The RACE platform provides generic
configurable services covering functional safety requirements
up to ASIL-D. The generic safety mechanisms simplify the
development of complex vehicle functions and their integration
on the platform. With scalable computing capacity that can be
increased retroactively, the RACE system is equipped to meet
the increasing demand for processing power to enable a long
and attractive service life for vehicles. The integration of new
application software or hardware may also happen after sale.

In this paper, we describe the core concepts of the RACE
Runtime-Environment (RTE). The RTE provides inherent plat-
form mechanisms for qualities such as safety. It therefore inter-
connects software applications, hardware sensors and vehicle
actuators. App-developers for instance do not have to take care
on handling probabilistic faults, since these are dealt within the
platform, which takes appropriate counter measures. Instead,
the developers have only to select the right level of safety
both with respect to the required ASIL and availability (e.g.
fail-operational). App-developers are supported in creating
modular independent application components by the concept of
data-centrism and a topic-based publish/subscribe description

of interfaces. In this paper, we show the RTE mechanisms
applied to a steer-by-wire example application, which we
integrated into a RACE demonstrator car that we constructed
[1]. In the long term, however, also more complex functions
like highly automated driving may be deployed on top of the
platform.

II. FOUNDATIONS OF THE RACE PLATFORM

A. RACE Platform Architecture

The RACE platform is a new system architecture for the in-
formation and communication infrastructure of future vehicles.
It introduces a logically centralized platform computer that
executes functions like control loops on vehicle level, fusion
of different sensor values, situation detection and strategy
planning of driver assistance functions. The Central Platform
Computer (CPC) is connected to smart sensors and smart
actuators (together called smart aggregates) with an Ethernet-
based network. Smart aggregates run closed-loop controls of
local physical processes (e.g. inverter of e-engines) and provide
pre-processed raw sensor data. The CPC works on vehicle
level and is responsible for vehicle-wide decisions and control
algorithms that need or affect more than one aggregate.

The CPC consists of a scalable set of multiple so called
Duplex-Control-Computers (DCCs) with each of them per-
forming the calculations on two parallel computation paths
(called lanes) to ensure high integrity. The software core for
each of the DCC lanes is the middleware called RACE RTE. It
handles the redundant data streams and checks their integrity.

DCC 1

DCC 4

DCC 2

DCC 3

Blue Power
Supply

Red Power
Supply

Ethernet 
Ring

Central Platform 
Computer (CPC)

Fig. 1. The RACE platform

Fig. 1 shows an example CPC with four DCCs, connected
with an Ethernet ring and having two different power supplies.



B. Scheduling, Networking and Partitioning

The RACE system works in fixed time-triggered real-time
execution cycles. In each cycle a DCC receives data from other
components via the RACE Ethernet, executes the scheduled
applications and sends data to other DCCs or aggregates.
The RACE network employs a scalable ring-based full-duplex
switched Ethernet architecture, where an inner ring connects
the DCCs of the CPC (cf. Fig 1) and outer rings or branches
connect aggregates to the CPC. Frame preemption is used
to reduce network transport delay for time-critical frames by
allowing them to preempt the transmission of non-time-critical
frames. This mechanism is currently being standardized in
IEEE802.1Qbu (Time-Sensitive Networking, TSN) 1. Further
details of the network communication are provided in [2].

Spatial and temporal separation of mixed critical applica-
tions is ensured by running the RTE on top of the PikeOS2 op-
erating system and using partitioning mechanisms of PikeOS.

C. Integrity and Reliability

Depending on the use case and the system safety require-
ments, the system needs to provide different levels of integrity
and reliability. In order to ensure data integrity, the RTE is able
to execute applications on the two lanes of a DCC and check
their results for bitwise equivalence. This bitwise comparison
of lane results checks a DCC as fault-containment region
to avoid any failure propagation in the platform. Reliability
is guaranteed with fail-operational behavior in master-slave
configurations, where a second DCC takes over in case of
failures (hot or cold standby). Further DCCs can be employed
to scale capacity or increase the mission time.

Aggregate redundancy
(virtual layer)

Sensor redundancy
(logical layer)

Communication link re-
dundancy (physical layer)

single single single-link
dual dual dual-link

triple

TABLE I. VARIETY OF AGGREGATE REDUNDANCY

Redundancy of the CPC is complemented by a variety of
aggregate redundancies on different layers (Table I). We dis-
tinguish the physical, logical and virtual layer. The aggregate
redundancy (virtual layer) defines how many instances of a
physical aggregate exist. The sensor redundancy (logical layer)
defines how many sensors are present for one physical in-
formation per aggregate. The communication link redundancy
(physical layer) defines with how many Ethernet connections
an aggregate is connected to the rest of the system.

III. RTE ARCHITECTURE

The RACE RTE is a modular layered architecture and con-
tains inherent features for error detection and error handling.
The RTE runs on all DCCs and a tailored version is used on
the aggregates. Some basic principles about the RTE have been
already presented in [3] and [4]. To some extent, the RACE
RTE is based on the Chromosome Middleware (XME) [5] and
reuses some of its components.

1http://www.ieee802.org/1/pages/tsn.html
2http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept

In this paper, we go more into detail about certain RTE
concepts such as data flow between RTE components, runtime
error management and configuration of the RTE. Dedicated
RTE layers are present for certain purposes, such as Net-
work Management layer (for Frame packing/unpacking, CRC
handling, etc.), Data Monitoring and Fusion layer, Indication
Management as well as Application and Platform State Man-
agement. One cross cutting feature of the RTE is the Test
System, which allows monitoring and manipulation of all data,
status information and error indications during runtime without
disturbing the system behavior, allowing diagnosis as well as
fault-injection. The basic architecture and data-flow between
the RTE components is shown in Fig. 2.

Appli .. .. cationApplication Application

ActuatorSensor

RACE Ethernet

Test Ethernet

RACE

Datastore

Data Monitor 

and Fusion 

Error Handling 

Data 

Distribution 

Data Validation 

Network 

Management

Network 

Management

Test System 

Test 

Probe 

RACE RTE

DCC Lane A

DCC Lane B

Fig. 2. Data-Flow through the RTE

A. Example Vehicle Function

As an example function, in this paper we consider a steer-
by-wire application. A steering application runs on a DCC of
the CPC, subscribes a steering-wheel-angle topic and publishes
a control topic for the steering rack aggregate. Due to posed
safety requirements, both steering aggregates are setup redun-
dantly. The steering wheel data is sensed by a dual-triple/dual-
link aggregate, meaning that two physical aggregates exist,
each having three sensors. Hence, the angle of the steering
wheel is sensed overall six times. Both aggregates publish
their data. In the CPC, a steering application is executed (also
redundantly as Master and Slave instance on two DCCs),
which subscribes the sensed steering wheel angle. The RTE
checks the sensor values for validity, masks erroneous values
and finally fuses the values to one single value, which is given
to the steering app. Finally, the steering application computes
a control value for the also redundantly existing steering rack
aggregates. This application architecture is shown in Fig. 3.

Steering AppSteering App

Steering Rack App 
(blue)

Steering Rack App 
(red)

Steering Wheel App 
(red)

Steering Wheel App 
(blue)

dual-triple 
Steering Wheel 

Aggregate

Master/Slave
Steering Application

dual-triple 
Steering Rack 

Aggregate

Fig. 3. Example Steering Application Architecture



B. Data Flow and Fault-Tolerance

The RACE RTE provides configurable fault-tolerance
mechanisms that enable safe integration of safety-critical au-
tomotive functions, such as the steering function. Moreover,
by decoupling the functionality from the safety mechanisms,
we achieve a clear separation between the control steering
functionality and the non-functional features. The mechanisms
are grouped in three steps: error detection, error recovery, and
fault treatment. Error detection raises Error Indications on
the various data processing levels: Ethernet frames (physical
aggregates, e.g. CRCs, timeouts), sensor values (logical aggre-
gates, e.g. range checks), and fusioned data (virtual aggregates,
e.g. deviations, inconsistencies). Based on configurable thresh-
olds for each aggregate’s indications, last-valid data or default
values can be used for error recovery. As fault treatment, the
RTE isolates erroneous fault-containment regions and supports
fail-over to redundant hot-standby slaves or to more basic
variants of applications (normal-law / direct-law fail-over).

We explain the input data-flow and the fault tolerance
mechanisms within the RACE RTE for the steering application
example (Fig. 4). The Network Management layer checks the
CRC of the messages delivered by the steering aggregates
and whether it was received in the correct time slot. Then
one of the two dual-link messages is selected and unpacked.
After the triple sensor data of the redundant steering wheel
aggregates is unpacked, the monitors on logical level check for
plausibility and consistency of each data instance. Here, checks
w.r.t. validation of data against a predefined range of expected
values are performed, and in case of an error the corresponding
error indication is set (Fig. 4, red and green circles on logical
level). The triple data from each aggregate is fused on the
Data Monitoring and Fusion layer. On virtual layer, aggregate
and data redundancies are hidden from the applications by
a voting mechanism that selects and delivers the error-free
data. In the case of the two triple aggregates, the data from
the error-free aggregate is selected by the voting mechanism
(Fig. 4, left aggregate). Only valid data is forwarded to the
applications. Moreover, a quality information in form of a
green/yellow/red indication is attached to the data, which is
given to the applications. The steering-wheel sensor data gets a
yellow quality indicator, since one of the redundant aggregates
was detected as faulty. In case of a red indication, the last good
known or a default value is forwarded.

Error 
Handling

Data Monitoring 
and Fusion 

virtual

logical

physical

Network 
Management

Steering App

ISOLATEOK

OK

OK OK

State Management

Consolidated 
Error Indications

In
d

icatio
n

 M
an

agem
en

t

Error 
Indications

Error Indications
(from/to other nodes)

Fig. 4. Data-Flow and Fault-Tolerance within the RTE

The Indication Manager component collects all error indi-
cations. Its main function is the aggregation and inference of
these indications to produce Consolidated Error Indications.

The error indication set is also cyclically exchanged and
synchronized with other nodes in the RACE network in order
to achieve a consistent view on the system as a whole. The
consolidated error indications are then made available to the
State Management components (Application Management and
Platform State Management). These RTE components provide
a unified state management. The benefit of this kind of state
management is the always deterministic state of all system
components (aggregates, application software components and
execution nodes) and with that the known state of the complete
system, which is essential w.r.t. safety. A system component
state is changed to isolated when an error is detected in order
to prevent further error propagation. The state management
components also trigger recovery actions (restart, activate a
redundant copy, or shutdown) in case of failures in the system.

When two or more DCCs redundantly execute a control
program such as the steering application then, for sake of
unambiguous control, at each time point only one of these ap-
plication instances is allowed to send signals to the connected
actuators. This unambiguous control is handled by the state
management components, which take care that only the data
of the steering application instance that is marked as a master
is forwarded to the steering rack. If the master becomes faulty,
the RTE handles the fail-over switching and therewith the slave
becomes the new master and the old master becomes isolated.

C. Non-Intrusive Fault-Injection Tests

The RACE architecture enables non-intrusive fault injec-
tion [6]. This is possible due to several measures such as
exclusively reserved time slots, memory areas and network
bandwidth for test actions. In addition, each DCC lane contains
a system datastore that captures system-relevant data flows
within and among RTE components. The RTE contains a
test probe component, which enables monitoring of data and
injection of faults at exact location and cycles. The test probe
operates in a cyclical manner like all RTE components. In this
way, the test probe is able to deterministically monitor system
data (including error indications and state data) accumulated in
the last cycle and to manipulate system data for the next cycle.
For example, the test probe is able to inject a fault in one of
the redundant aggregates by overwriting a sensor value with
an invalid value. In accordance to the injected fault, a test
is executed that checks the effectiveness of the RTE safety
mechanisms that tolerate the corresponding fault. Such fault
injection tests support both the development and certification
of the systems. A complementary part to the test probes is
the VITE3 system, which efficiently runs the fault injection
tests that spread over several nodes of the RACE system by
instructing the test probes on each node.

D. Application Development and Configuration of the RTE

RACE application software components as well as phys-
ical aggregates are delivered with self-describing information
contained in manifests. A manifest contains all data that is
required to integrate a software component or an aggregate
into a vehicle design. We use a RACE specific extension of
the CHROMOSOME Modeling Tool (XMT) [5] to describe
these manifests. For instance, the user has to define component

3Verification and Integration Testing Environment, www.aviotech.de



interfaces in form of publications and subscriptions of topics
and attached attributes, as well as the Worst Case Execution
Time (WCET) of the cyclic executable function and safety
relevant information such as the component’s requirement
to behave fail-operational. The set of possible topics and
attributes in one system is predefined in a so called dictionary.
Topics may be for instance physical properties (temperature,
pressure, etc.) or system data (recognized objects in front of the
vehicle, a trajectory, etc.). Attributes describe the instances of
a topic, such as the location and meaning of a temperature and
the unit of measurement. The dictionary concept allows data
compatibility between different applications, without requiring
additional synchronization of interfaces.

The XMT tool offers to analyze virtual compositions of
manifests in integrated product models. During the analysis,
e.g. the logical data-flow between software components and
aggregates is checked for completeness and unambiguity [7].
The analysis can be done in the tool for early integration
prototyping, but is also done again by the RTE itself during
RTE configuration. We also provide analysis of valid initial
deployments of software-components to DCCs and possibly
required graceful degradation in case of DCC failure scenar-
ios [8]. Finally, manifest files are generated by the XMT design
tool together with wrappers of the software components. In the
wrappers, all read/write operations for the modeled interfaces
are already present, as well as an initialization function and
a function which is executed by the RTE in each cycle. Into
this template, the developer can easily integrate its application
behavior, for instance code generated from Matlab/Simulink.

The RTE configuration may happen at system start-up
based on the set of given manifests, or later during a Plug&Play
scenario. The logical data-flow is checked again as well as the
fulfillment of all safety relevant properties. In case of conflicts
or other problems, the configuration process is aborted and
the integration is rejected. After a successful analysis, finally
the configuration data structures for the RTE components are
created and the RTE is put into operation.

IV. RELATED WORK

RACE extends the idea of AUTOSAR [9] with a blueprint
system architecture and generic safety mechanisms to en-
able fail-operational features. In RACE, configurable services
support changes of deployed functions and thus Plug&Play
extensions of vehicles with new software-based functions
and new physical aggregates. Reifying the configuration of
the platform, instead of tailoring the RTE for the deployed
applications, introduces a certain runtime overhead, but is the
key for changing the system in field. With the help of the
runtime datastore, RACE supports non-intrusive fault injection
tests that are impossible with AUTOSAR, since AUTOSAR
lacks a build-in module comparable to the test probe.

RACE uses the data-centric design known from standards
such as DDS [10] to achieve decoupling of functions and hence
Plug&Play capability. Compared to DDS, RACE adds safety
mechanisms and guarantees w.r.t. extra-functional properties.

Other related work, like Integrated Modular Avion-
ics (IMA), ARINC 653, SIMATIC, Avionics Full DupleX
Switched Ethernet (AFDX), FlexRay, TTEthernet and Audio
Video Bridging (AVB) have been considered in [3].

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown the core concepts of the
RACE Runtime Environment of a new robust E/E architecture
for electric vehicles. The RACE RTE offers built-in fault-
tolerance mechanisms like error detection and isolation of
faulty components and non-intrusive fault-injection tests. A
data-centric design provides independent development of mod-
ular application software components and physical aggregates.
Manifests provide self-descriptions of software components
and physical aggregates, which are used to analyze their
composability and determine a valid configuration of the RTE.
The application of redundancy mechanisms and runtime fail-
over switching supports fail-operational features. We illustrated
the RTE mechanisms on a steer-by-wire application.

As future work, we work in various directions for instance
on improving the configuration process for Plug&Play, provid-
ing open models for representing environment information and
methods and tools for agile development of vehicle functions.
Furthermore, we want to introduce additional fault-detection
mechanisms, such as plausibility functions, reducing resource
footprint and supporting heterogeneous replication (diversity)
of hardware and software in order to cover systematic faults.
Modular and flexible data fusion mechanisms are tackled in
project SADA (http://www.projekt-sada.de/en-sada).

ACKNOWLEDGMENT

This work is partially funded by the German Federal Min-
istry for Economic Affairs and Energy (BMWi) under grant
no. 01ME12009, project RACE (http://www.projekt-race.de).

REFERENCES

[1] M. Buechel et al., “An automated electric vehicle prototype showing
new trends in automotive architectures,” in IEEE 18th International
Conference on Intelligent Transportation Systems (ITSC), 2015.

[2] M. Armbruster, L. Fiege, G. Freitag, T. Schmid, G. Spiegelberg, and
A. Zirkler, “Ethernet-Based and Function-Independent Vehicle Control-
Platform: Motivation, Idea and Technical Concept Fulfilling Quanti-
tative Safety-Requirements from ISO 26262,” Adv. Microsystems for
Automotive Applications (AMAA), pp. 91–107, 2012.

[3] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Knoll, A. Zirkler,
L. Fiege, M. Armbruster, and G. Spiegelberg, “RACE: A Centralized
Platform Computer Based Architecture for Automotive Applications,”
in IEEE Vehicular Electronics Conference / Int. Electric Vehicle Con-
ference (VEC-IEVC), 2013.

[4] J. Frtunikj, V. Rupanov, A. Camek, C. Buckl, and A. Knoll, “A safety
aware run-time environment for adaptive automotive control systems,”
in Embedded Real-Time Software and Systems (ERTS2), 2014.

[5] C. Buckl, M. Geisinger, D. Gulati, F. Ruiz-Bertol, and A. Knoll, “Chro-
mosome - a run-time environment for plug & play-capable embedded
real-time systems,” in Workshop on Adaptive and Reconfigurable Em-
bedded Systems (APRES), 2014.

[6] J. Froehlich and R. Schmid, “Architecture for a Hard-Real-Time System
Enabling Non-intrusive Tests,” in 2014 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2014, p. 24.

[7] K. Schorp and S. Sommer, “Component-Based Modeling and Integra-
tion of Automotive Application Architectures,” in IEEE International
Electric Vehicle Conference (IEVC), 2014.

[8] K. Becker and S. Voss, “Analyzing graceful degradation for mixed
critical fault-tolerant real-time systems,” in IEEE 18th International
Symposium on Real-Time Distributed Computing (ISORC), 2015.

[9] “AUTomotive Open System ARchitecture (AUTOSAR) Release 4.2,”
AUTOSAR Group, October 2014.

[10] “Data-distribution-service,” http://www.omg.org/spec/DDS, Object
Management Group (OMG).


