
HAL Id: hal-01192985
https://hal.science/hal-01192985

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Program Analysis on Evolving Software
Daniel Kästner, Jan Pohland

To cite this version:
Daniel Kästner, Jan Pohland. Program Analysis on Evolving Software. CARS 2015 - Critical Auto-
motive applications: Robustness & Safety, Sep 2015, Paris, France. �hal-01192985�

https://hal.science/hal-01192985
https://hal.archives-ouvertes.fr

Program Analysis on Evolving Software

Daniel Kästner, Jan Pohland
AbsInt GmbH,

Science Park 1, 66123 Saarbrücken, Germany

Abstract— Static analysis is well-suited for continuous verifi-
cation during the software development stage since it only works
on the source code and does not require a running system for
testing. However, applying the program analysis during software
development means that the analysis has to cope with evolving
software and evolving analyzer configurations, especially in a
model-based development process. In this article we present a
unique history-aware concept for program analysis that has been
developed for the static analyzer Astrée. It not only provides
the ability to backtrack and access previous versions of the
analysis configuration, it can also automatically determine the
differences between two analysis configurations and relate them
to the correct source code versions. Users can explicitly create a
revision, i.e. a snapshot of the analysis project; changes of the
source code, analysis options, analysis directives and results in
different revisions are automatically detected and highlighted.
The analyzer provides automatic correctness checks for all
specified analysis directives, e.g., to tune the precision of the
analyzer or provide information about the environment. This
makes software verification applicable during the implementation
stage, significantly reduces the effort to adapt the analyzer
configuration to new source code versions, and makes analysis
results on previous software versions easily reproducible.

I. INTRODUCTION

Traditionally software verification is done in a separate
stage at the end of the development process. As a rule of
thumb the later a bug is discovered, the greater are the costs
to fix them. Therefore software verification should already
be started during the implementation stage. Especially static
analysis is well-suited for continuous application since it only
works on the source code and does not require a running
system for testing. As an example, run-time error analysis can
be done at the level of software components while developing
the software. However, applying the program analysis during
software development means that the analysis has to cope with
evolving software, especially in a model-based development
process.

The static analyzer Astrée detects all potential run-time
errors in C programs. If no alarms are reported the absence
of run-time errors is proven. However, getting down to zero
alarms typically requires some interaction with the analyzer:
environment information and side conditions have to be spec-
ified and the precision of the analyzer has to be tuned to
the software under analysis. In Astrée such interactions are
expressed via formal directives which are inserted at specific
program points. To support model-based development the
directives can also be specified externally, without modifying
the source code: they are localized by defining a path to the
program point where the directive is to be inserted. So not
only the source code, but also the program analysis evolves:
starting from an initial analysis, the analysis configuration and
options are fine-tuned, and missing information and precision
adaptations are added step by step.

Therefore similar to software development the ability to

backtrack and access previous versions of the analysis con-
figuration are important development features. Being able to
investigate the differences between two analysis configurations
and relate them to the correct source code versions is very
desirable. Furthermore users should be warned about analysis
directives which have become invalid because of source code
changes.

All these issues have been addressed by developing a
unique history-aware concept for program analysis in Astrée.
Users can explicitly create a revision, i.e. a snapshot of the
analysis project; changes of the source code, analysis options,
analysis directives and results in different revisions are auto-
matically detected and highlighted. The analyzer provides au-
tomatic correctness checks for all externally specified analysis
directives. This makes software verification applicable during
the implementation stage, significantly reduces the effort to
adapt the analyzer configuration to new source code versions,
and makes analysis results on previous software versions easily
reproducible.

II. THE STATIC ANALYZER ASTRÉE

The static analyzer Astrée aims at finding all potential run-
time in C programs [7]. Basically run-time errors are errors
that occur during run-time of the software. Astrée focuses on
run-time errors which correspond to undefined or unspecified
behavior with respect to the semantics of the programming
language C99 [6]. Examples are arithmetic exceptions (e.g.
divide by zero), overflows, invalid pointer accesses and manip-
ulations, or array bound errors [10]. The C standard provides
a list of unspecified and undefined behaviors in Section J of
[6].

Astrée is sound which means that the analysis never
omits to signal an error that can appear in some execution
environment. If no potential error is signaled, definitely no
run-time error can occur: the absence of run-time errors has
been proven. This is possible since Astrée is based on the
theory of abstract interpretation [3], a mathematically rigorous
formalism providing a semantics-based methodology for static
program analysis. It provides rules for defining an abstract
semantics that approximates the concrete semantics of the
program and is efficiently computable. The correctness of the
abstraction, i.e., the soundness of the analyzer can be formally
proven; all necessary correctness proofs for Astrée have been
done and published, e.g., [9], [8]. Abstract Interpretation, like
model checking and theorem proving, is recognized as a formal
verification method and recommended by the DO-178C and
other safety standards (cf. Formal Methods Supplement [12]
to DO-178C [13]).

While the primary goal of Astrée is to prove the absence of
run-time errors, the analysis can also be leveraged to compute
further program properties relevant for functional safety. Astrée
detects read accesses to uninitialized variables, detects shared

variables accessed by asynchronous threads, computes detailed
control and data flow reports, and enables users to prove user-
defined static assertions. The static assertions can be applied to
arbitrary C expressions so that functional program properties
can be addressed. When Astrée does not report an assertion
failure alarm, the correctness of the asserted expression has
been formally proven. Astrée is sound for floating-point com-
putations and handles them precisely and safely [2]. It takes all
possible rounding errors into account which makes it possible
to prove the stability of numeric algorithms (e.g., digital filters)
with floating-point arithmetic [5].

Astrée finds all potential run-time errors, but it may err
on the other side and produce false alarms. The design of the
analyzer aims at reaching the zero false alarm objective [2],
which was accomplished for the first time on large industrial
applications at the end of November 2003[4]. Only with
zero alarms the absence of run-time errors is automatically
proven. For keeping the initial number of false alarms low,
a high analysis precision is mandatory, which is achieved
by computing a variety of predefined abstract domains. Any
remaining alarm has to be manually checked by the developers
– and this manual effort should be as low as possible. Astrée
provides intuitive and powerful mechanisms to to investigate
the reasons for alarms. As an example, alarm contexts can be
interactively explored: all parents in the call stack, relevant
loop iterations or conditional statements can be visited per
mouse click, and the computed value ranges of variables can
be displayed for all abstract domains in all potential context.

If there is a true error it has to be fixed. A false alarm
can often be eliminated by a suitable parameterization of
Astrée. If the error cannot occur due to certain preconditions
which are not known to Astrée, they can be made available
to Astrée via dedicated directives. These directives make the
side conditions explicit which have to be satisfied for a correct
program execution. If the false alarm is caused by insufficient
analysis precision, steering directives are available that allow to
locally tune the analysis precision to eliminate the false alarm
[8]. That means that in one analysis run important program
parts can be analyzed very precisely while less relevant parts
can be analyzed very quickly – without compromising system
safety.

Figure 1: AAL annotations displayed in code view

All directives can either be written directly in the source
code, or they can be specified in a formal language AAL
[1] and stored in a dedicated file without any source code
changes. An AAL annotation consists of an Astrée directive
and a path specifying the program point to insert the directive
at. The path is specified in a robust way by exploiting the
program’s syntactical structure without relying on line number
information. An example of the syntax of an AAL annotation
is shown here:

main { + 1 if {then: + 1 statement }}
insert before: __ASTREE_assert((x >= 0));

All AAL annotations are displayed in Astrée’s source code
editors as overlays at the specified code locations, as shown
in the Astrée screen shot of Fig 1.

The AAL language is a prerequisite for supporting model-
based code generators. It makes it possible to separate the
annotations from the source code, so that when the code is
regenerated, all previously generated annotations from struc-
turally unchanged code parts are still valid, even if the line
numbers change.

III. EXPLOITING THE ANALYSIS HISTORY

In today’s development infrastructures it is standard prac-
tice to manage source code with a revision control system.
While it is theoretically possible to store report files of an
analyzer run with each revision this is seldom done, and in
order to reproduce analysis results for an older revision, the
analysis typically has to be set up from scratch.

We have extended Astrée by an integrated revision system
which works orthogonally to the standard revision control
systems already in place. Its main purpose is to automatically
compute and display differences between the setup and results
of multiple analyzer runs on the same or different revisions of
the same project. This approach makes it possible to reproduce
analysis results on old revisions by mouse-click, to easily
compare the analysis results of different source code versions,
to compare the analyzer configuration of different revisions,
etc.

This revision system is complemented by a mechanism
to automatically check the correctness of Astrée directives
specified in the AAL language. With AAL the locations
can be specified in a robust way without relying on line
numbers but if the code structure changes too much, they
still may become invalid. The key idea to address this issue
is to manage a reference file which keeps track of relevant
source code properties for each AAL annotation. When a pre-
configured analysis is re-run on an updated version of the
source code, users will be notified about potentially invalid
analysis directives. In the following sections both mechanism
will be explained in more detail.

A. Analysis Revisions

Astrée has a client-server architecture. The client is used
to set up the analysis and investigate the analysis results. The
analysis itself is performed by the Astrée server which can
run either on the same computer, or on a dedicated server
machine. The Astrée server manages analysis projects in its
data directory. Each analysis project has a unique analysis ID

and all required information is stored under a folder named by
this analysis ID. This information includes e.g., the original
and preprocessed source files, the option setting, the log
file of the analyzer, and a file containing all specified AAL
annotations.

The creation of a new revision can be seen as a snapshot
of the current state: the current state is saved, and copies
are created for new revisions. The same base revision can
be cloned to several child revisions, e.g., to apply different
analyzer configurations and later investigate the differences in
the corresponding analysis results. To create a new analysis
revision for a new source code revision first a new analysis
revision can be cloned from the current analysis state, and in
the new analysis revision the source code files are updated from
the normal source code repository. After running the analysis
on the new files in the new revision the analysis results can
be compared.

The Differences viewer enables users to efficiently
compare several analysis revisions. It shows the total number
of alarms and errors, the number of alarms per category, the
option setting of the different analysis revisions, differences
in the Astrée annotations specified by the user, the number of
total statements and unreachable statements per file and the
percentage of unreachable code per file. The Differences
Viewer can also be applied to the XML report file of an
analysis, so that also reports of unrevisioned analysis runs can
be compared.

B. Automatically Validating User Annotations

AAL [1] is a formal language that makes it possible to
place an Astrée directive in the code without actually modi-
fying the source code. This is a prerequisite for model-based
development where the code is automatically regenerated after
each model change. It is also important when the code has
been frozen and can only be modified after a formal change
process, or when the person doing the analysis is not entitled to
modify the code. For robustness reasons, AAL is not based on
line number information but on the structure of the program’s
abstract syntax tree. AAL annotations are stored in a dedicated
file and the specified directives are inserted into the internal
syntax tree of a function body generated in the parsing stage
of Astrée.

Still, in the life cycle of a software project the source
code will change and such changes may cause previously
written Astrée annotations to become invalid. The specified
position may not exist any more, the directive might end
up in an unwanted location, or the directive may become
semantically invalid. Our goal is to warn the user about such
invalid annotations.

AAL annotations consist of three parts [11]: a path de-
scription, an ordering, and the Astrée directive to be located.
For inserting directives into a function body, the syntactic
elements that occur before the insertion place – the significant
statements – must be specified which can simply be done by
counting the corresponding statement types. For robustness and
usability, the most specific statement types should be preferred,
e.g. labeled statements, loops and if statements. This is the
purpose of the path description which is composed of a set of
distance expressions. In the following AAL annotation:

main { +3 loops +1 if {then: +2 statements}}
insert after: __ASTREE_assert((x > 0));

+1 if is a distance expression,
main { +3 loops +1 if {then: +2 statements}}
is the path description, after the ordering. It inserts an
assertion after the second statement of the then branch of the
first if statements after the third loop in the function.

When inserting a directive into the syntax tree the signif-
icant statements of the path in the syntax tree are stored in
a dedicated history file, a reference file. In our example, the
significant statements are three loops, one if statement and 2
unspecific statements. This information can be used to detect
changes in the source code, that might lead to the directive
being placed at a wrong position when restarting the analysis
on the new source code version.

1) Invalid Path Description: In the easiest case of an
invalid annotation the target point of the annotation’s path
description does not exist in the Astrée internal syntax tree.
Then, the path description of the annotation does not match
to the internal syntax tree and it is invalid. In this case, the
annotation inserter reports an error during the attempt to insert
the annotation at the specified program point.

2) Detecting Structurally Invalid Annotations: If the an-
notation inserter is able to insert an annotation inside a
modified source code version, it cannot be guaranteed that the
annotation’s path description addresses the correct target point
it was written for in the old version. If the annotation is inserted
to a wrong target point, the annotation is structurally invalid.

It is possible to detect this kind of errors with the help of
the reference file created in the last analyzer run before the
source code modification. The history information from the
reference file and a new temporary reference file are compared.
Users can control for which analyzer runs the reference file
should be created or updated.

We have developed two algorithms to exploit the history
information to detect structurally invalid annotations, which
will shortly be summarized in the following. They can be used
to classify the annotations as possibly correct or possibly in-
correct. In general, the correctness of annotations in a modified
source code version cannot be guaranteed, since this would be
equivalent to deciding whether two different programs have
the same semantics, which is an undecidable problem [14].

• Annotation Path Comparison: In this approach the
significant statements of the annotation path of each
annotation are compared in the old and the new
reference file. To be independent from formatting and
line or column numbers, the comparison is done on
the elements of the internal syntax tree of Astrée. Dif-
ferences in statements not contained in the annotation
path are irrelevant for the structural validity of an
annotation.

• Statement Counting: Here the numbers of the avail-
able statements of the type counted by the distance-
expressions is counted. This way even differences
caused by duplicated identical statements are detected.

IV. EXPERIMENTAL RESULTS

In this section we summarize our experiments to assess the
usability of the history evaluation approaches. The experiments
were performed on an Intel Core2Duo with 8GB RAM under
openSUSE Linux 64-bit.

To evaluate the work flow using analysis revisions we
investigated three real-life industry projects:

• Project A Avionics application consisting of 530
preprocessed source files using 24 MB disk space.

• Project B Automotive application consisting of 168
preprocessed source files using 37 MB disk space.

• Project C Automotive application consisting of more
than 1200 preprocessed source files with a size of 622
MB and 16.8 million lines of code with up to 99,000
lines per file (generated from more than 3,000 original
source and header files).

Tab. 2 shows the revision size, the time to create a new
revision, and the time to delete a revision. To account for
variations of the file system I/O load the reported times are
are the maximum times observed in five analyzer runs.

Project Revision Size Creation Deletion
A 400 MB 7.1s 54ms
B 210 MB 3.6s 52ms
C 2.3 GB 67.7s 49ms

Figure 2: Evaluation of Analysis Revisioning Mechanism.

As we can see, creating new revisions takes a couple of
seconds while project deletion is in the milliseconds range,
even for large industry applications.

The execution time of the Difference Viewer is dominated
by the time needed to compare the XML report files of the
analysis revisions to be compared. The maximal comparison
time observed in our experiments was about two minutes.

Regarding the performance of the algorithms for check-
ing the validity of AAL annotations in all experiments we
conducted the time needed to write a reference file, run the
Annotation Path Comparison algorithm, and run the Statement
Counting algorithm are below one second.

V. CONCLUSION

Applying program analysis during software development
means that the analysis has to cope with evolving software
and evolving analyzer configurations, especially in a model-
based development process. To facilitate this we have devel-
oped a unique history-aware concept for the static analyzer
Astrée which consists of two parts: The first component
is an integrated revision system which works orthogonally
to the standard revision control systems already in place.
It not only provides the ability to backtrack and access
previous versions of the analysis configuration, it can also
automatically determine the differences between two analysis
configurations and relate them to the correct source code
versions. Users can explicitly create a revision, i.e. a snapshot

of the analysis project; changes of the source code, analysis
options, analysis directives and results in different revisions are
automatically detected and highlighted. This revision system
is complemented by a mechanism to automatically check
the correctness of Astrée directives specified in the AAL
language. A reference file is maintained which keeps track
of relevant source code properties for each AAL annotation.
When a pre-configured analysis is re-run on an updated version
of the source code, users will be notified about potentially
invalid analysis directives. Experimental results show that both
approaches are applicable on large-scale industrial projects.
This makes software verification applicable during the im-
plementation stage, significantly reduces the effort to adapt
the analyzer configuration to new source code versions, and
makes analysis results on previous software versions easily
reproducible.

ACKNOWLEDGEMENTS

The work presented in this paper has been supported by
the German BMBF project FORTE.

REFERENCES

[1] AbsInt. The Static Analyzer Astrée– User Documentation for AAL
Annotations, 2013.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A Static Analyzer for Large Safety-Critical
Software. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI’03), pages
196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In 4th POPL, pages 238–252, Los Angeles, CA, 1977. ACM
Press.

[4] D. Delmas and J. Souyris. ASTRÉE: from Research to Industry. In
Proc. 14th International Static Analysis Symposium (SAS2007), number
4634 in LNCS, pages 437–451, 2007.

[5] M. Dierkes and D. Kästner. Transferring Stability Proof Obligations
from Model Level to Code Level. Embedded Real Time Software and
Systems Congress ERTS 2, 2012.

[6] ISO/IEC International Standard. ISO/IEC 9899:1999 (E) Programming
Languages – C. Second edition 1999-12-01, 1999.

[7] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, and X. Rival. Astrée: Proving the Absence of
Runtime Errors. Embedded Real Time Software and Systems Congress
ERTS 2, 2010.

[8] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation
Based Static Analyzers. In 14th European Symposium on Programming
ESOP’05, number 3444 in LNCS, pages 5–20, 2005.

[9] A. Miné. Relational Abstract Domains for the Detection of Floating-
Point Run-Time Errors. In Proc. of the European Symposium on
Programming (ESOP’04), volume 2986 of LNCS, pages 3–17. Springer,
Barcelona, Spain 2004.

[10] Motor Industry Software Reliability Association (MISRA). MISRA-
C:2004 - Guidelines for the use of the C language in critical systems,
2014.

[11] J. Pohland. Program Analysis on Evolving Software. Master’s thesis,
Saarland University, August 2014.

[12] Radio Technical Commission for Aeronautics. Formal Methods Sup-
plement to DO-178C and DO-278A, 2011.

[13] Radio Technical Commission for Aeronautics. RTCA DO-178C. Soft-
ware Considerations in Airborne Systems and Equipment Certification,
2011.

[14] H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Trans. Amer. Math. Soc., 74:358–366, 1953.

	Title
	Abstract
	Introduction
	The Static Analyzer Astrée
	Exploiting the Analysis History
	Analysis Revisions
	Automatically Validating User Annotations

	Experimental Results
	Conclusion
	References
	References

