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Abstract
This paper proposes an abstract mathematical frame for describing some features of biological time. The

key point is that usual physical (linear) representation of time is insufficient, in our view, for understanding
key phenomena of life, such as rhythms, both physical (circadian, seasonal …) and properly biological (heart
beating, respiration, metabolic …). In particular, the role of biological rhythms do not seem to have any
counterpart in mathematical formalization of physical clocks, which are based on frequencies along the usual
(possibly thermodynamical, thus oriented) time. We then suggest a functional representation of biological
time by a 2-dimensional manifold as a mathematical frame for accommodating autonomous biological
rhythms. The “visual” representation of rhythms so obtained, in particular heart beatings, will provide, by a few
examples, hints towards possible applications of our approach to the understanding of interspecific differences
or intraspecific pathologies. The 3-dimensional embedding space, needed for purely mathematical reasons,
allows to introduce a suitable extra-dimension for “representation time”, with a cognitive significance.

Keywords: biological rhythms, allometry, circadian rhythms, heartbeats, rate variability.

Contents
1 Introduction 2

1.1 Methodological remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 An abstract schema for biological temporality. 3
2.1 Premise: Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 External and internal rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Mathematical description 5
3.1 Qualitative drawings of our schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Quantitative scheme of biological time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Analysis of the model 9
4.1 Physical periodicity of compacified time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Biological irreversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Allometry and physical rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Rate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4.1 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.2 Rate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

*Published as F. Bailly, G. Longo & M. Montévil. 2011. “A 2-dimensional geometry for biological time.” Progress in Biophysics and
Molecular Biology 106 (3): 474–484. issn: 0079-6107. doi:10.1016/j.pbiomolbio.2011.02.001.

†Physics, CNRS, Meudon
‡Informatique, CNRS – ENS and CREA, Paris, longo@di.ens.fr, http://www.di.ens.fr/users/longo
§Informatique, ENS and ED Frontières du vivant, Paris V, Paris, http://www.montevil.theobio.org.

1

http://dx.doi.org/10.1016/j.pbiomolbio.2011.02.001
http://www.di.ens.fr/users/longo
http://www.montevil.theobio.org


5 More discussion on the general schema 1. 14
5.1 The evolutionary axis (𝜏), its angles with the horizontal 𝜑(𝑡) and its gradients tan(𝜑(𝑡)) . . . . 14
5.2 The “helicoidal” cylinder of revolution 𝒞𝑒 : its thread 𝑝𝑒, its radius 𝑅𝑖 . . . . . . . . . . . . . . 16
5.3 The circular helix 𝒞𝑖 on the cylinder and its thread 𝑝𝑖 . . . . . . . . . . . . . . . . . . . . . . 16
5.4 On the interpretation of the ordinate 𝑡′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction
Living phenomena displays rather characteristic and specific traits; among these, manifestations of temporality
and of its role are particularly remarkable: development, variegated biological rhythms, metabolic evolution,
aging, …. This is why we believe that any attempt at conceptualizing life phenomena — be it only partially —
cannot avoid addressing such temporal aspects that are specific to it. In that which follows, we will examine this
question from different angles in view of providing a first attempt at synthesis.

The intuitive “geometry of time” in physics was (and often still is) based, first, on the absolute Newtonian
straight time line. This was later enriched by the order structure of Cantor type real numbers, an ordered set
of points, topologically complete (dense and without gaps). Thermodynamics and the theories of irreversible
dynamics (phase transitions, bifurcations, passing into chaos, …) have imposed an “arrow” upon classical time, by
adding an orientation to the topological and metric structure. But it is with relativity and quantum physics that
the theorization of time has led to rather audacious reflections. In the first case, to give only one example from a
very rich debate which goes so far as to introduce a circular time (proposed by Gödel as a possible solution to
Einstein’s equations) to Minkowski space: by means of its famous causality cone, this space explains, within the
framework of a unified geometry of space-time, the structure of any possible correlation between physical objects,
in special relativity.

In quantum physics the situation is maybe even more complex or, in any event, less stable. We go from
essentially classical frameworks to a sometimes two-dimensional time (in accordance with the structure of the
field of complex numbers with regard to which Hilbert spaces are defined, the theoretical loci of quantum
description), up to the audacity of Feynman’s temporal “zigzags” Feynman & Gleick 1967. This latter approach
is a very interesting example of intelligibility by means of a “geometric” restructuring of time: the creation of
antimatter would cause within the 𝐶𝑃𝑇 symmetry (charge, parity, time) a symmetry breaking in terms of charge,
while leaving parity unchanged. Global symmetry is then achieved by locally inverting the arrow of time. Another
approach, with similar motivations, is that of the fractal geometry of space-time, specific to the “scale relativity”
proposed by Nottale 1993: in it, time is reorganized upon a “broken” line (a fractal), which is continuous but
non-derivable. Further interesting reflections, along similar lines, may be found in Le Méhauté, Nigmatullin &
Nivanen 1998.

Physics however will remain but a methodological reference for our work, because the analysis of the physical
singularity of living phenomena Bailly & Longo 2006, 2011 requires a significant enrichment of the conceptual
and mathematical spaces by which we make inert matter intelligible. One of the new features which we introduce
consists in the usage that we will make of the “compactification” of a temporal straight line: in short, we will try
to mathematically understand rhythms and biological cycles by means of the addition of “fibers” (a precise mathematical
notion, introduced summarily below) which are orthogonal to a physical time that remains a one-dimensional straight
line. From our standpoint, a living being is a true “organizer” of time; by its autonomy and action, it confers it a
more complex structure than the algebraic order of real numbers, but also more than any organization one could
propose for the time of inert matter. In short, the time of a living organism, by its specific rhythms, intimately
articulates itself with that of physics all the while preserving its autonomy. We would therefore like to contribute
to making the morphological complexity of biological time intelligible, by presenting a possible geometry of its
structure, as a two dimensional manifold.

The first paragraph will introduce the theme of biological rhythms. One consequence of our approach is the
possibility of mathematically giving what we hope to be more precise and relevant meaning to notions that are
usually treated in a rather informal fashion and unrelated between one another, such as those of representation

2



time, physical time vs. biological rhythms, … and this within a rigorous mathematical frame.

1.1 Methodological remarks
Let’s recall that physics, in its history, was constituted according to major dimensional constants (gravitation, the
speed of light, Plank’s constant — with dimensions, respectively: acceleration, speed, action). What is striking, in
biology, is the presence of a few major invariants with no dimension, those that are specified in the rhythms of
which we will speak below. The mathematization of physics concentrated on invariants, among which the above
constants, but also those of “objective determinations”, which we address in length in Bailly & Longo 2006, 2011.
We suggest here to start with these rare invariants, these constants and rhythms which are to be found in biology,
because, beyond the physico-chemical, the structural stability of living phenomena is not “invariant”, physically
speaking: it is profoundly imbued with variability.

Observe also that in physics, time is mostly described as a parameter of the state functions describing a system.
The phenomena encountered in biology, however, seem to trigger the need of other theoretical strategies and this
at many different temporal levels of organization (physiology, ontogenesis, phylogenesis, …). We will provide a
geometrical scheme of biological time that stresses the crucial role of time in life and allow to understand some
of the above features mainly through the use of two theoretical concepts.

The first one, which we will discuss in depth latter, is the ubiquity of rhythms in biological temporal
organization. There is indeed few features that are ubiquitous in biology but the iteration of similar processes
seems to be one of them. We will however make a clear distinction between two type of cyclicity encountered in
living systems.

The second concept is a way to understand the constitution and maintenance of biological organization, both
in phylogenesis and embryogenesis, that we formalized by the notion of anti-entropy in Bailly & Longo 2009.
That approach allows the addition of a new theoretical aspect of time irreversibility in biological systems, that
completes and adds up to the thermodynamical irreversibility driven by the notion of entropy. At the level both
of evolution and embryogenesis, this irreversibility manifests itself by the increase of complexity of the organism
(number of cells, number of cell types, cell networks — neural typically, geometrical complexity of the organs,
constitution of interacting yet differentiated levels of organization, …).

Methodologically, by a duality with physics, in Bailly & Longo 2009 time is understood as an operator (like
energy in Quantum Physics), not as a parameter. This makes time a fundamental observable of biology (like
energy in physics) and it gives meaning to its key role in “biological organization”, since rhythms organize life.

2 An abstract schema for biological temporality.
2.1 Premise: Rhythms
We will introduce a second dimension of time, associated to the endogenous internal rhythms of organisms, a
dimension of time which we will represent as compacified (𝒮1 topology1).

We denote this compacified time as 𝜃, which we can represent as a sort of “circle”with a “radius” 𝑅𝑖 (where
𝑅𝑖 is the proper biological time): this circle expresses the temporal circularity, the iterative component, that is
specific to internal rhythms.

2.2 External and internal rhythms
We will distinguish two types of rhythms associated with biological organization, each referring to a distinct
temporal dimension (below, we will note them as 𝑡 and 𝜃, respectively):

(Ext) “external” rhythms, directed by phenomena that are exterior to the organism, with a physical or physico-
chemical origin and which physically impose themselves upon the organism. So these rhythms are the

1The circle is the compactification of the real number straight line, by the addition of a point and its folding.
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same for many species, independently of their size. They express themselves in terms of physical, hence
dimensional, periods or frequencies (s, Hz) and the invariants are dimensional; they are described with
regard to the dimension of physical time (in exp(𝚤𝜔𝑡)). Examples: seasonal rhythms, the 24 hours-cycle
and all their harmonics and sub-harmonics, the rhythms of chemical reactions which oscillate at a given
temperature, etc.

(Int) “internal” rhythms, of an endogenous origin, specific to physiological functions of the organism, depend on
purely biological functional specifications. These rhythms are characterized by periods which scale as
the power 1/4 of the organism’s mass and, when related to the life span of the organism which scales in
the same way, they are expressed as pure numbers (they have no physical dimensionality). Invariants are
therefore numeric. We propose to describe them with regard to a new compacified “temporal”dimension 𝜃,
with a non-null radius, the numeric values then corresponding to a “number of turns”, independently of the
effective physical temporal extension (we have mentioned some examples: heartbeats, breathings, cerebral
frequencies, etc.).

We will now, even if we must be somewhat repetitive, describe further how these rhythms take place in
biological organization, which is precisely what we would like to provide account for:

• The external rhythms (Ext) are to be identified with physical time (typically measured by a clock) determined
universally — their temporal features does not depend of the biological system we consider. Key examples
include circadian, circannual or tidal cycles. The effects or the relevancy of these cycles depend of course
on the organism that we consider (with possible sexual dimorphism). For example, diurnal and nocturnal
animals are in phase opposition, whereas tides are mainly relevant for marine organisms, and especially in
the foreshore. Whatever organism we consider, the period and the phase of these rhythms are the same
as they are dependent on external physical events. In order to be a little more precise, this rhythms are
generally associated with a double process: the physical process, outside the living system (and which can
be very precisely predicted) and its “shadow” inside the system which is kept synchronized by so-called
“Zeitgeber” (light for circadian cycle for example). This distinction leads in particular to a specific inertia,
encountered for example in the “jet lags” phenomenon.
Simple chemical oscillations inside an organism will fall in this category too, since their period is determined
by physical principles, however their phase depends on a specific organism (a specific trajectory) since it is
the organism which constructs this chemical system.
As a result, this kind of rhythms, and their subharmonics, can be considered in the usual physical way and
represented by terms like 𝑒𝚤𝜔𝑡.

• The second kind of rhythms, the endogenous biological cycles in (Int), do not depend directly on external
physical rhythms. They could be called autonomous or eigen rhythms and scale with the size of the
organism (frequencies brought to a power −1/4 of the mass, periods brought to a power 1/4), which is not
the case with constraining external rhythms which impose themselves upon all (circadian rhythms, for
example). Such rhythms are encountered when we consider the heart rate, the respiratory rate, the mean
life span, …, see Savage et al. 2004 or Lindstedt & Calder III 1981 for example. This rhythms are naturally
associated with the number of their iterations (they can be seen as dual variables), and these numbers
provide a natural way of speaking of the age of a biological system, yet different of the time measured by a
clock. The distinction between replicative and chronological aging for yeasts, is a clear example of this
situation, see Fabrizio et al. 2004.
It is worth noting that this kind of rhythms leads to the use and the study of pure numbers instead of
quantities with a physical dimensionality (such as intervals of physical time). Moreover these numbers
seem, at least in certain cases, to have invariant2 properties, a clear and impressive example of this is the
mean number of heartbeat (or respiration) during life which is almost invariant among mammals.

2There is still some variability, but this variability appears “naked”when considering this numbers, whereas the mass and temperature
effects come first when considering dimensional quantities.
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In summary, endogenous biological rhythms:

• are determined by pure numbers (number of breathings or heart beats over a lifetime, for example) and
not, in general, by dimensional magnitudes as is the case in physics (seconds, Hertz, …);

• depend on the adult mass of the organism that we consider, by following the allometric law 𝜏𝑖 ∝ 𝑊
1/4
𝑓 (for

heterotherms, the temperature is involved too);

• in our approach, they are analyzed and put into relation to each other by adding an additional compacified
“temporal” dimension (an angle, actually, like in a clock), in contrast to the usual physical dimension of
time, a line, non-compacified and endowed with dimensionality.

Since these endogenous rhythms co-exist with physical time, we consider a temporality of a topological
dimension equal to 2 formed by the direct product of the non-compacified part, the real straight line of the
variable 𝑡 (the physical time parameter) and, as a fiber upon the latter, the compacified part, a circle 𝒮1, of which
the variable is 𝜃. Since we consider a two-dimensional time, with a second dimension associated with specific
biological invariants, our approach is very different of the usual approach of biological time in terms of dynamical
systems, which allows to tackle different kind of questions, like synchronization or stability (see for example the
noteworthy book of Winfree 2001), but do not deal with these invariants.

The idea of using supplementary compacified dimensions in theoretical physics has been introduced by
Kaluza and Klein Overduin & Wesson 1997, and is still widely used in unification theories (string, superstring,M-
theory, …). There are of course major differences between these uses of compacified dimensions and ours. First
they concern mostly the addition of space-dimensions; second these dimensions are not observable in physics,
whereas they are clearly observable in biology. In our approach, the projection of this second dimension on
physical time leads to quantities that have the dimension of a time; their mean follows the allometric law, as such
they are parametrized by a mass (or, equivalently, by an energy; here one may see again the dual role of energy
vs. time as parameter vs. operator, the duality w. r. to Quantum Physics we mentioned and extensively used in
Bailly & Longo 2009).

We insist that the endogenous rhythmicities and cyclicities are not physical temporal rhythms or cycles
as such, as they are iterations of which the total number is set independently from the empirical (temporally
physical) life span. As we said, they are pure numbers, a few rare constants (invariants) in biology. Our
aim is that of a geometric organization of biological time which, by the generativity specific to mathematical
structures, would also enable us to derive meaning and to mathematically correlate diverse notions. The text itself
constitutes the commentary and the specification of the following schemata, which are meant to “visualize” the
two-dimensionality which we propose for the time specific to living phenomena.

3 Mathematical description
We first consider both external and internal rhythms; later, we will mainly focus on internal rhythms of organisms
(we can take as a paradigmatic example the heart rate of mammals). We begin by providing a qualitative draft of
our scheme to show its geometrical structure in figure 1, then we will quantify its parameters and explain more
precisely their meaning.

3.1 Qualitative drawings of our schemata
Following the aforementioned ideas, biological time is a (curved) surface: thus, it will be described in 3-dimensions
(the embedding space). Note that, if we were considering only biological rhythms, our 2-dimensional manifold
would be a cylinder: the (oriented) line of physical time times the extra compacified dimension. The situation is
more complicated, in view of the further, physical rhythms we want to take into account. They do not require an
extra dimension, but they “bend” the cylinder, by imposing global (external) rhythms. Thus, a proper biological
rhythm is represented by what we may call a “second order helix”, that is, a helix that is obtained (is winding)

5



over a cylinder, 𝒞𝑖, which, in turn, is winding around a bigger cylinder, 𝒞𝑒, of which the axis is the line (𝜏). As
basic reference, we choose orthogonal Cartesian coordinates. Physical time, which is oriented by thermodynamic
principles of irreversibility and is measured by a clock as in classical or relativistic physic, will be the first axis (𝑡)
of our reference system and will enable the characterization of instants and the measurement of durations. The
second axis, (𝑡′), will be associated with the proper irreversibility of biological time (for example the irreversibility
of embryogenesis or, just, of “living”, see 5). As such, it will represent the biological age, or the internal irreversible
clock of the organism we consider. The (𝑡) and (𝑡′) axis are oriented in the usual way ((𝑡) towards the right and
(𝑡′) pointing upwards). The third axis, (𝑧), (see 1) is generated by the mathematical need of a 3-dimensional
embedding space; yet, we claim that it has a biological meaning that will become clear later, in section 3.2.

Figure 1: Qualitative illustration of our geometric scheme, as a 2-dimensional manifold. In red, the global age of the
organism, in blue its modulation by the physical rhythm. Here the surface is suggested by varying values of 𝜃.

We consider the surface of the cylinder 𝒞𝑖 as parametrized by 𝑡 (the physical time) and 𝜃 ∈ [0, 2𝜋] (the
compacified time).

Let’s then take a further step by gradually making explicit the functional dependencies.

• The average progression with respect to (𝑡′) will be represented by a function 𝜏  𝑡−𝑡𝑏𝜏𝑖
. 𝜏 is a growing

function due to the irreversibility of biological time, and has a decreasing derivative due to the decrease of
activity during development and aging. 𝑡𝑏 is the physical time of a biological event of reference (time of
fecundation for example). 𝜏𝑖 is a characteristic time of the biological activity of the adult: for example, the
mean “beat to beat” interval under standardized conditions (other reference systems can be chosen such
as the mean time taken to attain 98% of adult mass, life expectancy, respiratory interval, …). This value
represents, as a function of physical time, the age of the system inasmuch this age is biologically relevant
(see figure 2a: the graph of 𝜏 lies on the (𝑡 × 𝑡′) plane). Set then:

�⃗�𝜏𝑖(𝑡, 𝜃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡
𝜏  𝑡−𝑡𝑏𝜏𝑖


0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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• We next consider a physical (external) rhythm of period 𝜏𝑒 (its pulsation is then 𝜔𝑒 =
2𝜋
𝜏𝑒

) that affects the
activity rate of the organism — the circadian rhythm, for example, leads to 𝜏𝑒 = 24 hours. This produces a
winding spiral or helix, 𝒞𝑒 (see figure 2b: here we need the third dimension (𝑧) for the embedding space of
our manifold). In the definition of �⃗�𝜏𝑖(𝑡, 𝜃), 𝑅𝑒 represents the impact of this physical rhythm on biological
activity:

�⃗�𝜏𝑖(𝑡, 𝜃) = �⃗�𝜏𝑖(𝑡, 𝜃) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑅𝑒
𝜔𝑒𝜏𝑖

cos (𝜔𝑒𝑡)
𝑅𝑒
𝜔𝑒𝜏𝑖

sin (𝜔𝑒𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

The term 1
𝜔𝑒𝜏𝑖

is proportional to the number of iterations of the compacified time during one period of the
physical rhythm, as such it can be considered as the temporal weight of this rhythm for an organism (mean
number of heartbeat during a day, for example), it allows to understand that a year is more important for a
mouse and for an elephant. As a consequence the radius of 𝒞𝑒 is proportional to both the impact 𝑅𝑒 of
this rhythm on biological activity, and on the weight of this rhythm in terms of number of iteration of the
endogenous rhythm considered during one period of the physical rhythm.

(a) (b)

Figure 2: Qualitative Illustration of the first components of our model. Left, the function 𝜏  𝑡−𝑡𝑏𝜏𝑖
, which represents

the global age of an organism: this age increases at a greater pace during development and slows down progressively,
see section 5. In orange a small mammal (a mouse for example) and in red a bigger one (an elephant). The life
span of the first is shorter than one of the second. Right, in blue (and yellow), a physical rhythm has been added
(this rhythm is very slow for illustrative purposes). Notice that this physical rhythm has the same period for both
animals, but one of its iteration has a greater weight for the smaller animal.

• We can finally add a biological (internal) rhythm, which depends on an increasing function 𝑠𝜏𝑖(𝑡) (see figure
3). 𝑠𝜏𝑖(𝑡) has a proper biological meaning: for example, if we impose 𝑠𝜏𝑖(𝑡𝑏) = 0, with 𝑡 = 𝑡𝑏 when the heart
begins to beat3, 𝑠𝜏𝑖(𝑡) is the number of heartbeats of the organism at time 𝑡, and thus the mean maximum of

3Let’s remark that, unlike in physics — classical, relativistic or quantum— biological time has an origin, whatever level of organization
we consider. As a result there is no time-symmetry for translations, a fundamental property, in (relativistic) physics for the constitution of
invariants, e.g. energy conservation.
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𝑠, obtained when death occurs, does not depend on the organism we consider (among mammals, typically).
Set then, for �⃗�𝜏𝑖(𝑡, 𝜃) as in equation 2:

�⃗�𝜏𝑖(𝑡, 𝜃) = �⃗�𝜏𝑖(𝑡, 𝜃) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑅𝑖 cos 2𝜋𝑠𝜏𝑖(𝑡) + 𝜃
𝑅𝑖 sin 2𝜋𝑠𝜏𝑖(𝑡) + 𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

3.2 Quantitative scheme of biological time

Now, one of the simplest way to define more precisely 𝑠 is to use �⃗�𝜏𝑖 and more precisely the length of the
curve defined by �⃗�𝜏𝑖. We obtain then for the instantaneous pulsation, where 𝜏′ is the derivative of 𝜏 (thus
𝑑
𝑑𝑡𝜏 

𝑡−𝑡𝑏
𝜏𝑖
 = 1

𝜏𝑖
𝜏′  𝑡−𝑡𝑏𝜏𝑖

) and the other components are the derivative of the remaining coordinates in equation 3:

𝑑𝑠𝜏𝑖(𝑡)
𝑑𝑡

=


⃓
⃓
⃓
⃓
⎷

𝛼2 × 12 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜏′  𝑡−𝑡𝑏𝜏𝑖


𝜏𝑖
−
𝑅𝑒
𝜏𝑖

sin (𝜔𝑒𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ 
𝑅𝑒
𝜏𝑖

2

cos (𝜔𝑒𝑡)
2 (4)

The term 𝛼 is here for (physical) dimensionality reasons: since our metric has the dimension of a frequency,
and 𝑑𝑡

𝑑𝑡 = 1, the derivative of the first component of the vector in equation 2, has no dimension, then we need to
introduce this coefficient whose dimension is a frequency4.

When 𝛼 = 0 we can simplify 4 to:

𝑑𝑠𝜏𝑖(𝑡)
𝑑𝑡

=


⃓
⃓
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜏′  𝑡−𝑡𝑏𝜏𝑖


𝜏𝑖

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ 
𝑅𝑒
𝜏𝑖

2

− 2
𝑅𝑒𝜏′ 

𝑡−𝑡𝑏
𝜏𝑖


𝜏2𝑖
sin (𝜔𝑒𝑡) (5)

Now, if we consider hibernating animals, or frozen organisms, we have situations where the physical time
flows normally but where the biological time almost stops or even totally stops. For 𝛼 ≠ 0, even in the frozen
case, biological time would flow with 𝑑

𝑑𝑡𝑠𝜏𝑖(𝑡) ≥ 𝛼. It seems then natural to suggest that 𝛼 = 0. Moreover, for
𝛼 = 0, we go back to allometric relations, since, in this case, 𝑑

𝑑𝑡𝑠𝜏𝑖(𝑡) is proportional to 1
𝜏𝑖

. Now, 𝜏𝑖 is proportional

to 𝑊1/4
𝑓 , by allometry, and, thus, 𝑑

𝑑𝑡𝑠𝜏𝑖(𝑡), which is a frequency, to 𝑊−1/4
𝑓 , as it should be.

Another way to express this is to say that physical time per se does not make biological organization get older:
it is only when there is a biological activity (which in return is of course always associated with physical time)
that aging appears.

We can now even give a meaning to the third, (𝑧), axis: since 𝜏  𝑡−𝑡𝑏𝜏𝑖
 is on the (𝑡 × 𝑡′) plane, a positive (𝑧)

corresponds to a positive sin (𝜔𝑒𝑡), by equation 3, and it is associated with a slowdown of biological activity (sleep,
for example), whereas the negative values are associated to a faster pace (wake for example).

As a fundamental feature of the model that we will analyze next, we assume that the speed of rotation with
respect to the compacified time is constant, which leads to a radius 𝑅𝑖 = Cst.



𝜕�⃗�𝜏𝑖(𝑡, 𝜃)
𝜕𝜃



= 𝑅𝑖(𝑡, 𝜃) = Cst (6)

This assumption “geometrizes” time even further: acceleration and slow-down will be seen as contraction and
enlargement of a cylinder in §4.4.2. In that section, as an application, we will develop a geometrical analysis of

4This kind of reasoning is commonplace in physics.
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biological rate variability, and, as an example, we will consider heart rate. Note that this radius 𝑅𝑖 is the dimension
accommodating the biological rhythms, thus it is not a physical dimension (it is a pure number). Our assumption
is consistent with the idea that each iteration along the compacified time contributes equally to aging.

4 Analysis of the model
In this section we will explore the various biological aspects our approach allows to put together, mainly on the
questions of interspecific and intraspecific allometry and on (heart) rate variability.

4.1 Physical periodicity of compacified time

Since 𝑑
𝑑𝑡𝑠𝜏𝑖(𝑡) provides the frequency of the biological rhythm, it is interesting to look for a simple analytical

expression of the period associated. To do so, we perform a Taylor development (under the hypothesis 𝜏′  𝑡−𝑡𝑏𝜏𝑖
 ≫

𝑅𝑒) of the inverse of equation 5, and as a result we obtain an approximation of the physical time associated with
an iteration of the compacified time (the time between two heartbeats for example):

1
𝑑𝑠𝜏𝑖(𝑡)

𝑑𝑡

≃ 𝜏𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝜏′  𝑡−𝑡𝑏𝜏𝑖

+

𝑅𝑒

𝜏′  𝑡−𝑡𝑏𝜏𝑖

2 sin (𝜔𝑒𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

We can observe several things here. First, for adults (i.e.: 𝜏′  𝑡−𝑡𝑏𝜏𝑖
 ≃ 𝐶𝑠𝑡 and it does not depend on the

size of the organism we consider) the result has the form 𝜏𝑖 (𝑎 + 𝑏 sin (𝜔𝑒𝑡)). As a consequence, when we take
different species, there is no variation of the ratio (𝜏𝑖𝑏𝜏𝑖𝑎 ) between the continuous and the period components of the
biological rates. Alternatively the ratio between the rates of the biological rhythm during the slow period of the
physical rhythm (sleep for example) and during the fast period (wake) does not depend of the species either. This
result holds experimentally (see for example Savage et al. 2004 and Mortola & Lanthier 2004).

On the other side, the relationship between this two rates is not linear in intraspecific variations (i.e.: when
𝜏′ is not constant, mainly during development), and the variation of the coefficient of the rhythmic component

𝑅𝑒𝜏′ 
𝑡−𝑡𝑏
𝜏𝑖

−2

is far greater than that of the steady (continuous) component 𝜏′  𝑡−𝑡𝑏𝜏𝑖

−1

. This mathematical
deduction agrees with experimental results, since Massin et al. 2000, for example, find that the continuous
component varies like 𝑡0.16 while the sinusoidal part (associated with the circadian rhythm ) varies like 𝑡0.75 for
humans (between 2 months and 15 years).

4.2 Biological irreversibility
We can now look more precisely at the second axis, (𝑡′), of our reference system. Since this aspect of biological
time is irreversible and flows in the same direction than physical time (𝜏(𝑡) is an increasing function of 𝑡), �⃗�𝜏𝑖
in equation 2 should increase with respect to this direction. When this condition is met, we will say that these
times are “cofluent”. This can be easily mathematized by looking at the partial derivative of the (𝑡′) component of
�⃗�𝜏𝑖 (obtained with the dot product by the unitary vector �⃗�𝑡′) with respect to 𝑡:

𝜕�⃗�𝜏𝑖(𝑡, 𝜃)
𝜕𝑡

.⃗𝑒𝑡′ =
1
𝜏𝑖
𝑓′ 

𝑡 − 𝑡𝑏
𝜏𝑖

 −
𝑅𝑒
𝜏𝑖

sin (𝜔𝑒𝑡) (8)

We obtain then three different scenari, assuming that 𝜏′  𝑡−𝑡𝑏𝜏𝑖
 tends to be a constant for adults (and seniors),

written 𝜏′  𝑡∞𝜏𝑖 . We then use equation 5 to derive their observable consequences:
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(a) Cofluent case (b) Minimally cofluent case (c) Non-cofluent case

(d) Cofluent case (e) Minimally cofluent case (f ) Non-cofluent case

Figure 3: Illustration of the three scenari. Top: the scheme �⃗�𝜏𝑖(𝑡, 𝜃) and bottom its time derivative
𝜕�⃗�𝜏𝑖(𝑡,𝜃)

𝜕𝑡 .
From left to right: Cofluent case, minimally cofluent case and non-cofluent case. Since the radius of the

compacified time is proportional to its physical rate when looking at
𝜕�⃗�𝜏𝑖(𝑡,𝜃)

𝜕𝑡 (see §4.4.1), the bottom pictures
allows to see when the slowest rate occurs (i.e.: when the radius is the smallest, blue arrow. Here respectively: for
adults in figure 3d and 3e and for infants in 3f).
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𝜏′  𝑡∞𝜏𝑖  > 𝑅𝑒. In this case, biological age and the physical clock are cofluent, and the minimum rate is achieved
during adult sleep (figure 3a and 3d).

𝜏′  𝑡∞𝜏𝑖  ≃ 𝑅𝑒. In this case, they are minimally cofluent, the derivative tends to zero (during night or winter)
when the organism grows older, that is the rate of the biological rhythm tends to 0 during the (physical)
time of little biological activity. It seems to be particularly relevant for hibernation (figure 3b and 3e)….

𝜏′  𝑡∞𝜏𝑖  < 𝑅𝑒. in this case they are no longer cofluent, the nullification of the biological rate would appear during
development, and, as a result, the slowest biological rhythm would appear during sleep of young individuals
(figure 3c and 3f).

This case analysis has an actual correspondence with empirical data for the first two cases (see for example
Hellbrugge et al. 1964; Cranford 1983). We believe that theoretically biological time should be always cofluent
so that the third case should never be realized. Indeed, the existing data, which are mostly given for humans,
confirm that case 3 does not hold (young individuals have slow rhythms, during sleep typically, which are faster
than adults slow rhythms).

It would be nice that our theoretical deduction, excluding, like in physical reasoning, the third mathematical
possibility as meaningless, were empirically confirmed in large phyla. Conversely it would be also interesting if
this theoretical derivation leads to the discovery of species where also the third case is realized.

4.3 Allometry and physical rhythms
When we consider organisms with different adult masses (𝑊𝑓), we obtain a variation of 𝜏𝑖 according to the
scaling relationships (𝜏𝑖 ∝ 𝑊

1/4
𝑓 ), whereas 𝜔𝑒 does not change. As a result, this change corresponds to a dilatation

of the (𝑡) axis (as far as 𝑓 is concerned) whereas the physical rhythm modifies the geometry of biological time
because the variations it triggers are anchored to the physical value 𝜔𝑒 (see figures 2a, without physical rhythm,
and 2b, with physical rhythms.).

Then, it is the interplay between physical rhythms and biological ones that breaks the symmetry (by dilatation)
between organisms of different (adult) masses that have the same temporal invariants (most mammals for
example). As a result, in this situation, the physical conditions can be seen as constraints or frictions on biological
temporal organization. Our point of view can be compared to the dimensionless time in West & Brown 2005,
but they only consider the autonomous aspect of biological time, thus not considering this important interplay.

An other way to illustrate these aspects is to count the lifelong number of iterations of cycles: for biological
cycles, this number does not vary much when considering different species, whereas it is strictly proportional to
life span for physical ones.

4.4 Rate Variability
Let us first introduce informally the applications we will hint to in this section, where the data are obtained from
the medical references in place. Our approach to biological time leads naturally, as we will further specify, to
a representation by a cylinder whose radius is proportional to the cardiac rate. If we assume that n heartbeats
yield a complete rotation around the cylinder, then a faster heart rate would appear as a circular outgrowth (a
sudden increase in the radius). In this representation, a healthy individual has a complex cardiac dynamics during
the day, with frequent rhythms’ accelerations of varying length (from seconds to many hours). This shows up in
the figures by the many circular outgrowths of different radii. On the contrary, an individual with an artificially
regulated pace (with a pacemaker, say) gives a relatively smooth cylinder. The last figure below corresponds to a
sudden cardiac death, without particular symptoms.

Of course we do not provide a theoretical determination of spontaneous biological rates variability, but just a
geometrical representation. As a matter of fact in our framework, it is quite straightforward to explore the structure
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of biological rhythms and of their variations. More precisely, we can easily and effectively represent raw datas (for
example the series of “beat to beat” interval over time). As a result, we obtain more than a qualitative schema: it
is a theoretical grounded representation of the “anatomy” (and pathological anatomy) of biological time. First we
need to see how we can use scales in our framework.

4.4.1 Renormalization

If we want to consider 𝑛 iterations of the compacified time 𝜃 as an iteration of an other compacified time �̃� we
obtain �̃� = 𝜃

𝑛 and �̃�𝜏𝑖 =
𝑠𝜏𝑖
𝑛 , then by some sort of renormalization using the principle of constant speed for the

compacified time, one has:



𝜕�⃗�𝜏𝑖(𝑡, 𝜃)
𝜕𝜃



=
�̃�𝑖
𝑛
= Cst (9)

So �̃�𝑖 = 𝑅𝑖𝑛. This result is exactly (modulo a global dilatation of the (𝑡′) and (𝑧) axis by a factor 1
𝑛 ) what we

obtain if we construct directly our system at the level of 𝑛 iterations.

Figure 4: Renormalization and principles of variability representation. Here,we consider
𝜕�⃗�𝜏𝑖(𝑡,𝜃)

𝜕𝑡 and we renormalize
the compacified time by 𝑛 = 10. A change of speed for the iteration 𝑚 of the original compacified time appears
as a sharp contrast between this iteration and its neighbors: iteration 𝑚 − 1, 𝑚 + 1, 𝑚 − 10, 𝑚 + 10. As a result,
if there is a coherence for 10 successive iterations, we obtain a fully circular outgrowth or contraction (for an
acceleration or a slowdown respectively).

4.4.2 Rate Variability

If we look at the function obtained by taking the derivative of �⃗�𝜏𝑖(𝑡, 𝜃) with respect to 𝑡, we obtain:

𝜕�⃗�𝜏𝑖(𝑡, 𝜃)
𝜕𝑡

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡
1
𝜏𝑖
𝜏′  𝑡−𝑡𝑏𝜏𝑖

 − 𝑅𝑒
𝜏𝑖
sin (𝜔𝑒𝑡) − 2𝜋𝑅𝑖𝑠′𝜏𝑖(𝑡) sin 2𝜋𝑠𝜏𝑖(𝑡) + 𝜃

𝑅𝑒
𝜏𝑖
cos (𝜔𝑒𝑡) + 2𝜋𝑅𝑖𝑠′𝜏𝑖(𝑡) cos 2𝜋𝑠𝜏𝑖(𝑡) + 𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

Here, instantaneous heart rate, 2𝜋𝑠′𝜏𝑖(𝑡), appears directly as the radius of compacified time, (which has the physical
dimension of a frequency now).
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(a) A global view (2 days).

(b) Night, groups of 200 beats (c) Day, groups of 200 beats

(d) Night, groups of 600 beats (e) Day, groups of 600 beats

Figure 5: Comparison of the situations during sleep and wake. The point to notice here, is that the structure tends
to become a regular cylinder during night at high scales, whereas the wake is always complex. (Sample s20011
from The Long-Term ST Database, Goldberger et al. 2000). The series of beat to beat intervals provided by this
database is used directly, in our framework, to estimate the few parameters we need and more importantly to
provide the radii involved (each heartbeat is represented).
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If the experimental time of each heartbeat is given in a list (𝑡(𝑚))1≤𝑚≤𝑀, we obtain a discrete empirical

version of
𝜕�⃗�𝜏𝑖(𝑡,𝜃)

𝜕𝑡 , renormalized by 𝑛:

𝜕⃗̂𝔗𝜏𝑖(𝑚)
𝜕𝑡

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡(𝑚)
�̂� − �̂� sin (𝜔𝑒𝑡(𝑚)) − 2𝜋

𝑛
𝑡(𝑚+1)−𝑡(𝑚) sin 

2𝜋𝑚
𝑛


�̂� cos (𝜔𝑒𝑡(𝑚)) + 2𝜋
𝑛

𝑡(𝑚+1)−𝑡(𝑚) cos 
2𝜋𝑚
𝑛


⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

where �̂� is an estimation of 𝑛
𝜏𝑖
𝜏′  𝑡−𝑡𝑏𝜏𝑖

 which may be soundly considered constant during the few days of the

measure. �̂� is an estimation of 𝑛𝑅𝑒
𝜏𝑖

. Both of these values are estimated by using equation 5 and (𝑡(𝑚))1≤𝑚≤𝑀. We
obtain a 2-dimensional structure by using triangles between adjacent points, that is to say for 𝑚 ≤ 𝑀 − 𝑛 − 1,
the triangles (𝑚,𝑚 + 1,𝑚 + 𝑛) and (𝑚,𝑚 + 𝑛,𝑚 + 𝑛 + 1). It is worth mentioning that this approach allows to
obtain an empirical version of �⃗�𝜏𝑖(𝑡, 𝜃) too.

The renormalization by 𝑛 allows to observe directly the correlations between 𝑛 consecutive heartbeats (a full
circle) and the contrasts between a group and its neighbors (see figure 4), thus discriminating easily between the
sleep situation (no correlations wider than ≃ 100 heart beat) and the healthy wake state (correlations at each
scale). The latter is indeed characterized by a succession of randomly spaced outer circle (see figure 5).

Moreover this representation may be useful to study cases of heart diseases and even aging, since this situations
are characterized by an alteration of heart rate variability. We illustrate this alteration in cases of sudden cardiac
death in figure 6 computed with datas from the The Sudden Cardiac Death Holter Database, see Goldberger
et al. 2000. This figure evidentiate the anatomy and the pathological anatomy of heart rhythms and suggests the
extension of this approach to other biological rhythms which are less explored.

• Figure 6a is an example of a healthy case, which is characterized by a complex temporality during wake.

• In figure 6b, (intermittent) pacing leads to an excessively regular cylinder, with few heart rate variability.

• Atrial fibrillation in the figure 6c (a kind of arrhythmia, see comments in figure 6) leads to an “hairy”
structure,which represents a strong short term randomness (few correlations between successive heartbeats).

• Last but not least the figure 6d is not associated with a specific diagnosis (put aside sudden cardiac death
at time 9000) but it clearly shows a very simpler structure than the healthy case.

Our approach allows to discriminate all these various cases by rather striking geometrical differences. Wavelet
analysis is often used for the same purpose, but this approach is based on a massive reorganization of datas, through
a decomposition in various components, whereas we only perform a geometrical and synthetic composition of
them.

5 More discussion on the general schema 1.
5.1 The evolutionary axis (𝜏), its angles with the horizontal𝜑(𝑡) and its gradients tan(𝜑(𝑡))
The central line (𝜏), see figure 1, is the “result” of the various components (physical time, external and internal
rhythms) and it is supposed to refer to a “physiological” time associated to the evolution of the organism over
the course of its life. In order to better understand the different chronological parts of life, this “axis” may be
decomposed in distinct segments, each being characterized by their angle, 𝜑, with regard to the abscissas (the 𝜑
angle under consideration then becomes that of the tangent), connected by zones with a fast curvature around
specific times (𝑡0, 𝑡1, 𝑡2, … ). We will in particular distinguish five parts (with unequal lengths).
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Figure 6: Comparison between a healthy situation and cases of sudden cardiac arrest. (a) Healthy case, cf figure 5. (b)
Female aged 67 with sinus rhythm and intermittent pacing. (c) Female, 72, with atrial fibrillation. (d) Male, 43,
with sinus rhythm. (The data are from samples 51, 35 and 30 from The Sudden Cardiac Death Holter Database,
see Goldberger et al. 2000).

I Around 𝑡00 (which would correspond to the fertilization of the egg that will form the organism or to a
mutation which generates a new species), a new segment begins with a very large angle (80 ∘ for example)
and consequently with a very high gradient. This segment will correspond to embryogenesis.

II Around 𝑡0, there occurs a first curvature of the axis in order to initiate a segment of which the angle (and
the gradient) still remains high (at 60 ∘, for example). Time 𝑡0 would correspond to birth5 and the following
segment to growth (development).

III Around 𝑡1, we would have a new curvature generating a medium sized angle (45 ∘ for example) with a
gradient approaching 1; 𝑡1 would correspond to the apparition of the reproductive faculty (age of puberty6)
and to the entering into the phase of adult maturity.

IV Around 𝑡2, we would have another curvature generating a small angle segment (30 ∘ for example) with a
weak gradient; 𝑡2 would correspond to the period of loss of fecundity (menopause, eventual andropause)7
and to the beginning of aging as such.

V Around 𝑡3 the axis becomes horizontal (𝜑 = 0, tan(𝜑) = 0) and is definitely broken; 𝑡3 represents the
moment of death.

Concerning the various durations (namely that of the life span 𝑡3 - 𝑡0), we know by the above mentioned laws
of scaling generally encountered in biology, that these durations scale according to the organism approximately
by 𝑊1/4

𝑓 , where 𝑊𝑓 is the mass of the adult organism.
If we now consider 𝑣𝑡 = tan(𝜑(𝑡)) as being the “speed” of evolution of the physiological time (𝜏) with regard

to the physical time 𝑡, we would make the following remarks which motivate the various gradients of (𝜏):

• between 𝑡00 and 𝑡0 this speed is very high: initial cell divisions, morphogenesis, setting in of the first
functionalities;

5At germination, for plants.
6At the moment of flowering or of fruit-bearing, for plants.
7At the end of production, for plants.
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• between 𝑡0 and 𝑡1, the speed remains high; it corresponds to growth, to development, to the completion of
the setting in of functionalities, to a high metabolism;

• between 𝑡1 and 𝑡2 the speed is moderate; it corresponds to the regularity of the metabolic reactions, of
cellular renewal, etc., that are characteristic of adult age;

• between 𝑡2 and 𝑡3, the speed is low: lowering of the metabolic rate, of cellular regeneration, of activity; this
corresponds to aging;

• after 𝑡3 the speed is null: it is the death of the organism.

5.2 The “helicoidal” cylinder of revolution𝒞𝑒 : its thread 𝑝𝑒, its radius 𝑅𝑖

In our qualitative analysis (see 1) we have a cylinder of revolution 𝒞𝑒, with a radius 𝑅𝑖, which is winded as a
helix having a thread of 𝑝𝑒 around the (𝜏) axis, without touching this axis but faithfully following its changes of
direction.

The thread 𝑝𝑒 of this helicoidal cylinder can be assimilated to a period; it corresponds to the external
cyclical rhythms imposed upon the organism by its environment (annual, lunar, circadian cycles, for instance,
see §.2.2(EXT)), which are independent physico-chemical rhythms that we have taken into account in the first
paragraph; they are essentially of a physical origin and are imposed upon all organisms exposed to them. The
𝑅𝑖 = 0 case will be evoked below.

5.3 The circular helix𝒞𝑖 on the cylinder and its thread 𝑝𝑖
This circular helix 𝒞𝑖, with a thread 𝑝𝑖, is winded around the surface of the cylinder 𝒞𝑒 (it is a “second order” helix
because the winding cylinder is also helicoidal). We consider the thread of this helix (which is also a period) to
refer to the compacified time 𝜃 (the circle which generates this cylinder) introduced here and associated to the
internal biological cycles of the organism which are also independent (or almost) from the environment; this is
the case, let’s recall, for example, of cardiac and respiratory rhythms, of the rhythms of biochemical cascades, etc.
(see §.2.2(Int)). Let’s also recall that the period associated to these cycles also scale by 𝑊1/4

𝑓 , at least from 𝑡1 (and
also practically from 𝑡0).

To summarize, we thus have, from a biological standpoint, in addition to the objective physical time 𝑡
(evidently still present and relevant):

• a general temporality of biological evolution (𝜏) (the axis);

• a temporality associated to the external rhythms (the helicoidal cylinder winded around this axis from a
distance) that are characterized by the thread 𝑝𝑒;

• a temporality associated to the internal rhythms involving a compactification of time: the helix with a 𝑝𝑖
thread at the surface of the cylinder.

We should also note that if the radius 𝑅𝑖 of the helicoidal cylinder becomes null, it will be reduced to a
helix winded around (𝜏) and the internal cyclicity will tend to disappear as such (there remains only the external
rhythms that are physical). If we may consider the general schema we have presented to concern mainly the
properties of the animal world, this last case, where 𝑅𝑖 = 0, mainly concerns plant. In this sense, the non nullity
of 𝑅𝑖, that is, the two-dimensionality of the cylindrical surface, should be associated to the greater autonomy
— the rhythms of the central systems, typically — and to the autonomous motor capacity which the animal
enjoys comparatively to vegetal organisms, the two being obviously correlated. Actually, the rhythms (metabolic,
chlorophyllian, of action — activation of organs…) of plants are often completely subordinated to the physical
external rhythms.

Of course, there is no clear-cut transition, no well-defined boundary between animal and plant life forms
in particular in the marine flora/fauna. For this reason, we find the representation of the passing from the one
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to another in the form of a continuum to be adequate: the continuous contraction of the helicoidal cylinder
which tends towards being a helix, which is a line (the time of plants). The non observability of the difference
between animal and plant, in some “transitional” cases, would correspond to an interval of biologically possible
measurement, with no phase transition (of the type of life form) that is clear or discontinuous. Once the limit, the
helicoidal line, is reached, even the three-dimensional embedding space can be collapsed onto the two dimensions:
the rhythm becomes the oscillation of one measurement (of chlorophyllian activity, for example) with regard to
the axis of oriented physical time (the spiral is flattened into a sine, for example) as is the case in many periodic
physical processes.

5.4 On the interpretation of the ordinate 𝑡′

Let’s return now to our questioning regarding the interpretation we can give to the ordinate 𝑡′. In a certain sense,
it is generated by the compacified fiber of the temporal rhythms specific to living phenomena. More specifically,
it is mathematically necessary as a component of the three-dimensional embedding space of helixes produced by
the direct production of the physical time t and of the compacified time 𝜃, which are, according to our hypothesis,
two independent dimensions. We already hinted to a possible biological meaning of the (𝑧) coordinate. Then,
what could the ordinate 𝑡′ correspond to, from a biological standpoint?

If we define a speed for the passing of time 𝜏 comparatively to 𝑡′ in a way that is similar to the definition of
𝑣𝑡 = tan(𝜑(𝑡)), we will have 𝑣𝑡′ = cotan(𝜑(𝑡)) ; at the inverse of 𝑣𝑡 (we have 𝑣𝑡𝑣′𝑡 = 1), this velocity is small at
first but continues to grow when 𝑡 (or 𝜏) grows.

In the case where the organism under consideration is the human being, an interpretation promptly comes to
mind. The velocity 𝑣𝑡’ would correspond to the subjective perception of the speed of the passing of the “specific”
or physiological time 𝜏: at first very slow, and then increasingly rapid with aging. In such case, 𝑡′ would be the
equivalent of a subjective time. One will notice that, from the quantitative standpoint, if between 𝑡1 and 𝑡2 (the
area of the adult phase) we confer 𝜑 with the value of 45 ∘ approximately, as we have already indicated above,
the speed of the passing of time 𝜏 with regard to objective physical time (𝑣𝑡) coincides more or less with the
subjective perception of the passing of this time (𝑣𝑡′) (in fact, tan(𝜑) ≃ tan𝜑 ≃ 1).

As it is matter, here, of human cognitive judgment of the time flow, we are aware of its historical contingency.
The remarks below, thus, are just informal preliminaries to forthcoming reflections, where the historicity of young
vs. old age perception of time, for example, should be relativized to specific historical cultures and social frames.
We then leave the reader to have any reflection regarding the subjective perception of time during youth and old
age. We can imagine that such thoughts will coincide with ours, if we belong to the same “culture” (time which
passes slowly while young and, later, very quickly…).

In what concerns organisms other than human beings, of which we do not know if they have a subjective
perception of the speed of the passing of physiological time 𝜏, it is more difficult to assign a clear status to this
dimension of 𝑡′ (although certain relatively evolved species seem likely to express impatience, for example, or
to construct an abstract temporal representation by exerting faculties of retention and especially of protention).
So would this dimension not begin to acquire a concrete reality only with the apparition and development of
an evolved nervous system (central nervous system, brain)? But then what of the bacterium, the amoeba, the
paramecium…?

Actually, it may be possible to somewhat objectivize the approach by advancing a plausible hypothesis
regarding the general character of 𝑡′: we could consider that it is a question of a “temporality” that is associated
to the “representational” dimension. Let’s explain.

Since living organisms are endowed with more or less capacity for retention and protention (possibly pre-
conscious “expectation”), we propose (temporarily, this is ongoing work) to base ourselves on the following
qualitative argument: the element of physiological time 𝑑𝜏 is associated to the element of physical time 𝑑𝑡 and to
𝑑𝑡′ by the evident relation 𝑑𝜏2 = 𝑑𝑡2 + 𝑑𝑡′2 ; it stems from this that 𝑑𝑡′2 can be written as 𝑑𝑡′2 = 𝑑𝜏2 − 𝑑𝑡2 or as

𝑑𝑡′2 = (𝑑𝜏 − 𝑑𝑡)(𝑑𝜏 + 𝑑𝑡)
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It is then tempting to see in the first factor the minimal expression of an element of “retention”(for physiological
time, relatively to physical time) and in the second the corresponding expression of an element of “protention”. The
product of the two would generate the temporality component of a “representation”which borrows from the “past”
and from the “future”, as constitutive of the flow of biological time. As all living organisms appear to be endowed
with both a capacity for retention — as rudimentary as it may be — and with a protentional faculty (even more
rudimentary maybe), the generality of the dimension 𝑡′ would be preserved and the “representational” capacity
(at least in this elementary sense) appears as being a property of living phenomena, see Longo & Montévil 2011.
This property, for conscious thought, could even be extended to subjectivity in accordance, in the specific case of
the human being, with the phenomenological analysis with which we began: 𝑑𝑡′2 would be a form, as elementary
as infinitesimal, of the “extended present”, in the husserlian tradition, described by other analyzes, such as the
coupling of oscillators in Varela 1999.

Finally, it would be the two-dimensionality 𝑡 × 𝑡′ — (physical time) × (representation time) — which would
enable to mark out the temporality of living phenomena, which may be represented in the geometrical way as we
have described in this paper.
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