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In nonlinear rotordynamics, techniques can take advantage

of the periodic steady state behavior to predict quickly and

accurately the mass unbalance response to a series of pa-

rameters, especially with the presence of certain nonlineari-

ties which leads to nonlinear dynamics and complicated re-

sponses. The method proposed here calculates the response

curve by combining Harmonic Balance Method (HBM), Al-

ternating Frequency-Time (AFT) method and continuation.

The singular points where a stability change often arises are

detected with the sign change of the Jacobian determinant

and then located through a penalty method that increases the

solving equation system by a completing constraint. Track-

ing these points, which provides an efficient way to analyze

parametrically the nonlinear behavior of a system, can be

fulfilled, once again, by the continuation technique.

1 INTRODUCTION

Generally speaking, the rotating systems utilized in the

energy production have a small rotor-stator gap, are able to

run during long periods, and are mounted on hydrodynamic

∗Address all correspondence for other issues to this author.

bearings. Rotor-stator interactions in case of blade loss,

crack propagation due to fatigue, and a variable stiffness due

to the nonlinear restoring forces of the bearings can make the

rotordynamics nonlinear and the responses complicated: sig-

nificant amplitude and frequency shifts are introduced, sub-

and super-harmonics appear, and hysteresis occurs. It is of

great importance to understand, predict and control this com-

plicated dynamics. This is commonly achieved by means of

numerical simulations due to its efficiency, low cost, repeata-

bility, operability, etc. Reaseachers have investigated numer-

ically the dynamic of systems with various nonlinear prop-

erties, such as rotor-stator contact [1] [2] [3], crack breath-

ing [4] [5], hydrodynamic bearings [6] [7], on board rotor

mounted on hydrodynamic bearings [8], etc.

At the design stage of nonlinear mechanical systems, a

particular attention must be paid to the influence of param-

eters in order to reach the more efficiently as possible the

configuration which leads to optimal runs. Moreover, ap-

propriate parameters choices can avoid dangerous resonance

phenomena by moving the resonance frequencies out of the

operating frequency range or by decreasing the resonance

amplitudes to acceptable levels. Therefore, direct paramet-
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2 EQUILIBRIUM PATH

ric analysis which quickly assesses the effect of parameters

on the dynamic behavior is necessary for numerical investi-

gation of nonlinear systems.

In vibration analysis, first of all, the resonance levels and

frequencies are of primary interests in the majority of inves-

tigations of forced response. Many works aim at finding the

peak vibration amplitudes in nonlinear dynamical systems.

Petrov [9] [10] applies the multiharmonic balance method

to compute the worst vibration cases of bladed disks with

friction contact interfaces. In [11], Liao combines the shoot-

ing method and Floquet theory along with a Global Search

algorithm to determine the resonant peak of nonlinear sys-

tems. Similarly, Balaram et al [12] have developed a norm-

minimizing strategy in the coupling of continuation and Ge-

netic Algorithm to perform an optimal design.

Then, determining the local stability of a periodic solu-

tion is particularly interesting in an engineering context since

only stable solutions are experimentally encountered [13].

Moreover, a change in the stability can lead to significant,

qualitative, and possibly dramatic changes in the system re-

sponse. Efforts have been previously made by researchers for

accurate detection of the singular points which include the

limit (turning) points and bifurcation points. Since the tan-

gent stiffness matrix becomes singular at these points, most

of the proposed methods use this characteristic as the criti-

cal constraint which is added to the governing equations to

form a so-called augmented system defining singular points

[14] [15] [16]. Filippa proposes regularization penalty of in-

creased system to avoid the singularity of the augmented sys-

tem when approaching a bifurcation point [17].

This work presents a rapid systematic method for the

direct parametric analysis of the targeted vibration and the

change of stability of nonlinear systems. First, the nonlinear

dynamic analysis is performed in the frequency domain ow-

ing to the high computational efficiency of harmonic balance

method (HBM) [1]. With the help of continuation method,

all dynamic equilibrium solutions of nonlinear systems are

determined. Then, for stability analysis, the Floquet theory

is employed [18] [19] [20]. The determinant of the Jacobian

matrix is monitored because it helps to pick out the bifurca-

tion points from limit points [17]. The singular points are

then located by adding a new constraint equation to the solv-

ing system.

Next, the equation of forced response levels and bifur-

cation points can be calculated directly as a function of non-

linear parameters or excitation level thanks to the added con-

straint function and, once again, the continuation method.

2 EQUILIBRIUM PATH

The equation of motion for the forced vibrations of a

structure with nonlinear characteristic takes the form:

Mẍ(t)+Cẋ(t)+Kx(t)+ fnl(x, ẋ) = p(ω, t) (1)

where x(t) is a vector of displacements for all n de-

grees of freedom (DOF), M,C,K are generalized n×n mass,

damping, and stiffness matrices of finite element model,

p(ω, t) is a vector of excitation forces, which, in our case,

is periodic (unbalance force for rotating machines), and ω
is the excitation frequency. The rotation effects, such as gy-

roscopic moments, Coriolis forces, centrifuge effect, etc, can

be taken into account in the damping and stiffness term. Har-

monic balance method (HBM) is utilized for its efficiency

with respect to time domain method. The time variation of

displacements and external forces for the steady-state peri-

odic regime are represented by restricted Fourier series:

x(t) = X0 +
N

∑
k=0

Xk
c cos(kωt)+Xk

s sin(kωt) (2)

p(t) = P0 +
N

∑
k=0

Pk
c cos(kωt)+Pk

s sin(kωt) (3)

where X = [X0
,Xc

1
,Xs

1
, ..Xc

N
,Xs

N ]
T

, P =

[P0
,P1

c ,P
1
s , ..P

N
c ,P

N
s ]

T
are the vectors of Fourier coef-

ficients for displacements and external excitation with

truncated decomposition up to order N.

The main idea of harmonic balance method is to iden-

tify the periodic solution through estimations of the trun-

cated Fourier coefficients by solving the nonlinear equation

of motion in frequency domain. By substituting (2) (3) into

(1), then applying a Galerkin procedure, the nonlinear differ-

ential equation (1) is transformed into a nonlinear algebraic

equation system of dimension n× (2N+ 1):

R(X,ω,λ) = Z(ω)X+FNL(X,λF)−P(ω,λp) = 0 (4)

where Z = diag(K,Z1, ..Zk, ..ZN) with

Zk =

[

K− k2ω2M ωC

−ωC K− k2ω2M

]

, FNL and P are vectors of

harmonic coefficients for nonlinear forces and excitation

forces. λF and λp are parameters of nonlinear and excita-

tion forces that can be varied later for parametric analysis.

A robust scheme, which obtains a set of discrete points

to trace the equilibrium path in the range of parameters char-

acterizing the structure, is based on Newton’s method. The

utilized Newton-Raphson method consists in an incremental-

iterative procedure for approaching the exact solution

JδXk =−R(Xk) (5)

Xk+1 = Xk + δXk (6)

where J(X,ω,λ) = ∂Rk

∂X
= Z(ω)+ ∂FNL

∂X
is the Jacobian ma-

trix, R(Xk) the residue of the equilibrium equation of motion

at iteration k.
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The Fourier coefficients of nonlinear efforts FNL and its

derivative ∂FNL

∂X
involved in the Newton-Raphson iterations

are obtained by Alternating Frequency-Time (AFT) method

[21]. The AFT scheme uses fast direct and inverse Fourier

transforms to compute the nonlinear forces in the time do-

main and then switch back to the frequency domain for the

reason that nonlinear forces are usually much easier to eval-

uate in the time domain than in the frequency domain.

Nonlinear systems often have several possible responses

for a given excitation frequency ω. The pseudo-arc

length continuation method [22] combined with the above-

mentioned algorithm permits to follow the solution branch

beyond turning points in order to obtain both stable and un-

stable solutions of response curves. The prediction step of

continuation is firstly performed in the tangent direction to

the solution curve. Then, this estimation is corrected iter-

atively in the orthogonal direction for the purpose of can-

celling the residue R1 :

R1(X,ω)= Jc

{

δXk+1

δωk+1

}

=

[

J ∂Rk

∂ω
∆XT

i ∆ωi

]

{

δXk+1

δωk+1

}

=

{

−Rk

0

}

(7)

where [∆XT
i ∆ωi] and

{

δXk+1δωk+1
}t

stands for the unitary

tangent vector and the orthogonal correction vector respec-

tively, k and k+ 1 correspond to the iteration number. The

pseudo-arc length continuation method thus adds an equa-

tion and an unknown to the solving system. The iterative

calculation is accomplished when the required accuracy is

achieved. Consequently, the equilibrium path on the study

range is obtained.

3 LOCATION OF SINGULAR POINTS AND STA-

BILITY ASSESSMENT

Singular points that often accompanied by a change

of stability, are generally distinguished into turning (limit)

points and bifurcation points. In some cases, turning points

are located near the vibration resonance. Besides, the analy-

sis of bifurcation points has large practical importance since

any of the multitude of branching solutions can be realized

for the same operating conditions.

The determinant values of Jacobians J and Jc provide

the information to classify the found solutions as follow:

regular point i f det(J) 6= 0 and
∂RT

∂ω
y 6= 0

turning point i f det(J) = 0 and
∂RT

∂ω
y 6= 0

bi f urcation point i f det(J) = 0 and
∂RT

∂ω
y = 0

(8)

where y is the eigenvector associated with the zero eigen-

value of J. During the continuation of the response curve, a

sign change of det(Jc) between two consecutive points indi-

cates the presence of a bifurcation point.

To locate singular points precisely, it is more efficient

to characterize the singular points using the equation Jy = 0

rather than the determinant of J. Between the two consec-

utive points, the one which has a smaller absolute value of

det(J) is chosen to approach the exact singular point. which

leads to solve the following augmented system for each iter-

ation of Newton-Raphson:





J 0 ∂R
∂ω

∂(Jy)
∂X

J
∂(Jy)

∂ω
0 2yT 0











δX

δy

δω







=−







R+ γe j

Jy

‖ y ‖2 −1







(9)

with

J = Z+
∂FNL

∂X

∂(Jy)

∂X
=

∂2FNL

∂X2
y

∂R

∂ω
=

∂Z

∂ω
X−

∂P

∂w

∂(Jy)

∂ω
=

∂Z

∂ω
y

For locating a bifurcation points, an additional equation
∂RT

∂ω
y = 0 and an new unknown γ are added. The term γe j

in (9) is added only when locating a bifurcation point where

e j is a unit vector with j-th component equal to 1, γ is an aux-

iliary variable for eliminating the singularity of Jacobian [17]

and its initial value is assumed to be 0. The approximation of

the eigenvector y is calculated by performing singular value

decomposition of the Jacobian and selecting a vector corre-

sponding to the minimum magnitude of the singular value.

This algorithm applies only to simple singular points. In

more complex cases, such as the change of dynamic regime

form periodic to quasi-periodic (see §5.2), the detection of

the bifurcation point can be performed by means of a classi-

cal stability assessment.

Assessment of the local stability consists in applying

a small perturbation to the equilibrium solution, and then

checking whether or not this perturbation subsides with time.

Floquet theory is the most widely used method for evaluating

the stability of solution. There are several algorithms, both in

the time and frequency domain, to compute the eigenvalues

of the so-called monodromy matrix [20].

In this work, the monodromy matrix Φ = [φ φ̇] is ob-

tained by integrating the following system:

Mφ̈(t)+ (C+
∂fnl

∂ẋ
)φ̇(t)+ (K+

∂fnl

∂x
)φ(t) =

∂p

∂x
(10)

over one period of motion with the Newmark algorithm.

The eigenvalues of the monodromy matrix, also known

as the Floquet multipliers, provide information on the stabil-

ity of the periodic solution. If all the multipliers are inside

the unit circle in the complex plane (Re, Im), the correspond-

ing solution is asymptotically stable and called a stable limit

cycle. If at least one multiplier is outside the unit circle, there

is a local bifurcation of limit cycle with a loss of stability.

4 PARAMETRIC CONTINUATION OF SINGULAR

POINTS - STABILITY BOUNDARY DETERMINA-

TION

Once the singular point (X0,ω0) is specifically detected

along the equilibrium branch, it is possible to follow its vari-
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5.1 Duffing oscillator 5 NUMERICAL RESULTS

ation with respect to a parameter λ(λF ,λp) with a continu-

ation method similar to that described in paragraph §3. In

order to do this, λ is considered as a new unknown and an

equation r2(X,ω,λ) = 0 is added to the augmented system

(9), which requires the Newton-Raphson corrections to be

orthogonal to the prediction step. The continuation of the

singular point is thus conducted by successive corrections in

the following form:















J 0 ∂R
∂ω

e j
∂R
∂λ

∂(Jy)
∂X

J
∂(Jy)

∂ω
0

∂(Jy)
∂λ

0 2yT 0 0 0

0 ∂RT

∂ω
0 0 0

∆XT 0 ∆ω 0 ∆λ





































δX

δy

δω
δγ
δλ























=−























R+ γe j

Jy

‖ y ‖2 −1
∂RT

∂ω
y

r2























(11)

with

∂ R

∂λ
=

∂FNL

∂λ
−

∂P

∂λ

∂(Jy)

∂λ
=

∂2FNL

∂X∂λ
y (12)

Again, the term γe j and δγ are necessary to eliminate the

singularity of the augmented system during the bifurcation

point continuation.

5 NUMERICAL RESULTS

Numerical simulations are presented in this section in

order to demonstrate the validity and the advantage of the

proposed approach.

5.1 Duffing oscillator

The Duffing oscillator is a one-degree of freedom sys-

tem with a nonlinear restoring force proportional to the cube

of the displacement. The accuracy of the proposed method in

predicting the periodic motions of the forced Duffing oscilla-

tor is examined by comparing the stable branch obtained by

HBM (19 harmonics) with those obtained from direct tem-

poral integration. The system is described by the differential

equation:

mẍ(t)+ cẋ+ kx(t)+αx(t)3 = p0cos(ωt) (13)

where α is the nonlinear stiffness coefficient, and p0 is the

excitation amplitude.

Using the numerical continuation of periodic solutions

with the excitation frequency as the continuation parameter,

the assessment is firstly carried out with the parameters: m =
1, c = 0.1, k = 1, α = 1, p0 = 0.5. The frequency response

curve is shown in Fig.1. A classical resonance curve can be

observed while the blue dots and red dots stand for stable

and unstable solutions respectively. The two magenta points

are obtained by monitoring the sign change of the conditions

in (8). Since only det(J) passed through 0, these are limit

points with stability change and no bifurcation occurs.
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Fig. 1. Frequency-response curve of the Duffing system for m = 1,

c = 0.1, k = 1, α = 1, p0 = 0.5. (blue dot : stable solution; red

dot : unstable solution; magenta point : turning point)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Excitation Frequency ω (rad/s)

A
m

pl
itu

de
 (

m
)

α
0
 = 0.01

α
1
=10

Fig. 2. Turning point tracking: parametric variation of stability limits

of the Duffing oscillator in function of α ∈ [0.0110] with m = 1,

c = 0.1, k = 1, p0 = 0.5. (black line : linear response; blue dot :

stable solution; red dot : unstable solution; green and magenta lines

: turning point tracking
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Fig. 3. Frequency-response curve of the Duffing system for m = 1,

c = 0.1, k = 1, α = 1, p0 = 1.25. (blue dot : stable solution; red

dot : unstable solution; magenta point: turning point; green circle:

saddle-node bifurcation)

By applying the continuation technique presented

above, the two limit points are followed when the nonlin-

ear coefficient α is varied from 0.01 to 10. In Fig.2, the re-

sponse curve of the linear system (α = 0) is plotted in black

line, the blue dotted curve nearby is the system response for

α0 = 0.01 (slightly nonlinear) which is totally stable, while

the response on the right is calculated for α1 = 10 (strongly

4
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Fig. 4. Forced response curve of Jeffcott rotor for µ = 0. (blue dot

: stable solution; red dot : unstable solution; magenta point : turning

point; green circle: saddle-node bifurcation)

nonlinear). The green dotted-line represents the direct track-

ing of the first limit point while the magenta dotted-line

tracks the lower limit point. The zone that between these two

dotted-lines is the unstable area of the Duffing system when

its nonlinear coefficient varies. The two lines are the sta-

bility boundaries defining amplitude jump: when frequency

increases, am amplitude jump arises when the system vibra-

tion level comes close to the green line, and when frequency

decreases, an amplitude jump will be predicted by the red

line.

When the nonlinear effect is stronger, or the excitation

force is higher, bifurcation points are found as shown by

green circles in Fig.3. Besides of the two limit points pre-

viously studied, there are other limit points at the super-

harmonic resonances.

5.2 Nonlinear Jeffcott rotor

The second test case is a modified Jeffcott rotor which

can come into contact with a stator that is modeled as an

added stiffness [1] [3]. The rotor is made of a weightless

shaft carrying a disk with mass m at the middle of the span.

The clearance between the rotor and the stator is denoted by

h. The stator, which is rigidly fixed, has an elastic contact

surface modeled as a symmetrical set of radial springs with

isotropic stiffness, kc. The equations of motion are shown

below

mẍ+ cẋ+ kx+ kc(1−
h

r
)(x− µysign(vrel)) = pbω2cosωt

mÿ+ cẏ+ ky+ kc(1−
h

r
)(µxsign(vrel)+ y) = pbω2cosωt

(14)

where k is the stiffness of the shaft, r =
√

x2 + y2 is the ra-

dial displacement, pb is the imbalance amplitude and vrel is

the relative velocity between the rotor and the stator at the

contact point.

All the calculations are carried out with the same condi-

tions: m = 1, c = 5, k = 100, kc = 2500, h= 0.105, pb = 0.1,

except that the friction coefficient µ is considered as the var-
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Fig. 5. Forced response curve of Jeffcott rotor for µ = 0.2. (blue

dot : stable solution; red dot : unstable solution; magenta point :

turning point; green circle: saddle-node bifurcation)
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Fig. 6. Forced response curve of Jeffcott rotor for µ = 0.12. (blue

dot : stable solution; red dot : unstable solution; magenta point :

turning point; green circle: saddle-node bifurcation)

ied parameter. Firstly, the response curve of the system when

µ= 0 is plotted in Fig.4. Both the detection of sign change of

Jacobian determinant and the stability assessment were per-

formed. As shown, the red dots indicate the unstable branch

while the magenta points mark the limit points. The response

has the same shape for µ = 0.1.

Yet, when the friction coefficient increases to 0.12 then

to 0.2, the stability distribution changes a lot. In Fig.5, the

singular points are marked, however, the stability change

next to the dimensionless frequency 0.3 doesn’t cause a sign

change in the Jacobian determinant. In fact, it’s related to the

regime change of the system from synchronous full annular

rub motion to partial rub motion, which means the stable pe-

riodic motion changes to quasi-periodic motion [23]. This

fact indicates that monitoring the sign change of Jacobian

is efficient to provide information on simple singular points

only (saddle-node, asymmetric, and pitchfork bifurcations),

but it is insufficient to predict all the stability change of sys-

tem solutions. Constraint equations and associated extended

systems for tracking complex bifurcations (period doubling,

Neimark-Sacker) can be found in [24]. Their use in the

framework of the HBM are beyond the scope of this paper.

Figure.6 shows another stable branch between the two unsta-
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5.3 Finite element nonlinear rotor 5 NUMERICAL RESULTS

Fig. 7. Singular point tracking of Jeffcott rotor as a function of friction

coefficient µ. (blue branch : stable solution; red branch : unstable so-

lution; green point : stable solution; magenta point : unstable solution

)

Fig. 8. Multi-DOFs finite element rotor [20]

ble branches indicating that partial rub motion changes back

to synchronous full annular rub.

Figure.7 collects all the calculated responses for several

values of friction coefficient µ. Blue and red lines indicate

stable and unstable branches respectively. The half-green

half-magenta line is calculated with the continuation tech-

nique which permets a direct following of the bifurcation

points with respect to µ. The stability analysis of converged

solution on this line distinguishes stable solutions (green)

from unstable ones (magenta). As observed, the continua-

tion technique succeeds to locate directly all the bifurcation

points. Where they correspond to a change of stability in

the response curve, they are stable (green branch), whereas

they are unstable (magenta curve) when there is no stability

change involved.

5.3 Finite element nonlinear rotor

A finite element nonlinear rotor model [25] [20] was

also tested (see Fig.8). This rotor is composed of 13 Tim-

oshenko beam elements. Two linear isotropic mountings are

located at both ends of the rotor (kyy = kzz = 6e7N.m−3,

cyy = czz = 600N.s.m), and three disks (modeled by addi-

tional mass and inertia) are added to nodes 3,6 and 11. The

aim is to calculate its response with an imbalance force lo-

cated on disk 2 (mb.g = 2e− 2kg.m). The rotor makes con-

tact with a circular, static, and rigid stator located in the

vicinity of disk 2. The contact model is identical to that de-
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Fig. 9. Forced response curve of finit element rotor for µ = 0 (blue

dot : stable solution; red dot : unstable solution; magenta point :

turning point)
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Fig. 10. Forced response curve of finite element rotor for µ = 0.03

(blue dot : stable solution; red dot : unstable solution; magenta point

: turning point)

scribed in section §5.2 with the initial clearance h = 1mm.

The equation of motion is written in a finite element form:

Mẍ(t)+C(ω)ẋ(t)+Kx(t)+ fc(x) = p(ω, t) (15)

where M,C(ω) and K represent the mass, damping and

stiffness matrices respectively. C(ω) includes the gyroscopic

matrix, which varies with ω.

The calculations for finite element rotor are carried out

in Cast3m [26]. Figure.9 represents the response curve with

stable and unstable branches for the friction coefficient µ= 0.

The black line stands for linear response. Two turning points

are also detected. The response curve for µ = 0.03 is shown

in Fig.10. Same as in Fig.5, the system has passed stable and

unstable phases due to complex motion changes due to the

strong non-linearity arising from contact. Similarly, not all

bifurcations have been detected.

In Fig.11 the magenta line is directly calculated with the

continuation technique and covers all the bifurcation points

with respect to µ (from 0 to 0.2). This example illustrates
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Fig. 11. Singular point tracking of finite element rotor as a function

of friction coefficient µ. (blue branch : stable solution; red branch :

unstable solution; magenta point : singular points )

that the continuation technique is able to locate directly the

bifurcation points in applications of finite element analysis.

6 CONCLUSIONS

An efficient frequency-domain method is presented for

the rapid parametric analysis of stability changes in nonlin-

ear dynamic systems, which provides directly the stability

boundary with respect to parameters such as the system non-

linearity or excitation level.

First, the equilibrium solutions are calculated by contin-

uation technique combined with harmonic balance method.

Then stability of equilibrium solutions is determined by Flo-

quet theory. The determinant of Jacobian provides informa-

tion on limit points and bifurcation points. After locating

these singular points, the proposed method is able to follow

them directly with respect to a varied parameter. The appli-

cation examples have illustrated the efficiency and accuracy

of proposed method.

Numerical developments are fulfilled in both Matlab and

Cast3m, paving the way for application of the method to the

nonlinear dynamics of rotors modelized with 3D finite ele-

ments.
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