Remarks on spectral gaps on the Riemannian path space

Shizan Fang, Bo Wu

To cite this version:

Shizan Fang, Bo Wu. Remarks on spectral gaps on the Riemannian path space. 2015. hal-01192833

HAL Id: hal-01192833

https://hal.science/hal-01192833

Preprint submitted on 3 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Remarks on spectral gaps on the Riemannian path space

Shizan Fang ${ }^{a}$ Bo Wu ${ }^{b * \dagger}$
${ }^{a}$ I.M.B, BP 47870, Université de Bourgogne, Dijon, France
${ }^{b}$ Department of Mathematics, Fudan University, Shanghai, China

Abstract

In this paper, we will give some remarks on links between the spectral gap of the Ornstein-Uhlenbeck operator on the Riemannian path space with lower and upper bounds of the Ricci curvature on the base manifold; this work was motivated by a recent work of A. Naber on the characterization of the bound of the Ricci curvature by analysis of path spaces.

AMS subject Classification: 58J60, 60H07, 60J60

Keyword: Damped gradient, Martingale representation, Ricci curvature, spectral gap, small time behaviour

1 Introduction

Let M be a complete smooth Riemannian manifold of dimension d, and Z a C^{1}-vector field on M. We will be concerned with the diffusion operator

$$
L=\frac{1}{2}\left(\Delta_{M}-Z\right),
$$

where Δ_{M} is the Beltrami-Laplace operator on M. Let ∇ be the Levi-Civita connection and Ric the Ricci curvature tensor on M. We will denote

$$
\operatorname{Ric}_{Z}=\operatorname{Ric}+\nabla Z
$$

It is well-known that the lower bound K_{2} of the symmetrized Ric_{Z}^{s}, that is,

$$
\begin{equation*}
\operatorname{Ric}_{Z}^{s}(x)=\frac{1}{2}\left(\operatorname{Ric}_{Z}(x)+\operatorname{Ric}_{Z}^{*}(x)\right) \geq K_{2} \operatorname{Id} \tag{1.1}
\end{equation*}
$$

where $\operatorname{Ric}_{Z}^{*}$ denotes the transposed matrix of Ric_{Z}, gives the lower bound of constants in the logarithmic Sobolev inequality with respect to the heat measure $\rho_{t}(x, d y)$, associated to L; more precisely,

[^0]\[

$$
\begin{equation*}
\int_{M} u^{2}(y) \log \left(\frac{u^{2}(y)}{\|u\|_{\rho_{t}}^{2}}\right) \rho_{t}(x, d y) \leq 2 \frac{1-e^{-K_{2} t}}{K_{2}} \int_{M}|\nabla u(y)|^{2} \rho_{t}(x, d y), \quad t>0 \tag{1.2}
\end{equation*}
$$

\]

where $\|u\|_{\rho_{t}}^{2}=\int_{M} u^{2}(y) \rho_{t}(x, d y)$.
Given now a finite number of times $0<t_{1}<\ldots<t_{N}$, consider the probability measure $\nu_{t_{1}, \ldots, t_{N}}$ on M^{N} defined by

$$
\begin{equation*}
\int_{M^{N}} f d \nu_{t_{1}, \ldots, t_{N}}=\int_{M^{N}} f\left(y_{1}, \ldots, y_{N}\right) p_{t_{1}}\left(x, d y_{1}\right) p_{t_{2}-t_{1}}\left(y_{1}, d y_{2}\right) \cdots p_{t_{N}-t_{N-1}}\left(y_{N-1}, d y_{N}\right) \tag{1.3}
\end{equation*}
$$

where f is a bounded measurable function on M^{N}. Then with respect to the correlated metric $|\cdot|_{C}$ on $T M^{N}$ (see definition (1.10) below), the logarithmic Sobolev inequality still holds for $\nu_{t_{1}, \ldots, t_{N}}$, that is, there is a constant $C_{N}>0$ such that

$$
\begin{equation*}
\int_{M^{N}} f^{2} \log \left(\frac{f^{2}}{\|f\|_{\nu_{t_{1}, \ldots, t_{N}}}^{2}}\right) d \nu_{t_{1}, \ldots, t_{N}} \leq C_{N} \int_{M^{N}}|\nabla f|_{C}^{2} d \nu_{t_{1}, \ldots, t_{N}}, \quad f \in C^{1}\left(M^{N}\right) \tag{1.4}
\end{equation*}
$$

It was proved in $[20,6]$ that under the hypothesis

$$
\begin{equation*}
\sup _{x \in M}\| \| \operatorname{Ric}_{Z}(x)\| \|<+\infty \tag{1.5}
\end{equation*}
$$

where $|||\cdot|||$ denotes the norm of matrices, the constant C_{N} in (1.4) can be bounded, that is

$$
\begin{equation*}
\sup _{N \geq 1} C_{N}<+\infty \tag{1.6}
\end{equation*}
$$

A natural question is whether (1.6) still holds only under Condition (1.1)? In a recent work [21], A. Naber proved that if the uniform bound (1.6) holds, then the Ricci curvature of the base manifold has an upper bound. It is well-known that Inequality (1.2) implies the lower bound (1.1), therefore Condition (1.6) implies (1.5). The main purpose in [21] is to get informations on Ric_{Z} from the analysis of the Riemannian path space. Let's explain briefly the context.

Let $O(M)$ be the bundle of orthonormal frames and $\pi: O(M) \rightarrow M$ the canonical projection. Let H_{1}, \ldots, H_{d} be the canonical horizontal vector fields on $O(M)$, consider the Stratanovich stochastic differential equation (SDE) on $O(M)$:

$$
\begin{equation*}
d u_{t}(w)=\sum_{i=1}^{d} H_{i}\left(u_{t}(w)\right) \circ d w_{t}^{i}-\frac{1}{2} H_{Z}\left(u_{t}(w)\right) d t, \quad u_{0}(w)=u_{0} \in \pi^{-1}(x) \tag{1.7}
\end{equation*}
$$

where H_{Z} denotes the horizontal lift of Z to $O(M)$, that is, $\pi^{\prime}(u) \cdot H_{Z}(u)=Z(\pi(u))$. It is well-known that under Condition (1.1), the life-time τ_{x} of the $\operatorname{SDE}(1.7)$ is infinite. Let

$$
\begin{equation*}
\gamma_{t}(w)=\pi\left(u_{t}(w)\right) \tag{1.8}
\end{equation*}
$$

Then $\left\{\gamma_{t}(w) ; t \geq 0\right\}$ is a diffusion process on M, having L as generator. The probability measure $\nu_{t_{1}, \ldots, t_{N}}$ considered in (1.3) is the law of $w \rightarrow\left(\gamma_{t_{1}}(w), \ldots, \gamma_{t_{N}}(w)\right)$ on M^{N}. Now consider the following path space

$$
W_{x}^{T}(M)=\{\gamma:[0, T] \rightarrow M \text { continuous, } \gamma(0)=x\}
$$

The law $\mu_{x, T}$ on $W_{x}^{T}(M)$ of $w \rightarrow \gamma \cdot(w)$ is called the Wiener measure on $W_{x}^{T}(M)$. The integration by parts formula for $\mu_{x, T}$ was first estalished in the Seminal book [5], then developed in [16, 10]; the Cameron-Martin type quasi-invariance of $\mu_{x, T}$ was first proved by B. Driver [9], completed and simplified in [18, 19, 13]. By means of Cameron-Martin, we consider the space

$$
\mathbb{H}=\left\{h:[0, T] \rightarrow \mathbb{R}^{d} \text { absolutely continuous; } h(0)=0,|h|_{\mathbb{H}}^{2}=\int_{0}^{T}|\dot{h}(s)|_{\mathbb{R}^{d}}^{2} d s<+\infty\right\}
$$

where the dot denotes the derivative with respect to the time t. Let $F: W_{x}^{T}(M) \rightarrow \mathbb{R}$ be a cylindrical function in the form: $F(\gamma)=f\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{N}\right)\right)$ for some $N \geq 1,0 \leq t_{1}<t_{2}<$ $\cdots<t_{N} \leq 1$, and $f \in C_{b}^{1}\left(M^{N}\right)$. The usual gradient of F in Malliavin calculus is defined by

$$
\begin{equation*}
D_{\tau} F(\gamma(w))=\sum_{j=1}^{N} u_{t_{j}}(w)^{-1}\left(\partial_{j} f\right)\left(\gamma_{t_{1}}(w), \cdots, \gamma_{t_{N}}(w)\right) \mathbf{1}_{\left(\tau \leq t_{j}\right)}, \tag{1.9}
\end{equation*}
$$

where ∂_{j} is the gradient with respect to the j-th component. The correlated norm of ∇f is

$$
\begin{equation*}
|\nabla f|_{C}^{2}=\sum_{j, k=1}^{N}\left\langle u_{t_{j}}(w)^{-1}\left(\partial_{j} f\right), u_{t_{k}}(w)^{-1}\left(\partial_{k} f\right)\right\rangle t_{j} \wedge t_{k}, \tag{1.10}
\end{equation*}
$$

where $t_{j} \wedge t_{k}$ denotes the minimum between t_{j} and t_{k}. Notice that the norm $|\nabla f|_{C}$ is random. The generator \mathcal{L}_{T}^{x} associated to the Dirichlet form

$$
\mathscr{E}(F, F)=\int_{W_{x}^{T}(M)}\left(\int_{0}^{T}\left|D_{\tau} F\right|^{2}(\gamma) d \tau\right) d \mu_{x, T}(\gamma)
$$

is called the Ornstein-Uhlenbeck operator. The powerful tool of Γ_{2} of Bakry and Emery [3] is not applicable to \mathcal{L}_{T}^{x}, the reason for this is the geometry of $W_{x}^{T}(M)$ inherted from \mathbb{H} is quite complicated, the associated "Ricci tensor" being a divergent object (see [7, 8, 12]). When the base manifold M is compact, the existence of the spectral gap for \mathcal{L}_{T}^{x} has been proved in [14]. The logarithmic Sobolev inequality for $D_{\tau} F$ defined in (1.9) has been established in [2], as well as in [20] or [6] where the constant was estimated using the bound of Ricci curvature tensor of the base manifold M. The method used in [14] is the martingale representation, which takes advantage the Itô filtration; this method has been developed in [12] to deal with the problem of vanishing of harmonic forms on $W_{x}^{T}(M)$. The purpose in [21] is to proceed in the opposite direction, to get the bound for Ricci curvature tensor of the base manifold M from the analysis of the path space $W_{x}^{T}(M)$.

The organization of the paper is as follows. In section 2, we will recall briefly basic objets in Analysis of $W_{x}^{T}(M)$. On the path space $W_{x}^{T}(M)$, there exist two type of gradients: the usual one is more related to the geometry of the base manifold, while the damped one is easy to be handled. In section 3, we will make estimation of the spectral gap of \mathcal{L}_{T}^{x} as explicitly as possible in function of lower bound K_{2} and upper bound K_{1} of Ric. In section 4, we will study the behaviour of the spectral gap $\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)$ as $T \rightarrow 0$. Roughly speaking, we will get the following result:

$$
1-\frac{K_{1} T}{2}+o(T) \leq \operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \leq 1+\frac{K_{2} T}{2}+o(T), \quad \text { as } T \rightarrow 0
$$

under the following condition (3.1).

2 Framework of the Riemannian path space

We shall keep the notations of Section 1, and throughout this section, $u_{t}(w)$ denotes always the solution of (1.7) and $\gamma_{t}(w)$ the path defined in (1.8). For any $h \in \mathbb{H}$, we introduce first the usual gradient on the path space $W_{x}^{T}(M)$, which gives Formula (1.9) when the functional F is a cylindrical function. To this end, let

$$
\begin{equation*}
q(t, h)=\int_{0}^{t} \Omega_{u_{s}(w)}\left(h(s), o d w(s)-\frac{1}{2} u_{s}(w)^{-1} Z_{\gamma_{s}(w)} d s\right) \tag{2.1}
\end{equation*}
$$

where Ω_{u} is the equivariant representation of the curvature tensor on M. Let ric_{Z} be the equivariant representation of Ric_{Z}, that is,

$$
\operatorname{ric}_{Z}(u)=u^{-1} \circ \operatorname{Ric}_{Z}(\pi(u)) \circ u, \quad u \in O(M)
$$

Consider $\hat{h}(w) \in \mathbb{H}$ defined by

$$
\begin{equation*}
\dot{\hat{h}}_{t}(w)=\dot{h}(t)+\frac{1}{2} \operatorname{ric}_{Z}\left(u_{t}(w)\right) h(t) \tag{2.2}
\end{equation*}
$$

Let $F: W_{x}^{T}(M) \rightarrow \mathbb{R}$ be a functional, we denote $\tilde{F}(w)=F(\gamma \cdot(w))$. Then according to [16], we define

$$
\begin{equation*}
\left(D_{h} F\right)(\gamma \cdot(w))=\left\{\frac{d}{d \varepsilon} \tilde{F}\left(\int_{0}^{\cdot} e^{\varepsilon q(s, h)} d w(s)+\varepsilon \hat{h}\right)\right\}_{\varepsilon=0} \tag{2.3}
\end{equation*}
$$

By $[5,16]$, if F is a cylindrical function on $W_{x}^{T}(M)$, then

$$
\left(D_{h} F\right)(\gamma \cdot(w))=\int_{0}^{T}\left\langle D_{\tau} F(\gamma \cdot(w)), \dot{h}(\tau)\right\rangle d \tau
$$

where $D_{\tau} F$ was given in (1.9). Consider the following resolvent equation

$$
\begin{equation*}
\frac{d Q_{t, s}}{d t}=-\frac{1}{2} \operatorname{ric}_{Z}\left(u_{t}(w)\right) Q_{t, s}, \quad t \geq s, Q_{s, s}=\mathrm{Id} \tag{2.4}
\end{equation*}
$$

For a cylindrical function F on $W_{x}^{T}(M)$ given by $F(\gamma)=f\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{N}\right)\right)$ with $f \in$ $C_{b}^{1}\left(M^{N}\right)$, following [16], we define the damped gradient $\tilde{D}_{\tau} F$ of F by

$$
\begin{equation*}
\tilde{D}_{\tau} F(\gamma \cdot(w))=\sum_{j=1}^{N} Q_{t_{j}, \tau}^{*}\left(u_{t_{j}}(w)^{-1} \partial_{j} f\right) \mathbf{1}_{\left(\tau \leq t_{j}\right)} \tag{2.5}
\end{equation*}
$$

where $Q_{\tau, s}^{*}$ is the transpose matrix of $Q_{\tau, s}$. The damped gradient $\tilde{D}_{\tau} F$ on the path space $W_{x}^{T}(M)$ plays a basic role in Analysis of $W_{x}^{T}(M)$. Let $\left(v_{t}\right)_{t \geq 0}$ be a \mathbb{R}^{d}-valued process, adapted to the Itô filtration \mathscr{F}_{t} generated by $\{w(s) ; s \leq t\}$ such that $\mathbb{E}\left(\int_{0}^{T}\left|v_{t}\right|^{2} d t\right)<+\infty$. Consider two maps $v \rightarrow \tilde{v}$ and $v \rightarrow \hat{v}$ defined respectively by

$$
\begin{equation*}
\tilde{v}_{t}=v_{t}-\frac{1}{2} \operatorname{ric}_{u_{t}(w)} \int_{0}^{t} Q_{t, s} v_{s} d s \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{v}_{t}=v_{t}+\frac{1}{2} \operatorname{ric}_{u_{t}(w)} \int_{0}^{t} v_{s} d s \tag{2.7}
\end{equation*}
$$

Then $\hat{\tilde{v}}=\tilde{\hat{v}}=v$. The two gradients $D_{t} F$ and $\tilde{D}_{t} F$ are linked by the following formula

$$
\begin{equation*}
\int_{0}^{T}\left\langle\tilde{D}_{t} F, v_{t}\right\rangle d t=\int_{0}^{T}\left\langle D_{t} F, \tilde{v}_{t}\right\rangle d t \tag{2.8}
\end{equation*}
$$

The good feather of the damped gradient is that it admits a nice martingale representation

$$
F=\mathbb{E}(F)+\int_{0}^{T}\left\langle\mathbb{E}^{\mathscr{F}_{t}}\left(\tilde{D}_{t} F\right), d w_{t}\right\rangle
$$

where $\mathbb{E}^{\mathscr{F}_{t}}$ denotes the conditional expectation with respect to \mathscr{F}_{t}. The following logarithmic Sobolev inequality holds ([11, 17]):

$$
\begin{equation*}
\mathbb{E}\left(F^{2} \log \frac{F^{2}}{\|F\|_{L^{2}}^{2}}\right) \leq 2 \mathbb{E}\left(\int_{0}^{T}\left|\tilde{D}_{t} F\right|^{2} d t\right) \tag{2.9}
\end{equation*}
$$

3 Precise lower bound on the spectral gap

The inconvenient of Inequality (2.9) is that the geometric information of the base manifold M is completely hidden. Now we use the usual gradient $D_{t} F$ to make involving the geometry of M. By (2.9), the matter is now to estimate $\int_{0}^{T}\left|\tilde{D}_{t} F\right|^{2} d t$ by $\left|D_{t} F\right|$. We assume that

$$
\begin{equation*}
K_{2} \mathrm{Id} \leq \operatorname{ric}_{Z}^{s}, \quad\| \| \mathrm{ric}_{Z}\| \| \leq K_{1} \tag{3.1}
\end{equation*}
$$

for two constants K_{1}, K_{2} with $K_{1} \geq 0$ and $K_{1}+K_{2} \geq 0$.
Theorem 3.1. Let $0<t \leq T$. Set

$$
\begin{align*}
\Lambda(t, T) & =1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2}(T-t)}{2}}\right)+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} t}{2}}\right) \\
& +\left(\frac{K_{1}}{K_{2}}\right)^{2}\left[\left(1-\mathrm{e}^{-\frac{K_{2} t}{2}}\right)+\frac{1}{2}\left(\mathrm{e}^{-\frac{K_{2}(T+t)}{2}}-\mathrm{e}^{-\frac{K_{2}(T-t)}{2}}\right)\right] . \tag{3.2}
\end{align*}
$$

Then we have the relation:

$$
\begin{equation*}
\int_{0}^{T}\left|\tilde{D}_{t} F\right|^{2} d t \leq \int_{0}^{T} \Lambda(t, T)\left|D_{t} F\right|^{2} d t \tag{3.3}
\end{equation*}
$$

Proof. From (2.5) and (2.8), we have

$$
\begin{equation*}
\tilde{D}_{t} F=D_{t} F-\frac{1}{2} \int_{t}^{T} Q_{s, t}^{*} r i c_{u_{s}}^{*} D_{s} F d s \tag{3.4}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\left|\tilde{D}_{t} F\right|^{2} & =\left|D_{t} F\right|^{2}-\left\langle D_{t} F, \int_{t}^{T} Q_{s, t}^{*} r i c_{u_{s}}^{*} D_{s} F d s\right\rangle+\frac{1}{4}\left|\int_{t}^{T} Q_{s, t}^{*} r i c_{u_{s}}^{*} D_{s} F d s\right|^{2} \\
& :=I_{1}+I_{2}+I_{3} \text { respectively. }
\end{aligned}
$$

In the following we will estimate the term of I_{2} and I_{3}. Under the lower bound in (3.1),

$$
\left\|\left\|Q_{s, t}^{*}\right\|\right\| \leq e^{-\frac{K_{2}(s-t)}{2}}, \quad s \geq t
$$

Let

$$
\Lambda_{1}(t, T):=\int_{t}^{T}\left(\mathrm{e}^{-\frac{K_{2}(s-t)}{4}}\right)^{2} d s
$$

Then

$$
\begin{aligned}
\left|I_{2}\right| & \leq\left|D_{t} F\right| \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} K_{1}\left|D_{s} F\right| d s \\
& \leq\left|D_{t} F\right| \sqrt{K_{1} \int_{t}^{T}\left(\mathrm{e}^{-\frac{K_{2}(s-t)}{4}}\right)^{2} d s} \sqrt{K_{1} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s} \\
& =\left|D_{t} F\right| \sqrt{K_{1} \Lambda_{1}(t, T)} \sqrt{K_{1} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s} \\
& \leq \frac{1}{2}\left\{\left|D_{t} F\right|^{2} K_{1} \Lambda_{1}(t, T)+K_{1} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{3}\right| & \leq \frac{1}{4}\left|\int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} K_{1}\right| D_{s} F|d s|^{2} \\
& \leq \frac{1}{4} K_{1}^{2} \Lambda_{1}(t, T) \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s
\end{aligned}
$$

Combining all the above inequalities, we get

$$
\begin{aligned}
\left|\tilde{D}_{t} F\right|^{2} & \leq\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right)\left|D_{t} F\right|^{2}+\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right) \frac{K_{1}}{2} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s \\
& =\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right)\left(\left|D_{t} F\right|^{2}+\frac{K_{1}}{2} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s\right)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
\int_{0}^{T}\left|\tilde{D}_{t} F\right|^{2} d t & \leq \int_{0}^{T}\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right)\left|D_{t} F\right|^{2} d t \\
& +\int_{0}^{T}\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right) \frac{K_{1}}{2} \int_{t}^{T} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}}\left|D_{s} F\right|^{2} d s d t \\
& =\int_{0}^{T}\left(1+\frac{K_{1}}{2} \Lambda_{1}(s, T)\right)\left|D_{s} F\right|^{2} d s \\
& +\int_{0}^{T}\left|D_{s} F\right|^{2} d s \int_{0}^{s} \frac{K_{1}}{2}\left(1+\frac{K_{1}}{2} \Lambda_{1}(t, T)\right) \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} d t \\
& :=\int_{0}^{T}\left(1+\frac{K_{1}}{2} \Lambda_{1}(s, T)\right)\left|D_{s} F\right|^{2} d s+\int_{0}^{T}\left(J_{1}(s)+J_{2}(s)\right)\left|D_{s} F\right|^{2} d s
\end{aligned}
$$

where

$$
J_{1}(s):=\int_{0}^{s} \frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} d t, J_{2}(s):=\int_{0}^{s}\left(\frac{K_{1}}{2}\right)^{2} \Lambda_{1}(t, T) \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} d t
$$

Next, then we compute the term $J_{1}(s)$ and $J_{2}(s)$. By direct computation, we have

$$
J_{1}(s)=\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} s}{2}}\right)
$$

and

$$
\begin{aligned}
J_{2}(s) & =\left(\frac{K_{1}}{2}\right)^{2} \int_{0}^{s} \frac{2}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2}(T-t)}{2}}\right) \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} d t \\
& =\left(\frac{K_{1}}{2}\right)^{2} \frac{2}{K_{2}}\left[\int_{0}^{s} \mathrm{e}^{-\frac{K_{2}(s-t)}{2}} d t-\mathrm{e}^{-\frac{K_{2}(T+s)}{2}} \int_{0}^{s} \mathrm{e}^{K_{2} t} d t\right] \\
& =\left(\frac{K_{1}}{2}\right)^{2} \frac{2}{K_{2}}\left[\frac{2}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} s}{2}}\right)-\frac{1}{K_{2}} \mathrm{e}^{-\frac{K_{2}(T+s)}{2}}\left(\mathrm{e}^{K_{2} s}-1\right)\right] \\
& =\left(\frac{K_{1}}{2}\right)^{2} \frac{2}{K_{2}}\left[\frac{2}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} s}{2}}\right)+\frac{1}{K_{2}} \mathrm{e}^{-\frac{K_{2}(T+s)}{2}}-\frac{1}{K_{2}} \mathrm{e}^{-\frac{K_{2}(T-s)}{2}}\right] .
\end{aligned}
$$

Adding $J_{1}(s)$ to $J_{1}(s)$ implying that

$$
\begin{aligned}
& J_{1}(s)+J_{2}(s) \\
& =\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} s}{2}}\right)+\left(\frac{K_{1}}{K_{2}}\right)^{2}\left[\left(1-\mathrm{e}^{-\frac{K_{2} s}{2}}\right)+\frac{1}{2}\left(\mathrm{e}^{-\frac{K_{2}(T+s)}{2}}-\mathrm{e}^{-\frac{K_{2}(T-s)}{2}}\right)\right]:=\Lambda_{2}(s, T)
\end{aligned}
$$

Thus,

$$
\int_{0}^{T}\left|\tilde{D}_{t} F\right|^{2} d t \leq \int_{0}^{T} \Lambda(t, T)\left|D_{t} F\right|^{2} d t
$$

with

$$
\begin{aligned}
\Lambda(t, T) & =1+\frac{K_{1}}{2} \Lambda_{1}(t, T)+\Lambda_{2}(t, T) \\
& =1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2}(T-t)}{2}}\right)+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} t}{2}}\right) \\
& +\left(\frac{K_{1}}{K_{2}}\right)^{2}\left[\left(1-\mathrm{e}^{-\frac{K_{2} t}{2}}\right)+\frac{1}{2}\left(\mathrm{e}^{-\frac{K_{2}(T+t)}{2}}-\mathrm{e}^{-\frac{K_{2}(T-t)}{2}}\right)\right] .
\end{aligned}
$$

The proof is completed.
Notice that as $K_{2} \rightarrow 0$, by expression (3.2),

$$
\Lambda(t, T) \rightarrow 1+\frac{K_{1} T}{2}+K_{1}^{2}\left(\frac{T t}{4}-\frac{t^{2}}{8}\right)
$$

Now we study the variation of the function $t \rightarrow \Lambda(t, T)$. It is quite interesting to remark that its monotonicity is dependent of the sign of K_{2}.

Proposition 3.2. (i) If $K_{2}<0$, then $t \rightarrow \Lambda(t, T)$ is strictly increasing over $[0, T]$. (ii) If $K_{2}>0$, then the maximum is attained at a point t_{0} in $(0, T)$.

Proof. Taking the derivative of $t \rightarrow \Lambda(t, T)$ gives

$$
\begin{aligned}
\Lambda^{\prime}(t, T) & =-\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2}(T-t)}{2}}+\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2} t}{2}} \\
& +\frac{K_{1}^{2}}{2 K_{2}} \mathrm{e}^{-\frac{K_{2} t}{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2}(T+t)}{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2}(T-t)}{2}} .
\end{aligned}
$$

In addition, we have

$$
\Lambda(0, T)=1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)
$$

and

$$
\begin{aligned}
\Lambda(T, T) & =1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)+\left(\frac{K_{1}}{K_{2}}\right)^{2}\left[\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)+\frac{1}{2}\left(\mathrm{e}^{-K_{2} T}-1\right)\right] \\
& =1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)+\frac{1}{2}\left(\frac{K_{1}}{K_{2}}\right)^{2}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)^{2} \\
& =\frac{1}{2}+\frac{1}{2}\left[1+\frac{K_{1}}{K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)\right]^{2}=\frac{1}{2}+\frac{1}{2} \Lambda^{2}(0, T) .
\end{aligned}
$$

From the second equality in the above, we observe that $\Lambda(T, T) \geq \Lambda(0, T)$. Moreover,

$$
\begin{align*}
\Lambda^{\prime}(0, T) & =-\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}+\frac{K_{1}}{2}+\frac{K_{1}^{2}}{2 K_{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}} \\
& =\frac{K_{1}}{2}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)+\frac{K_{1}^{2}}{2 K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right) \tag{3.5}\\
& =\frac{K_{1}}{2}\left(K_{1}+K_{2}\right) \frac{1-\mathrm{e}^{-\frac{K_{2} T}{2}}}{K_{2}} \geq 0
\end{align*}
$$

and

$$
\begin{align*}
\Lambda^{\prime}(T, T) & =-\frac{K_{1}}{2}+\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}+\frac{K_{1}^{2}}{2 K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-K_{2} T}-\frac{K_{1}^{2}}{4 K_{2}} \\
& =-\frac{K_{1}}{2}+\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}-\frac{K_{1}^{2}}{4 K_{2}}\left(1-2 \mathrm{e}^{-\frac{K_{2} T}{2}}+\mathrm{e}^{-K_{2} T}\right) \tag{3.6}\\
& =-\frac{K_{1}}{2}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)-\frac{K_{1}^{2}}{4 K_{2}}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)^{2} .
\end{align*}
$$

We see that

$$
\begin{cases}\Lambda^{\prime}(T, T)>0 & \text { if } K_{2}<0, \tag{3.7}\\ \Lambda^{\prime}(T, T)<0 & \text { if } K_{2}>0 .\end{cases}
$$

Now we look for $t \in[0, T]$ such that $\Lambda^{\prime}(t, T)=0$. We have

$$
\begin{align*}
& \Lambda^{\prime}(t, T)=0 \\
& \Leftrightarrow \quad\left(-\frac{K_{1}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right) \mathrm{e}^{K_{2} t}+\left(\frac{K_{1}}{2}+\frac{K_{1}^{2}}{2 K_{2}}-\frac{K_{1}^{2}}{4 K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)=0 \\
& \Leftrightarrow \quad-\frac{K_{1}}{4} \mathrm{e}^{-\frac{K_{2} T}{2}}\left(2+\frac{K_{1}}{K_{2}}\right) \mathrm{e}^{K_{2} t}+\frac{K_{1}}{4}\left(2+\frac{2 K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)=0 \tag{3.8}\\
& \Leftrightarrow \quad \mathrm{e}^{-\frac{K_{2} T}{2}}\left(2+\frac{K_{1}}{K_{2}}\right) \mathrm{e}^{K_{2} t}=\left(2+\frac{2 K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right) .
\end{align*}
$$

Therefore there exists at most one t such that $\Lambda^{\prime}(t, T)=0$. For the case where $K_{2}<0$, if there exists $t_{0} \in(0, T)$ such that $\Lambda\left(t_{0}, T\right)<0$. Then by (3.5) and (3.7), the equation $\Lambda^{\prime}(t, T)=0$ has at least two solutions, it is impossible. Therefore for $K_{2}<0, \Lambda^{\prime}(t, T) \geq 0$. For $K_{2}>0$, we suppose t_{0} such that $\Lambda^{\prime}\left(t_{0}, T\right)=0$. Let $\beta=\frac{K_{1}}{K_{2}}$, then by (3.8)

$$
\mathrm{e}^{K_{2} t_{0}}=\left(1+\frac{\beta}{2+\beta}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)\right) \mathrm{e}^{\frac{K_{2} T}{2}}
$$

or $t_{0} \in(0, T)$ is such that

$$
\begin{equation*}
\mathrm{e}^{\frac{K_{2} t_{0}}{2}}=\sqrt{1+\frac{\beta}{2+\beta}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \mathrm{e}^{\frac{K_{2} T}{4}} . \tag{3.9}
\end{equation*}
$$

The proof is completed.

Proposition 3.3. Let $\beta=\frac{K_{1}}{K_{2}}$, then (i) if $K_{2}>0$,

$$
\begin{align*}
\sup _{t \in[0, T]} \Lambda(t, T) & =(1+\beta)^{2}-\left(\beta+\frac{\beta^{2}}{2}\right) \sqrt{1+\frac{\beta}{2+\beta}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \mathrm{e}^{-\frac{K_{2} T}{4}} \\
& -\frac{\left(\beta+\beta^{2}-\frac{\beta^{2}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)}{\sqrt{1+\frac{\beta}{2+\beta}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)}} \mathrm{e}^{-\frac{K_{2} T}{4}} \tag{3.10}
\end{align*}
$$

(ii) if $K_{2}<0$,

$$
\begin{equation*}
\sup _{t \in[0, T]} \Lambda(t, T)=\frac{1}{2}+\frac{1}{2}\left(1+\frac{K_{1}}{K_{2}}\left[1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right]\right)^{2} \tag{3.11}
\end{equation*}
$$

Proof. For $K_{2}>0$, we have

$$
\begin{aligned}
\Lambda\left(t_{0}, T\right) & =1+\beta\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}} \cdot \mathrm{e}^{\frac{K_{2} t_{0}}{2}}\right)+\beta\left(1-\mathrm{e}^{\frac{K_{2} t_{0}}{2}}\right) \\
& +\beta^{2}\left[\left(1-\mathrm{e}^{-\frac{K_{2} t_{0}}{2}}\right)+\frac{1}{2}\left(\mathrm{e}^{-\frac{K_{2} T}{2}} \cdot \mathrm{e}^{\frac{-K_{2} t_{0}}{2}}-\mathrm{e}^{-\frac{K_{2} T}{2}} \cdot \mathrm{e}^{\frac{K_{2} t_{0}}{2}}\right)\right] \\
& =1+2 \beta+\beta^{2}-\left(\beta+\frac{\beta^{2}}{2}\right) \mathrm{e}^{-\frac{K_{2} T}{2}} \cdot \mathrm{e}^{\frac{K_{2} t_{0}}{2}}-\left(\beta+\beta^{2}-\frac{\beta^{2}}{2} \mathrm{e}^{-\frac{K_{2} T}{2}}\right) \mathrm{e}^{-\frac{K_{2} t_{0}}{2}}
\end{aligned}
$$

Using (3.9) yields (3.10). For $K_{2}<0, \sup _{t \in[0, T]} \Lambda(t, T)=\Lambda(T, T)$, which gives (3.11). Combining (2.9) and (3.3), we get

Theorem 3.4. Let $C\left(T, K_{1}, K_{2}\right)=\sup _{t \in[0, T]} \Lambda(t, T)$; then it holds

$$
\begin{equation*}
\mathbb{E}\left(F^{2} \log \frac{F^{2}}{\|F\|_{L^{2}}^{2}}\right) \leq 2 C\left(T, K_{1}, K_{2}\right) \mathbb{E}\left(\int_{0}^{T}\left|D_{t} F\right|^{2} d t\right) \tag{3.12}
\end{equation*}
$$

for any cylindrical function F on $W_{x}^{T}(M)$.
It is well-konwn that the above logarithmic Sobolev inequality implies that the spectral gap of \mathcal{L}_{T}^{x}, denoted by $\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)$, has the following lower bound

$$
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \geq \frac{1}{C\left(T, K_{1}, K_{2}\right)}
$$

Theorem 3.5. Assume (3.1) holds, then (i) if $K_{2}>0$, we have

$$
\begin{equation*}
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)^{-1} \leq\left(1+\frac{K_{1}}{K_{2}}\right)^{2}-\frac{K_{1}}{K_{2}} \sqrt{\left(2+\frac{K_{1}}{K_{2}}\right)\left(2+2 \frac{K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \mathrm{e}^{-\frac{K_{2} T}{4}} \tag{3.13}
\end{equation*}
$$

(ii) if $K_{2}<0$, we have

$$
\begin{equation*}
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)^{-1} \leq \frac{1}{2}+\frac{1}{2}\left(1+\frac{K_{1}}{K_{2}}\left[1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right]\right)^{2} \tag{3.14}
\end{equation*}
$$

Proof. Using the elementary inequality: $A+B \geq 2 \sqrt{A B}$ to the last two terms in (3.10) yields (3.13). Inequality (3.14) is obvious.

It is quite interesting to remark that

Proposition 3.6. Let $\psi\left(T, K_{1}, K_{2}\right)$ be the right hand side of (3.13) when $K_{2}>0$ and the right hand side of (3.14) for $K_{2}<0$, then

$$
\begin{equation*}
\psi\left(T, K_{1}, K_{2}\right) \rightarrow 1+\frac{K_{1} T}{2}+\frac{K_{1}^{2} T^{2}}{8} \quad \text { as } \quad K_{2} \rightarrow 0 \tag{3.15}
\end{equation*}
$$

Proof. It is easy to see that the right hand side of (3.14) tends to $1+\frac{K_{1} T}{2}+\frac{K_{1}^{2} T^{2}}{8}$ as $K_{2} \rightarrow 0$. For the right hand side of (3.13), we first remark that
(a)

$$
\frac{K_{1}}{K_{2}} e^{-\frac{K_{2} T}{4}}=\frac{K_{1}}{K_{2}}-\frac{K_{1} T}{4}+\frac{K_{1} K_{2} T^{2}}{32}+o\left(K_{2}\right)
$$

Secondly

$$
\begin{aligned}
& \left(2+\frac{K_{1}}{K_{2}}\right)\left(2+2 \frac{K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right) \\
& =\left(2+\frac{K_{1}}{K_{2}}\right)\left(2+\frac{K_{1}}{K_{2}}+\frac{K_{1} T}{2}-\frac{K_{1} K_{2} T^{2}}{8}+o\left(K_{2}\right)\right) \\
& =\left(2+\frac{K_{1}}{K_{2}}\right)^{2}\left(1+\frac{\frac{K_{1} T}{2}-\frac{K_{1} K_{2} T^{2}}{8}+o\left(K_{2}\right)}{2+\frac{K_{1}}{K_{2}}}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sqrt{\left(2+\frac{K_{1}}{K_{2}}\right)\left(2+2 \frac{K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \\
& =\left(2+\frac{K_{1}}{K_{2}}\right)\left(1+\frac{1}{2} \frac{\frac{K_{1} T}{2}-\frac{K_{1} K_{2} T^{2}}{8}+o\left(K_{2}\right)}{2+\frac{K_{1}}{K_{2}}}-\frac{K_{1} K_{2} T^{2}}{32}+o\left(K_{2}^{2}\right)\right) \\
& =\left(2+\frac{K_{1}}{K_{2}}\right)+\frac{K_{1} T}{4}-\frac{3 K_{1} K_{2} T^{2}}{32}+o\left(K_{2}\right)
\end{aligned}
$$

Combining this with (a), we get

$$
\begin{aligned}
& \frac{K_{1}}{K_{2}} e^{-\frac{K_{2} T}{4}} \sqrt{\left(2+\frac{K_{1}}{K_{2}}\right)\left(2+2 \frac{K_{1}}{K_{2}}-\frac{K_{1}}{K_{2}} \mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \\
& =\left(2+\frac{K_{1}}{K_{2}}\right) \frac{K_{1}}{K_{2}}-\frac{K_{1} T}{2}-\frac{K_{1}^{2} T^{2}}{8}+o\left(K_{2}\right)
\end{aligned}
$$

Then (3.15) follows from the right hand side of (3.13).
Corollary 3.7. Assume (3.1) holds.
(1) If $K_{1}=K_{2}=K>0$, then

$$
\psi(T, K, K)=4-\sqrt{3\left(4-\mathrm{e}^{-\frac{K T}{2}}\right)} \mathrm{e}^{-\frac{K T}{4}} \rightarrow 1 \text { as } K \rightarrow 0
$$

(2) If $K_{2}=-K_{1}=-K$, then

$$
\psi(T, K,-K)=\frac{1}{2}\left(1+e^{K T}\right)
$$

Remark. Our results improve estimates obtained in [1].

4 Behaviour of $\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)$ as $T \rightarrow 0$

In this section, we consider the case where $Z=0$. Then Condition (3.1) can be readed as

$$
\begin{equation*}
K_{2} \mathrm{Id} \leq \operatorname{ric} \leq K_{1} \mathrm{Id}, \quad \text { with } K_{1}+K_{2} \geq 0 \tag{4.1}
\end{equation*}
$$

and $\operatorname{SDE}(1.7)$ is reduced to

$$
\begin{equation*}
d u_{t}(w)=\sum_{i=1}^{d} H_{i}\left(u_{u}(w)\right) \circ d w_{t}^{i}, \quad u_{0}(w)=u_{0} \in \pi^{-1}(x) . \tag{4.2}
\end{equation*}
$$

The path $\gamma_{t}(w)=\pi\left(u_{t}(w)\right)$ is called Brownian motion path on M. Let $\rho(x, y)$ be the Riemannian distance. By [22, p. 199], there is $\varepsilon>0$ such that

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left(\exp \left(\varepsilon \frac{\rho\left(x, \gamma_{t}\right)^{2}}{2 t}\right)\right)<+\infty \tag{4.3}
\end{equation*}
$$

Assume that the curvature tensor satisfies the following growth condition

$$
\begin{equation*}
\left\|\left\|\Omega_{u}\right\|\right\|+\sum_{i=1}^{d} \mid\left\|\left(L_{H_{i}} \Omega\right)_{u}\right\| \leq \leq\left(1+\rho(x, \pi(u))^{2}\right) \tag{4.4}
\end{equation*}
$$

where $L_{H_{i}}$ denotes the Lie derivative with respect to H_{i}.
Let $v \in \mathbb{H}$, consider the functional $F_{T}: W_{x}^{T}(M) \rightarrow \mathbb{R}$ defined by

$$
F_{T}(\gamma(w))=\int_{0}^{T}\left\langle\dot{v}(t), d w_{t}\right\rangle .
$$

Let $h \in \mathbb{H}$; then by (2.3), we have (see also [15])

$$
\begin{equation*}
\left(D_{h} F_{T}\right)(\gamma(w))=\int_{0}^{T}\left\langle\dot{v}(t), q(t, h) d w_{t}\right\rangle+\int_{0}^{T}\left\langle\dot{v}(t), \dot{\hat{h}}_{t}(w)\right\rangle d t . \tag{4.5}
\end{equation*}
$$

Let $a \in \mathbb{R}^{d}$ and consider $v(t)=t a$ with $|a|=1$ in (4.5), we have

$$
\begin{equation*}
\left(D_{h} F_{T}\right)(\gamma(w))=-\int_{0}^{T}\left\langle q(t, h) a, d w_{t}\right\rangle+\int_{0}^{T}\left\langle a, \dot{\hat{h}}_{t}(w)\right\rangle d t . \tag{4.6}
\end{equation*}
$$

Let $\left\{e_{1}, \cdots, e_{d}\right\}$ be an orthonormal basis of \mathbb{R}^{d}; define

$$
C_{i}(w, t, \tau)=-\int_{\tau}^{t} \Omega_{u_{s}(w)}\left(e_{i}, \circ d w(s)\right) \mathbf{1}_{(\tau<t)} .
$$

Then by Fubini theorem, the term $q(t, h)$ has the expression

$$
q(t, h)=-\sum_{i=1}^{d} \int_{0}^{T} \dot{h}^{i}(\tau) C_{i}(w, t, \tau) d \tau
$$

According to (4.6), the gradient $D_{\tau} F_{T}$ has the following expression:

$$
\begin{equation*}
\left(D_{\tau} F_{T}\right)(\gamma(w))=\sum_{i=1}^{d}\left(\int_{\tau}^{T}\left\langle C_{i}(w, s, \tau) a, d w_{s}\right\rangle\right) e_{i}+a+\frac{1}{2} \int_{\tau}^{T} \operatorname{ric}_{Z}\left(u_{s}\right) a d s \tag{4.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{Var}\left(F_{T}\right)=\mathbb{E}\left(F_{T}^{2}\right)-\mathbb{E}\left(F_{T}\right)^{2}=|a|^{2} T=T . \tag{4.8}
\end{equation*}
$$

Proposition 4.1. Assume (4.4). Let

$$
\chi_{T}=\frac{\mathbb{E}\left(\int_{0}^{T}\left|D_{\tau} F\right|^{2} d \tau\right)}{\operatorname{Var}\left(F_{T}\right)}
$$

Then

$$
\begin{equation*}
\chi_{T}=1+\frac{T}{2}\left\langle\operatorname{ric}_{Z}\left(u_{0}\right) a, a\right\rangle+o(T) \quad \text { as } T \rightarrow 0 \tag{4.9}
\end{equation*}
$$

where u_{0} is the initial point of (4.2).
Proof. We have, using (4.7),

$$
\begin{aligned}
\left|D_{\tau} F_{T}\right|^{2} & =\sum_{i=1}^{d}\left(\int_{\tau}^{T}\left\langle C_{i}(w, s, \tau) a, d w_{s}\right\rangle\right)^{2}+|a|^{2}+\frac{1}{4}\left|\int_{\tau}^{T} \operatorname{ric}\left(u_{s}\right) a d s\right|^{2} \\
& +\left\langle a, \int_{\tau}^{T} \operatorname{ric}\left(u_{s}\right) a d s\right\rangle+2 \sum_{i=1}^{d} \int_{\tau}^{T}\left\langle C_{i}(w, s, \tau) a, d w_{s}\right\rangle a^{i} \\
& +2 \int_{0}^{d} \int_{\tau}^{T}\left\langle C_{i}(w, s, \tau) a, d w_{s}\right\rangle \cdot \int_{\tau}^{T}\left\langle\operatorname{ric}\left(u_{s}\right) a, e_{i}\right\rangle d s .
\end{aligned}
$$

Put respectively

$$
\mathbb{E}\left(\int_{0}^{T}\left|D_{\tau} F_{T}\right|^{2} d \tau\right)=I_{1}(T)+I_{2}(T)+I_{3}(T)+I_{4}(T)+I_{5}(T)+I_{6}(T)
$$

It is obvious that $I_{2}(T)=|a|^{2} T=T$ and $I_{5}(T)=0$. We have

$$
I_{1}(T)=\sum_{i=1}^{d} \int_{0}^{T}\left(\int_{\tau}^{T} \mathbb{E}\left(\left|C_{i}(w, s, \tau) a\right|^{2}\right) d s\right) d \tau .
$$

Now by growth condition (4.4) and (4.3), there is a constant $\delta>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\left|C_{i}(w, s, \tau) a\right|^{2}\right) \leq \delta(s-\tau) \tag{4.10}
\end{equation*}
$$

So that $I_{1}(T) \leq \delta T^{3} / 6$. By condition (4.1), it is easy to see that $I_{3}(T) \leq \frac{K_{1}^{2} T^{3}}{12}$. It follows that $I_{6}(T) \leq \frac{\sqrt{\delta} K_{1}}{6} T^{3}$. Now for $I_{4}(T)$, we have

$$
\lim _{T \rightarrow 0} \frac{I_{4}(T)}{T^{2}}=\frac{1}{2}\left\langle\operatorname{ric}\left(u_{0}\right) a, a\right\rangle .
$$

Combining these estimates together with (4.8), we get (4.9).
Theorem 4.2. Assume (4.1) and (4.4). Let $K_{2}(x)$ be the lower bound of Ric_{x}. Then as $T \rightarrow 0$,

$$
\begin{equation*}
1-\frac{K_{1} T}{2}+o(T) \leq \operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \leq 1+\frac{K_{2}(x) T}{2}+o(T) \tag{4.11}
\end{equation*}
$$

Proof. For $K_{2}>0$, set $\beta=\frac{K_{1}}{K_{2}}$. As $T \rightarrow 0$, we have

$$
\begin{aligned}
& \sqrt{(2+\beta)\left(2+2 \beta-\beta \mathrm{e}^{-\frac{K_{2} T}{2}}\right)}=\sqrt{(2+\beta)^{2}\left(1+\frac{\beta}{2+\beta}\left(1-\mathrm{e}^{-\frac{K_{2} T}{2}}\right)\right)} \\
& =(2+\beta) \sqrt{1+\frac{\beta}{2+\beta} \frac{K_{2} T}{2}+o(T)} \\
& =(2+\beta)\left(1+\frac{\beta}{2+\beta} \frac{K_{2} T}{4}+o(T)\right) .
\end{aligned}
$$

So, for $K_{2}>0$, as $T \rightarrow 0$,

$$
\begin{aligned}
& \beta \sqrt{(2+\beta)\left(2+2 \beta-\beta \mathrm{e}^{-\frac{K_{2} T}{2}}\right)} \mathrm{e}^{-\frac{K_{2} T}{4}} \\
& =\beta(2+\beta)\left(1+\frac{\beta}{2+\beta} \frac{K_{2} T}{4}+o(T)\right)\left(1-\frac{K_{2}}{4} T+o(T)\right) \\
& =\beta(2+\beta)\left[1+\frac{T}{4}\left(\frac{K_{1}}{2+\beta}-K_{2}\right)+o(T)\right] \\
& =\beta(2+\beta)\left[1-\frac{K_{2} T}{2(2+\beta)}+o(T)\right] .
\end{aligned}
$$

By (3.13), we get

$$
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)^{-1} \leq(1+\beta)^{2}-\beta(2+\beta)\left[1-\frac{K_{2} T}{2(2+\beta)}+o(T)\right]=1+\frac{K_{1} T}{2}+o(T)
$$

which implies that

$$
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \geq 1-\frac{K_{1} T}{2}+o(T)
$$

For $K_{2}<0$, by (3.14),

$$
\begin{aligned}
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)^{-1} & \leq \frac{1}{2}+\frac{1}{2}\left(1+K_{1} \frac{1-\mathrm{e}^{-\frac{K_{2} T}{2}}}{K_{2}}\right)^{2}=\frac{1}{2}+\frac{1}{2}\left(1+\frac{K_{1}}{K_{2}}\left(\frac{K_{2} T}{2}+o(T)\right)\right)^{2} \\
& =1+\frac{K_{1} T}{2}+o(T),
\end{aligned}
$$

which implies again

$$
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \geq 1-\frac{K_{1} T}{2}+o(T)
$$

Now in (4.9), taking the vector a such that ric $\left(u_{0}\right) a=K_{2}(x) a$ yields

$$
\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right) \leq 1+\frac{K_{2}(x) T}{2}+o(T)
$$

The proof of (4.11) is completed.
Corollary 4.3. Assume (4.4). In the case where $\operatorname{Ric}=-K_{1} \operatorname{Id}$ with $K_{1} \geq 0$, we have

$$
\left|\operatorname{Spect}\left(\mathcal{L}_{T}^{x}\right)-1+\frac{K_{1} T}{2}\right|=o(T) \quad \text { as } T \rightarrow 0 .
$$

References

[1] S. Aida, Gradient estimates of harmonic functions and the asymptotics of spectral gaps on path spaces, Interdisplinary Information Sciences, 2 (1996), 75-84.
[2] S. Aida and D. Elworthy, Differential calculus on path and loop spaces I. logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris, 321 (1995), 97-102.
[3] D. Bakry and M. Emery, Diffusion hypercontractivities, Sém. de Probab., XIX, Lect. Notes in Math., 1123 (1985), 177-206, Springer.
[4] D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoamericana, 22 (2006), 683-702.
[5] J. M. Bismut, Large deviation and Malliavin Calculus, Birkhäuser, Boston/Basel, 1984.
[6] B. Capitaine, E. P. Hsu and M. Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Elect. Comm. Probab. 2(1997), 71-81.
[7] A. B. Cruzeiro and P. Malliavin, Renormalized Differential Geometry on path space: Structural equation, Curvature. J. Funct. Anal. 139 (1996), p.119-181.
[8] A. B. Cruzeiro and S. Fang, Weak Levi-Civita connection for the damped metric on the Riemannian path space and Vanishing of Ricci tensor in adapted differential geometry, J. Funct. Anal. 185 (2001), 681-698.
[9] B. Driver, A Cameron-Martin type quasi-invariant theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal. 110 (1992), 272-376.
[10] D. Elworthy and X.M. Li, Formulae for the derivatives of heat semi-group. J. Funct. Anal. 125 (1994), 252-287.
[11] K.D. Elworthy, Y. Le Jan and X.M. Li, on the geometry of diffusion operators and stochastic flow, Lect. notes in Math., 1720 (1999), Springer.
[12] K.D. Elworthy and Y. Yan, The Vanishing of harmonic one-forms on base path spaces, J. Funct. Analysis, 264 (2013, 1168-1196.
[13] O. Enchev and D. Stroock, Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Funct. Anal. 134 (1995), p. 392-416.
[14] S. Fang, Inégalité du type de Poincaré sur l'espace des chemins riemanniens, C.R. Acad. Sci. Paris, 318 (1994), 257-260.
[15] S. Fang, Stochastic anticipative integrals on a Riemannian manifold, J. Funct. Anal. 131 (1995), 228-253.
[16] S. Fang and P. Malliavin, Stochastic analysis on the path space of a Riemannian manifold, J. Funct. Analysis, 131 (1993), 249-274. 129(2005), 339-355.
[17] S. Fang, F.Y. Wang and B. Wu, Transportation-cost inequality on path spaces with uniform distance, Stochastic Process. Appl. 118 (2008), no. 12, 2181C2197.
[18] E. P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal. 134 (1995), p. 417-450.
[19] E. P. Hsu, Quasi-invariance of the Wiener measure on path spaces: Noncompact case, J. Funct. Anal. 193 (2002), p. 278-290.
[20] E. P. Hsu, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phy. 189 (1997), 9-16.
[21] A. Naber, Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces, arXive: 1306.651.
[22] D. Stroock, An introduction to the analysis of paths on a Riemannian manifold, Math. Survey and Monographs, vol. 74, AMS, 2000.

[^0]: *wubo@fudan.edu.cn
 ${ }^{\dagger}$ Supported in part by Creative Research Group Fund of the National Natural Science Foundation of China (No. 10121101) and $\operatorname{RFDP}(20040027009)$.

