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Abstract

The purpose of this note is to establish a probabilistic representation formula for
Navier–Stokes equations on a compact Riemannian manifold. To this end, we first
give a geometric interpretation of Constantin and Iyer’s representation formula for the
Navier–Stokes equation, then extend it to a compact Riemannian manifold. We shall
use Elworthy–Le Jan–Li’s idea to decompose de Rham–Hodge Laplacian operator on a
manifold as a sum of the square of vector fields.
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1 Introduction

The Navier–Stokes equations on R
n or on a torus Tn,

{

∂tu+ (u · ∇)u− ν∆u+∇p = 0,

∇ · u = 0, u|t=0 = u0,
(1.1)

describe the evolution of the velocity u of an incompressible viscous fluid with kinematic
viscosity ν > 0, as well as the pressure p. Such equations attract always the attention of
many researchers, with an enormous quantity of publications in the literature. Concerning
classical results about (1.1), we refer to the book [24]. The Lagrangian description of the fluid
is to determine the position at time t of the particle of fluid. Due to its high nonlinearity,
such a description was not used too often in the past. However, since the seminal works [12]
on the resolution of ordinary differential equations with coefficients of low regularity and [6]
on the relaxed variational principle for Euler equations, there are more and more interests
in Lagrangian descriptions. We refer to [1, 14, 15, 26, 27] for new developments and various
generalizations of [12], to [7, 2] for generalized flows to Euler equations and to [3, 4, 5] for
generalized flows to Navier–Stokes equations.

Connections between Navier–Stokes equations and stochastic evolution have a quite long
history: it can be traced back to a work of Chorin [9]. In [20], Le Jan and Sznitman used
a backward-in-time branching process to express Navier–Stokes equations through Fourier
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transformations. In [8], a representation formula using noisy flow paths for 3-dimensional
Navier–Stokes equation was obtained. An achievement has been realized by Constantin and
Iyer in [11] by using stochastic flows. We also refer to [11] for a more complete description
on the history of the developments.

For reader’s convenience, let us first state Constantin and Iyer’s result [11]:

Theorem 1.1 (Constantin–Iyer). Let ν > 0, W be an n-dimensional Wiener process, k ≥ 1,
and u0 ∈ Ck+1,α a given deterministic divergence-free vector field. Let the pair (X,u) satisfy
the stochastic system

{

dXt =
√
2ν dWt + ut(Xt) dt,

ut = EP
[(

∇X−1
t

)∗(
u0 ◦X−1

t

)]

,
(1.2)

where P is the Leray–Hodge projection and the star ∗ denotes the transposed matrix. Then
u satisfies the incompressible Navier–Stokes equations (1.1).

Using this stochastic representation, Constantin and Iyer were able to give a self-contained
proof of the local existence of the solution to the system (1.1). Two proofs of Theorem
1.1 were provided in [11]: the first one uses heavily the fact that the diffusion coefficient
of the stochastic differential equation (SDE) in (1.2) is constant, and transforms it into a
random ODE by absorbing the Wiener process into the drift coefficient u; the second one
applies the generalized Itô formula to the quantity

(

∇X−1
t

)∗(
u0 ◦ X−1

t

)

which, combined
with the stochastic PDE fulfilled by the inverse X−1

t , leads to the desired result. Note that
if x → ut(x) is 2π-periodic with respect to each component, then SDE (1.2) defines a flow of
diffeomorphims of the torus Tn. For the sake of simplicity, we only consider this last situation
in Section 2.

In order to avoid the computation of the inverse X−1
t of Xt, X. Zhang used in [25] the idea

that the inverse flow can be described by SDEs driven by time-reversed Brownian motion; he
established a similar representation formula for the backward incompressible Navier–Stokes
equations.

In this note, we first give in Section 2 a more geometric interpretation to the formula of
ut in Theorem 1.1, then provide an alternative proof using directly Kunita’s formula ([17,
p.265, Theorem 2.1]) for the pull-back of vector fields under the stochastic flow: surprisingly
enough, it is simpler to use the inverse flow. More precisely, we get the following expression

∫

Tn

〈ut, v〉dx = E

(
∫

Tn

〈

u0, (X
−1
t )∗v

〉

dx

)

, ∀ t ≥ 0, (1.3)

which means that the evolution of ut in the direction v is equal to the average of the evolution
of v under the inverse flow X−1

t in the initial direction u0. The purpose of Section 3 is to
establish a stochastic representation formula for the Navier–Stokes equations on a compact
Riemannian manifold M , where the difficulty is to deal with the de Rham–Hodge Laplacian
operator �. We shall use the idea in [13] to decompose � as a sum of the square of Lie
derivatives: � =

∑

i∈I L2
Ai
, where the family I could be finite or countable. In general, the

vector fields Ai are not of divergence free. See Section 3 for the conditions on {Ai; i ∈ I}
which ensure such a decomposition. A new formula in Section 3 is

ut = E

[

P
(

ρt (X
−1
t )∗u∗0

)#
]

(1.4)

where ρt is the density of the associated stochastic flow Xt, and we use ∗ to transform a
vector field to a differential form, # to transform a differential form to a vector field.

In Section 4, we shall treat two important examples: tori and spheres for which we
prove that the divergence-free eigenvector fields of � enjoy all required properties in Section
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3. Therefore, they will generate volume-preserving stochastic flows for which Formula (1.4)
holds with ρt = 1. Finally, in Section 5 we shall present some explicit computations in the
case of the sphere, to exhibit the properties of {Ai; i ∈ I} used in Section 3.

2 An alternative proof of Constantin–Iyer’s result

Before giving the proof, let us prepare some materials. Let M be a compact Riemannian
manifold without boundary and ϕ : M → M a diffeomorphism. Given a vector field A on
M , the pull-back vector field ϕ−1

∗ (A) is defined by

(

ϕ−1
∗ (A)f

)

(x) = A(f ◦ ϕ−1)(ϕ(x)), for any f ∈ C1(M), x ∈ M.

Equivalently,

ϕ−1
∗ (A)(x) = dϕ−1(ϕ(x))A(ϕ(x)) = (dϕ(x))−1A(ϕ(x)), (2.1)

where dϕ is the differential of ϕ. For two smooth vector fields A,B on M , the Lie derivative
LAB is defined as

(LAB)(x) = lim
t→0

ϕ−1
t∗ (B)(x)−B(x)

t
,

where ϕt is the flow generated by A and ϕ−1
t∗ (B) = (ϕt)

−1
∗ (B). It is well known that LAB =

[A,B] = AB −BA. We have the following simple result.

Lemma 2.1. If A and B are vector fields of divergence free on M , then so is LAB.

Proof. We can provide two different proofs. (i) Since the vector fields A and B are of diver-
gence free, it holds that

∫

M
Af dx =

∫

M
Bf dx = 0 for any function f ∈ C1(M). Therefore,

∫

M

(LAB)f dx =

∫

M

A(Bf) dx−
∫

M

B(Af) dx = 0.

This clearly implies that LAB is of divergence free.
(ii) By the definition of LAB, it suffices to show that ϕ−1

t∗ (B) is of divergence free for all
t ≥ 0. To this end, take any f ∈ C1(M), we have

∫

M

〈

∇f, ϕ−1
t∗ (B)

〉

dx =

∫

M

(

ϕ−1
t∗ (B)f

)

(x) dx =

∫

M

B(f ◦ ϕ−1
t )(ϕt(x)) dx.

Since A is of divergence free, the flow ϕt preserves the volume measure of M . Thus

∫

M

〈

∇f, ϕ−1
t∗ (B)

〉

dx =

∫

M

B(f ◦ ϕ−1
t )(y) dy = 0

since the vector field B is also of divergence free. The above equality implies that ϕ−1
t∗ (B) is

of divergence free.

Now we present another proof of Theorem 1.1, using directly [17, Theorem 2.1, p.265].
Note that for the part we use in this theorem, it is sufficient that ut is of C

2,α which insures
that Xt is a flow of diffeomorphisms.
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Proof of Theorem 1.1. Let (X,u) be the pair solving the system (1.2). Then X = (Xt)t≥0 is
a stochastic flow of C2-diffeomorphisms on T

n. Since the diffusion coefficient of the SDE is
constant and the drift u is of divergence free, we know that the flow Xt preserves the volume
measure of the torus T

n. Let v be a vector field of divergence free on T
n, we have by the

expression of u in (1.2) that
∫

Tn

〈ut, v〉dx = E

(
∫

Tn

〈(

∇X−1
t

)∗(
u0 ◦X−1

t

)

, v
〉

dx

)

= E

(
∫

Tn

〈

u0 ◦X−1
t ,

(

∇X−1
t

)

v
〉

dx

)

= E

(
∫

Tn

〈

u0,
(

∇X−1
t (Xt)

)

v(Xt)
〉

dx

)

,

where in the last equality we have used the measure-preserving property of X−1
t . According

to (2.1), we get
∫

Tn

〈ut, v〉dx = E

(
∫

Tn

〈

u0,X
−1
t∗ (v)

〉

dx

)

, ∀ t ≥ 0. (2.2)

The formula (2.2) means that the evolution of ut in the direction v is equal to the average of
the evolution of v under the inverse flow X−1

t in the initial direction u0.
Now by [17, p.265], if ut is of C

1,α, we have

X−1
t∗ (v) = v +

√
2ν

n
∑

i=1

∫ t

0
X−1

s∗ (∂iv) dW
i
s + ν

∫ t

0
X−1

s∗ (∆v) ds+

∫ t

0
X−1

s∗ ([us, v]) ds,

where ∂iv denotes the partial derivative of v. Substituting this expression of X−1
t∗ (v) into

(2.2), we arrive at
∫

Tn

〈ut, v〉dx =

∫

Tn

〈u0, v〉dx+ νE

∫ t

0

∫

Tn

〈

u0,X
−1
s∗ (∆v)

〉

dxds

+ E

∫ t

0

∫

Tn

〈

u0,X
−1
s∗ ([us, v])

〉

dxds.

(2.3)

As the vector field ∆v is of divergence free, we have by (2.2) that

E

∫ t

0

∫

Tn

〈

u0,X
−1
s∗ (∆v)

〉

dxds =

∫ t

0

∫

Tn

〈us,∆v〉dxds. (2.4)

Next by Lemma 2.1, we know that [us, v] is also of divergence free, therefore again by (2.2),

E

∫ t

0

∫

Tn

〈

u0,X
−1
s∗ ([us, v])

〉

dxds =

∫ t

0

∫

Tn

〈us, [us, v]〉dxds

=

∫ t

0

∫

Tn

〈us, (us · ∇)v − (v · ∇)us〉dxds

=

∫ t

0

∫

Tn

〈us, (us · ∇)v〉dxds− 1

2

∫ t

0

∫

Tn

(v · ∇)|us|2 dxds

=

∫ t

0

∫

Tn

〈us, (us · ∇)v〉dxds,

where in the last equality we have used the fact that v is of divergence free. Substituting this
equality and (2.4) into (2.3), we obtain for all t ≥ 0 that

∫

Tn

〈ut, v〉dx =

∫

Tn

〈u0, v〉dx+ ν

∫ t

0

∫

Tn

〈us,∆v〉dxds+
∫ t

0

∫

Tn

〈us, (us · ∇)v〉dxds.
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The above equality implies that for a.e. t ≥ 0, it holds

d

dt

∫

Tn

〈ut, v〉dx = ν

∫

Tn

〈ut,∆v〉dx+

∫

Tn

〈ut, (ut · ∇)v〉dx.

Multiplying both sides by a real-valued function α ∈ C1
c ([0,∞)) and integrating by parts, we

arrive at

α(0)

∫

Tn

〈u0, v〉dx+

∫ ∞

0

∫

Tn

[

α′(t)〈ut, v〉+ να(t)〈ut,∆v〉 + α(t)〈ut, (ut · ∇)v〉
]

dxdt = 0.

This implies that ut solves strongly the Navier–Stokes equation, since ut was assumed to be
of C2,α.

3 Extension to compact Riemannian manifolds

In this section, we shall establish the stochastic representation for Navier–Stokes equations
on a compact Riemannian manifold M of dimension n. To this end, we assume that there
exists a (possibly infinite) family of smooth vector fields {Ai; i ∈ I} on M satisfying the
following conditions:

(a) for all x ∈ M ,
∑

i∈I
〈Ai(x), u〉2TxM = |u|2TxM for any u ∈ TxM ;

(b)
∑

i∈I
∇Ai

Ai = 0;

(c)
∑

i∈I
Ai ∧ ∇VAi = 0 for any vector field V .

Here ∇ denotes the covariant derivative with respect to the Levi–Civita connection on M
and ∧ the exterior product. First of all, we give the following example.

Example 3.1 (Gradient system). By Nash’s embedding theorem, M can be isometrically
embedded into R

m for some m > n. For any x ∈ M , denote by Px the orthogonal projection
from R

m onto TxM . Let e = {e1, · · · , em} be an orthonormal basis of Rm. According to [23,
Section 4.2], we define

Ai(x) = Px(ei), x ∈ M, i = 1, · · · ,m.

Then {A1, · · · , Am} are smooth vector fields satisfying conditions (a), (b) and (c). Note that
condition (c) does not often appear. For a justification of (c), we refer to [13, Remark 2.3.1,
p.39]. For the case of spheres, we shall do explicit computations in Appendix to illustrate
conditions (a), (b) and (c).

Now we shall decompose the de Rham–Hodge Laplacian operator � as the sum of L2
Ai
,

where LA denotes the Lie derivative with respect to A. For a differential form ω on M , it
holds that

LAdω = dLAω, (3.1)

where d is the exterior derivative. Let I(A) be the inner product by A, that is, for a differential
q-form ω,

(I(A)ω)(V2, · · · , Vq) = ω(A,V2, · · · , Vq).
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Following [13], we define, for a differential q-form ω,

δ̂(ω) =
∑

i∈I
I(Ai)(LAi

ω). (3.2)

Let δ be the adjoint operator of d, which admits the expression

δ(ω)(v2, · · · , vq) =
n
∑

j=1

(∇uj
ω)(uj , v2, · · · , vq), (3.3)

where {u1, · · · , un} is an orthonormal basis of TxM .

Proposition 3.2. Under conditions (a) and (b), for any differential 1-form ω, δ̂(ω) = δ(ω).

Proof. We have

I(Ai)LAi
ω = (LAi

ω)(Ai) = LAi
(ω(Ai)) = ω(∇Ai

Ai) + (∇Ai
ω)(Ai). (3.4)

Let {u1, · · · , un} be an orthonormal basis of TxM , then condition (a) yields
∑

i∈I
〈Ai(x), uj〉 〈Ai(x), uk〉 = 〈uj , uk〉 = δjk.

Therefore, replacing Ai(x) by
∑n

j=1〈Ai(x), uj〉uj at the last term in (3.4), and summing over
i ∈ I leads to δ(ω) according to (3.3); the sum of the first term on the right hand side of
(3.4) vanishes by condition (b).

Proposition 3.3. Under (a), (b) and (c), for any differential 2-form ω, δ̂(ω) = δ(ω).

Proof. By (3.2), we have

δ̂(ω)(V ) =
∑

i∈I
(LAi

ω)(Ai, V ).

Next,

(LAi
ω)(Ai, V ) = LAi

(

ω(Ai, V )
)

− ω(Ai,LAi
V )

= (∇Ai
ω)(Ai, V ) + ω(∇Ai

Ai, V ) + ω(Ai,∇Ai
V )− ω(Ai,LAi

V )

= (∇Ai
ω)(Ai, V ) + ω(∇Ai

Ai, V ) + ω(Ai,∇V Ai),

since ∇Ai
V −∇V Ai = LAi

V . By condition (c),
∑

i∈I ω(Ai,∇V Ai) = 0. Summing over i ∈ I
and according to (b) and (3.3), we get the result.

Now the de Rham–Hodge Laplacian operator � = dδ + δd admits the following decom-
position (see [13]):

Theorem 3.4. Under the conditions (a)–(c), for any differential 1-form ω, we have
∑

i∈I
L2
Ai
ω = �ω. (3.5)

Proof. Applying Cartan’s formula LAi
ω = I(Ai)dω + dI(Ai)ω to LAi

ω, we have

L2
Ai
ω = I(Ai)dLAi

ω + dI(Ai)LAi
ω

= I(Ai)LAi
(dω) + dI(Ai)LAi

ω,

where we used (3.1) for the second equality. Now by Propositions 3.2 and 3.3, we get
∑

i∈I
L2
Ai
ω = δdω + dδω = �ω.

The theorem is proved.
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Recall that on a Riemannian manifold, there is a one-to-one correspondence between the
space of vector fields and that of differential 1-forms. Given a vector field A (resp. differential
1-form θ), we shall denote by A∗ (resp. θ#) the corresponding differential 1-form (resp. vector
field). The action of the de Rham–Hodge Laplacian � on the vector field A is defined as
follows:

�A := (�A∗)#. (3.6)

Lemma 3.5. The conditions (b) and (c) imply

∑

i∈I
div(Ai)Ai = 0. (3.7)

Proof. We have I(V )(Ai ∧ ∇V Ai) = 〈Ai, V 〉∇V Ai − 〈∇V Ai, V 〉Ai. Let {v1, · · · , vn} be an
orthonormal basis, then by condition (c),

0 =
∑

i∈I

n
∑

j=1

(

〈Ai, vj〉∇vjAi − 〈∇vjAi, vj〉Ai

)

=
∑

i∈I
∇Ai

Ai −
∑

i∈I
div(Ai)Ai.

The first term vanishes by condition (b); therefore (3.7) follows.

Remark 3.6. When the manifold M is embedded in some R
N , the relation (3.7) was proved

in [23, p.102]. However, in order to prove the next result, the equality (3.7) is not sufficient,
we have to assume the following condition:

(d)
∑

i∈I
div(Ai)LAi

= 0.

Unfortunately the vector fields {A1, · · · , Am} in Example 3.1 do not satisfy condition (d).
See the appendix.

Theorem 3.7. Under (a), (b), (c) and (d), we have, for any vector field B,

�B =
∑

i∈I
L2
Ai
B. (3.8)

Proof. Let ω be a differential 1-form. We have

LAi
(ω(B)) = (LAi

ω)(B) + ω(LAi
B),

and
L2
Ai
(ω(B)) = (L2

Ai
ω)(B) + ω(L2

Ai
B) + 2(LAi

ω)(LAi
B).

By the integration by parts formula,
∫

M

(LAi
ω)(LAi

B) dx =

∫

M

LAi
(ω(LAi

B)) dx−
∫

M

ω(L2
Ai
B) dx

= −
∫

M

div(Ai)ω(LAi
B) dx−

∫

M

ω(L2
Ai
B) dx.

Therefore,
∫

M

L2
Ai
(ω(B)) dx =

∫

M

(L2
Ai
ω)(B) dx−

∫

M

ω(L2
Ai
B) dx− 2

∫

M

div(Ai)ω(LAi
B) dx.
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By condition (d),
∑

i∈I
∫

M
div(Ai)ω(LAi

B) dx = 0. If we denote by �̂B =
∑

i∈I L2
Ai
B, then

summing over i and according to (3.5), we get

∫

M

∆(ω(B)) dx =

∫

M

(�ω)(B) dx−
∫

M

ω(�̂B) dx.

It follows that
∫

M
(�ω)(B) dx =

∫

M
ω(�̂B) dx; therefore �B = �̂B.

Proposition 3.8. If div(B) = 0, then div(�B) = 0.

Proof. Notice first that δ(B∗) = div(B) = 0, then by (3.6),

div(�B) = δ(�B∗) = δdδ(B∗) = 0,

which completes the proof.

In what follows, we consider the vector fields {Ai; i ∈ I} which satisfy the conditions
(a)–(c). Let Wt = {W i

t ; i ∈ I} be a family of independent standard Brownian motions;
consider the Stratonovich SDE on M :

dXt =
∑

i∈I
Ai(Xt) ◦ dW i

t + ut(Xt) dt, X0 = x ∈ M. (3.9)

Assume that ut ∈ C1,α, then Xt is a stochastic flow of C1-diffeomorphisms of M . Let

d
[

(Xt)#(dx)
]

= ρt dx, d
[

(X−1
t )#(dx)

]

= ρ̃t dx,

where (Xt)#(dx) means the push-forward measure of dx by Xt. By [18, Lemma 4.3.1], ρ̃
admits the expression

ρ̃t(x) = exp

{

−
∑

i∈I

∫ t

0
div(Ai)(Xs(x)) ◦ dW i

s −
∫ t

0
div(us)(Xs(x)) ds

}

. (3.10)

Since for any f ∈ C(M), it holds

∫

M

f(x) dx =

∫

M

f
(

X−1
t (Xt)

)

dx =

∫

M

f(X−1
t )ρt dx =

∫

M

f ρt(Xt)ρ̃t dx,

we have
ρt(Xt)ρ̃t = 1. (3.11)

Before stating the main result of this work, we introduce a notation. Let f : M → M be a
C1-map, then for each x ∈ M , df(x) : TxM → Tf(x)M . We define (df)∗(x) : Tf(x)M → TxM
by

〈(df)∗(x)v, u〉TxM = 〈df(x)u, v〉Tf(x)M , u ∈ TxM,v ∈ Tf(x)M.

Let ω be a differential 1-form on M , the pull-back f∗ω of ω by f is defined by

〈f∗ω, v〉x = 〈ωf(x), df(x)v〉.

Then if f is a diffeomorphism,

〈f∗ω, v〉x = 〈ω, f∗v〉f(x).

Theorem 3.9 (Stochastic Lagrangian representation). Let M be a compact Riemannian
manifold such that there is a family of vector fields {Ai; i ∈ I} satisfying the conditions:
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(a) for all x ∈ M ,
∑

i≥1

〈Ai(x), u〉2TxM = |u|2TxM for any u ∈ TxM ;

(b)
∑

i≥1

∇Ai
Ai = 0;

(c)
∑

i≥1

Ai ∧ ∇VAi = 0 for any vector field V ;

(d)
∑

i≥1

div(Ai)LAi
= 0 holds on vector fields.

Let ν > 0 and u0 be a divergence-free vector field on M . Assume that ut ∈ C2,α. Then the
pair (X,u) satisfies

{

dXt =
√
2ν

∑m
i=1Ai(Xt) ◦ dW i

t + ut(Xt) dt, X0 = x,

ut = EP
[

ρt (dX
−1
t )∗ · u0(X−1

t )
]

,
(3.12)

if and only if u solves the Navier–Stokes equations on M :
{

∂tu+∇uu− ν�u+∇p = 0,

div(u) = 0, u|t=0 = u0.
(3.13)

Moreover, ut has the following more geometric expression

ut = E

[

P
(

ρt (X
−1
t )∗u∗0

)#
]

. (3.14)

Proof. Let v be a divergence-free vector field on M . We have
∫

M

〈ut, v〉dx = E

∫

M

ρt
〈

(dX−1
t )∗ · u0(X−1

t ), v
〉

dx

= E

∫

M

ρt
〈

(dX−1
t ) v, u0(X

−1
t )

〉

dx

= E

∫

M

ρt(Xt) ρ̃t
〈

dX−1
t (Xt)v(Xt), u0

〉

dx.

Now using (2.1) and (3.11), we get the following expression, similar to (2.2):
∫

M

〈ut, v〉dx = E

(
∫

M

〈

u0,X
−1
t∗ (v)

〉

dx

)

. (3.15)

Again by [17, p.265, Theorem 2.1] and (3.8), we have

X−1
t∗ (v) = v +

m
∑

i=1

∫ t

0
X−1

s∗ (LAi
v) dW i

s + ν

m
∑

i=1

∫ t

0
X−1

s∗ (L2
Ai
v) ds+

∫ t

0
X−1

s∗ (Lusv)ds

= v +

m
∑

i=1

∫ t

0
X−1

s∗ (LAi
v) dW i

s + ν

∫ t

0
X−1

s∗ (�v) ds+

∫ t

0
X−1

s∗ (Lusv)ds.

Substituting X−1
t∗ (v) into (3.15), we have

∫

M

〈ut, v〉dx =

∫

M

〈u0, v〉dx+ ν

∫ t

0
E

(
∫

M

〈

u0,X
−1
s∗ (�v)

〉

dx

)

ds

+

∫ t

0
E

(
∫

M

〈

u0, X
−1
s∗ (Lusv)

〉

dx

)

ds.
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Now by Lemma 2.1 and Proposition 3.8, Lusv and �v are of divergence free. Substituting
respectively v in (3.15) by Lusv and �v yields

∫

M

〈ut, v〉dx =

∫

M

〈u0, v〉dx+ ν

∫ t

0

∫

M

〈us,�v〉dxds+
∫ t

0

∫

M

〈us,Lusv〉dxds. (3.16)

Since M is torsion-free, we have Lusv = [us, v] = ∇usv −∇vus. As a result,
∫

M

〈us,Lusv〉dx =

∫

M

〈us,∇usv〉dx−
∫

M

〈us,∇vus〉dx

=

∫

M

〈us,∇usv〉dx− 1

2

∫

M

v(|us|2) dx =

∫

M

〈us,∇usv〉dx. (3.17)

By (3.16) and (3.17), we know that for a.e. t ≥ 0, it holds

d

dt

∫

M

〈ut, v〉dx = ν

∫

M

〈ut,�v〉dx+

∫

M

〈ut,∇utv〉dx.

Multiplying both sides by α ∈ C1
c ([0,∞)) and integrating by parts on [0,∞), we arrive at

α(0)

∫

M

〈u0, v〉dx+

∫ ∞

0

∫

M

[

α′(t)〈ut, v〉+ α(t)〈ut,∇utv〉+ ν α(t)〈ut,�v〉
]

dxdt = 0.

The above equation is the weak formulation of the Navier–Stokes (3.13) on the manifold M .
Since ut ∈ C2,α, it is a strong solution to (3.13).

For proving the converse, we use the idea in [25, Theorem 2.3]. Let ut ∈ C2,α be a solution
to (3.13), then

∫

M

〈ut, v〉dx =

∫

M

〈u0, v〉dx+ ν

∫ t

0

∫

M

〈us,�v〉dxds+
∫ t

0

∫

M

〈us,Lusv〉dxds.

Consider the SDE in (3.12) with drift term ut. Define

ũt = EP
[

ρt (dX
−1
t )∗ · u0(X−1

t )
]

.

Then the same calculation as above leads to
∫

M

〈ũt, v〉dx =

∫

M

〈u0, v〉dx+ ν

∫ t

0

∫

M

〈ũs,�v〉dxds+
∫ t

0

∫

M

〈ũs,Lusv〉dxds.

Let zt = ut − ũt; we have
∫

M

〈zt, v〉dx = ν

∫ t

0

∫

M

〈zs,�v〉dxds+
∫ t

0

∫

M

〈zs,Lusv〉dxds.

It follows that (zt) solves the following heat equation on M

dzt
dt

= ν�zt − Lutzt, z0 = 0.

By uniqueness of solutions, we get that zt = 0 for all t ≥ 0. Thus ut = ũt.
To prove (3.14), we note that

∫

M

ρt
〈

(X−1
t )∗u∗0, v

〉

dx =

∫

M

ρt
〈

u∗0, (X
−1
t )∗v

〉

X−1
t

dx

=

∫

M

ρt(Xt) ρ̃t
〈

u∗0, (X
−1
t )∗v

〉

dx

=

∫

M

〈

u∗0, (X
−1
t )∗v

〉

dx =

∫

M

〈

u0, (X
−1
t )∗v

〉

TxM
dx
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Now by (3.15), we have, for any vector field v of divergence free,

∫

M

〈ut, v〉dx = E

(
∫

M

ρt
〈

(X−1
t )∗u∗0, v

〉

dx

)

.

Then (3.14) follows. The proof of Theorem 3.9 is complete.

4 Volume-preserving flows on the torus and the sphere

It is usually difficult to find on a general Riemannian manifold a family of vector fields of
divergence free, which satisfy the conditions (a)–(d) in Section 3. In this part, we shall treat
two important examples: torus Tn and sphere S

n in which this is possible.

4.1 Case of torus T
2

For the simplicity of exposition, we only consider the two dimensional torus T
2. Let Z

2 be
the set of lattice points in R

2 and define Z
2
0 = Z

2 \ {(0, 0)∗}, where ∗ means the column
vector. For k ∈ Z

2
0, we define k⊥ = (k2,−k1)

∗ and

Ak(θ) =
cos(k · θ)

|k|β · k
⊥

|k| , Bk(θ) =
sin(k · θ)

|k|β · k
⊥

|k| , θ ∈ T
2, (4.1)

where β > 1 is some constant. Then the family {Ak, Bk : k ∈ Z
2
0} constitutes an orthogonal

basis of the space of divergence free vector fields V on T
2 such that

∫

T2 V dθ = 0 (see [10]).
We shall show that the family {Ak, Bk; k ∈ Z

2
0} of vector fields satisfy the conditions (a)–(c).

Firstly, for any u ∈ R
2, we remark that

〈Ak(θ), u〉2 + 〈Bk(θ), u〉2 =
〈k⊥, u〉2
|k|2(β+1)

(

cos2(k · θ) + sin2(k · θ)
)

=
〈k⊥, u〉2
|k|2(β+1)

.

Thus
∑

k∈Z2
0

(

〈Ak(θ), u〉2 + 〈Bk(θ), u〉2
)

=
∑

k∈Z2
0

〈k⊥, u〉2
|k|2(β+1)

.

Notice that the transform k 7→ k⊥ on Z
2
0 is one-to-one and preserves the Euclidean norm | · |,

we have
∑

k∈Z2
0

〈k⊥, u〉2
|k|2(β+1)

=
∑

k∈Z2
0

〈k, u〉2
|k|2(β+1)

and |u|2 |k|2 = 〈k, u〉2 + 〈k⊥, u〉2, therefore
∑

k∈Z2
0

|u|2
|k|2β = 2

∑

k∈Z2
0

〈k⊥, u〉2
|k|2(β+1)

.

Consequently,

∑

k∈Z2
0

(

〈Ak(θ), u〉2 + 〈Bk(θ), u〉2
)

=
|u|2
2

∑

k∈Z2
0

1

|k|2β = ν0 |u|2, (4.2)

where

ν0 =
1

2

∑

k∈Z2
0

1

|k|2β .
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Therefore (4.2) implies that
{

Ak√
ν0
, Bk√

ν0
, k ∈ Z

2
0

}

satisfies the condition (a).

Secondly, by the definition of Ak,

∇Ak
Ak =

k⊥

|k|β+1
〈Ak,∇θ cos(k · θ)〉 = − k⊥

|k|2(β+2)
cos(k · θ) sin(k · θ)〈k⊥, k〉 = 0.

Similarly, ∇Bk
Bk = 0. Therefore condition (b) is satisfied. Finally, for any vector field V on

T
2, we have

∇V Ak =
k⊥

|k|β+1
〈V,∇θ cos(k · θ)〉 = − k⊥

|k|β+1
sin(k · θ)〈V, k〉.

In the same way,

∇V Bk =
k⊥

|k|β+1
cos(k · θ)〈V, k〉.

Hence, for any u1, u2 ∈ R
2, it holds that

〈Ak, u1〉〈∇V Ak, u2〉+ 〈Bk, u1〉〈∇V Bk, u2〉

= −〈V, k〉 sin(k · θ) cos(k · θ)
|k|2(β+1)

〈k⊥, u1〉〈k⊥, u2〉+
〈V, k〉 sin(k · θ) cos(k · θ)

|k|2(β+1)
〈k⊥, u1〉〈k⊥, u2〉

= 0,

that is, the condition (c) is also satisfied.
Now let {ut; t ≥ 0} be a family of C2,α-vector fields of divergence free on T

2. Consider
the following SDE

dXt =

√

2ν

ν0

∑

k∈Z2
0

(

Ak(Xt) ◦ dW k
t +Bk(Xt) ◦ dW̃ k

t

)

+ ut(Xt) dt, X0 = x ∈ T
2, (4.3)

where {W k
t , W̃

k
t ; k ∈ Z

2
0} is a family of independent standard real Brownian motions. When

β > 3, the SDE (4.3) defines a flow of C1-diffeomorphisms of T2 (see [10]). In this case, by
(3.10), for almost surely w, x → Xt(x,w) preserves the measure dx; therefore by Theorem
3.9, we have

Theorem 4.1. ut ∈ C2,α with initial value u0 is a solution of the Navier–Stokes equations
on T

2 if and only if

ut = E

[

P
(

(X−1
t )∗u∗0

)#
]

. (4.4)

4.2 Case of sphere S
n

Let � be the de Rham–Hodge Laplacian operator acting on vector fields over Sn. For ℓ ≥ 1,
set cℓ,δ = (ℓ + 1)(ℓ + n − 2). Then {cℓ,δ; ℓ ≥ 1} are the eigenvalues of � corresponding to
the divergence free eigenvector fields. Denote by Dℓ the eigenspace associated to cℓ,δ and
dℓ = dim(Dℓ) the dimension of Dℓ. It is known that

dℓ ∼ O(ℓn−1) as ℓ → +∞.

For ℓ ≥ 1, let {Vℓ,k; k = 1, . . . , dℓ} be an orthonormal basis of Dℓ in L2:

∫

Sn

〈

Vℓ,k(x), Vα,β(x)
〉

dx = δℓαδkβ.
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Weyl’s theorem implies that the vector fields {Vℓ,k; k = 1, . . . , dℓ, ℓ ≥ 1} are smooth. We
refer to [22] for a detailed study on isotropic flows on S

n, many properties below were proved
there. But we are more familiar with [16] to which we refer known results. Let {bℓ; ℓ ≥ 1} be
a family of positive numbers such that

∑∞
ℓ=1 bℓ < +∞. Set

Aℓ,k =

√

nbℓ
dℓ

Vℓ,k.

Below we shall consider the family

{

Aℓ,k; 1 ≤ k ≤ dℓ, ℓ ≥ 1
}

.

Let’s first check the condition (a). By [16, (A.13)], we have, for x, y ∈ S
n

n

dℓ

dℓ
∑

k=1

〈Vℓ,k(x), y〉2 = sin2 θ, (4.5)

where θ is the angle between x and y. Let u ∈ TxS
n; then 〈x, u〉 = 0. By (4.5),

n

dℓ

dℓ
∑

k=1

〈Vℓ,k(x), u〉2 = |u|2.

Therefore,
∑

ℓ≥1

dℓ
∑

k=1

〈Aℓ,k(x), u〉2 =
∑

ℓ≥1

nbℓ
dℓ

dℓ
∑

k=1

〈Vℓ,k(x), u〉2 = ν0 |u|2,

where
ν0 =

∑

ℓ≥1

bℓ.

Next, by [16, Propositions A.3 and A.5],

dℓ
∑

k=1

∇Vℓ,k
Vℓ,k = 0. (4.6)

thus the condition (b) is satisfied.
It remains to check the condition (c). To this end, we need a bit more description on Vℓ,k.

Let {e1, · · · , en+1} be the canonical basis of Rn+1. We denote by P0 = en+1 the north pole.
When n ≥ 3, the group SO(n+ 1) acts transitively on S

n. Let x ∈ S
n be fixed, then there is

g ∈ SO(n+ 1) such that x = χg(P0) = gP0. Then

Vℓ,k(gP0) =

√

dℓ
n

n
∑

i=1

Qℓ
ki(g)dχg(P0)ei, (4.7)

where {Qℓ; ℓ ≥ 1} is the family of irreducible unitary representations of SO(n + 1) which
keep the representation h → dχh(P0). It is important that the element Qℓ

qi has an explicit
formula for 1 ≤ q, i ≤ n:

Qℓ
qi(g) =

(

tγℓ(t)−
1− t2

n− 1
γ′ℓ(t)

)

gqi −
(

γℓ(t) +
t

n− 1
γ′ℓ(t)

)

gq,n+1gn+1,i, (4.8)
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with t = gn+1,n+1 and

γℓ(cos θ) =

∫ π

0

(

cos θ −
√
−1 sin θ cosϕ

)ℓ−1
sinn ϕ

dϕ

cn
,

where cn =
∫ π

0 sinn ϕdϕ. Set Ej = dχg(P0)ej ; then {E1, · · · , En} is an orthonormal basis of
TxS

n. Fix j, we consider ĝ(s) ∈ SO(n+ 1) which leaves invariant ei for i 6= j, i 6= n+ 1 and

{

ĝ(s)ej = cos s ej − sin s en+1,

ĝ(s)en+1 = sin s ej + cos s en+1.

Then by [16, p.596],

∇Ej
Vℓ,k(x) =

√

dℓ
n

n
∑

i=1

dℓ
∑

β=1

Qℓ
kβ(g)

{ d

ds

∣

∣

∣

s=0
Qℓ

βi(ĝ(s))
}

Ei. (4.9)

Combining (4.7) and (4.9), we get

dℓ
∑

k=1

Vℓ,k ∧ ∇Ej
Vℓ,k =

dℓ
n

n
∑

q,i=1

dℓ
∑

β,k=1

Qℓ
kβQ

ℓ
kq

{ d

ds

∣

∣

∣

s=0
Qℓ

βi(ĝ(s))
}

Eq ∧ Ei

=
dℓ
n

n
∑

q,i=1

{ d

ds

∣

∣

∣

s=0
Qℓ

qi(ĝ(s))
}

Eq ∧Ei.

In (4.8), we replace g by ĝ(s); therefore t = cos s, the term gqi = 0 for q 6= i, gi,n+1 = 0 if
i 6= j, gn+1,i = 0 if i 6= j. We have gjj = cos s and gn+1,jgj,n+1 = − sin2 s. It follows that

dℓ
∑

k=1

Vℓ,k ∧ ∇Ej
Vℓ,k = 0.

The condition (c) is satisfied. Notice that using (4.8), we have in fact the stronger result

dℓ
∑

k=1

Vℓ,k ⊗∇Ej
Vℓ,k = 0.

Now let {ut; t ≥ 0} be a family of C2,α-vector fields of divergence free on S
n. Let

bℓ = 1/ℓ1+α. Consider the following SDE

dXt =

√

2ν

ν0

∑

ℓ≥1

dℓ
∑

k=1

Aℓ,k(Xt) ◦ dW ℓ,k
t + ut(Xt) dt, X0 = x ∈ S

n, (4.10)

where
{

W ℓ,k
t ; ℓ ≥ 1, 1 ≤ k ≤ dℓ

}

is a family of independent standard real Brownian motions.
When α > 2, the SDE (4.10) defines a flow of C1-diffeomorphisms of Sn (see [19, 21]). In
this case, for almost surely w, x → Xt(x,w) preserves the measure dx; therefore by Theorem
3.9, we have

Theorem 4.2. The velocity ut ∈ C2,α with initial value u0 is a solution of the Navier–Stokes
equation on S

n if and only if

ut = E

[

P
(

(X−1
t )∗u∗0

)#
]

. (4.11)
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5 Appendix: example of the sphere

For reader’s convenience, we shall exhibit properties (a)–(c) in Section 3 in the case of sphere
S
n. We denote by 〈 , 〉 the canonical inner product of Rn+1. Let x ∈ S

n, the tangent space
TxS

n of Sn at the point x is given by

TxS
n =

{

v ∈ R
n+1; 〈v, x〉 = 0

}

.

Then the orthogonal projection Px : Rn+1 → TxS
n has the expression:

Px(y) = y − 〈x, y〉x.

Let {e1, · · · , en+1} be an orthonormal basis of Rn+1; then the vector fields Ai(x) = Px(ei)
have the expression: Ai(x) = ei−〈x, ei〉x for i = 1, · · · , n+1. Let v ∈ TxS

n such that |v| = 1,
consider

γ(t) = x cos t+ v sin t.

Then {γ(t); t ∈ [0, 1]} is the geodesic on S
n such that γ(0) = x, γ′(0) = v. We have

Ai(γ(t)) = ei − 〈γ(t), ei〉 γ(t). Taking the derivative with respect to t and at t = 0, we get

(∇vAi)(x) = Px

(

−〈v, ei〉x− 〈x, ei〉v
)

= −〈x, ei〉v. (5.1)

It follows that
div(Ai) = −n〈x, ei〉. (5.2)

Hence,
n+1
∑

i=1

div(Ai)Ai = −n

n+1
∑

i=1

(

〈x, ei〉ei − 〈x, ei〉2x
)

= −n(x− x) = 0. (5.3)

Replacing v by Ai in (5.1), we have ∇Ai
Ai = −〈x, ei〉ei + 〈x, ei〉2x; therefore summing over

i, we get
n+1
∑

i=1

∇Ai
Ai = 0. (5.4)

Now let v ∈ TxS
n and a, b ∈ TxS

n, we have

〈Ai ∧ ∇vAi, a ∧ b〉 = 〈Ai, a〉〈∇vAi, b〉 − 〈Ai, b〉〈∇vAi, a〉
= 〈a, ei〉〈x, ei〉〈v, b〉 − 〈x, ei〉〈b, ei〉〈v, a〉.

Summing over i yields

n+1
∑

i=1

〈Ai ∧ ∇vAi, a ∧ b〉 = 〈a, x〉〈v, b〉 − 〈x, b〉〈v, a〉 = 0. (5.5)

Let B be a vector field on S
n; by (5.1), ∇BAi = −〈x, ei〉B. Using LAi

B = ∇Ai
B − ∇BAi

and combing with (5.2) and (5.3), we get that

m
∑

i=1

div(Ai)LAi
B = −nB. (5.6)

Finally we notice that by (5.4)–(5.6), the vector fields A1, · · · , An+1 satisfy the conditions
(a)–(c) but not (d) in Section 3.
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