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The purpose of this note is to establish a probabilistic representation formula for Navier-Stokes equations on a compact Riemannian manifold. To this end, we first give a geometric interpretation of Constantin and Iyer's representation formula for the Navier-Stokes equation, then extend it to a compact Riemannian manifold. We shall use Elworthy-Le Jan-Li's idea to decompose de Rham-Hodge Laplacian operator on a manifold as a sum of the square of vector fields.

Introduction

The Navier-Stokes equations on R n or on a torus T n ,

∂ t u + (u • ∇)u -ν∆u + ∇p = 0, ∇ • u = 0, u| t=0 = u 0 , (1.1) 
describe the evolution of the velocity u of an incompressible viscous fluid with kinematic viscosity ν > 0, as well as the pressure p. Such equations attract always the attention of many researchers, with an enormous quantity of publications in the literature. Concerning classical results about (1.1), we refer to the book [START_REF] Teman | Navier-Stokes equations and nonlinear functional analysis[END_REF]. The Lagrangian description of the fluid is to determine the position at time t of the particle of fluid. Due to its high nonlinearity, such a description was not used too often in the past. However, since the seminal works [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] on the resolution of ordinary differential equations with coefficients of low regularity and [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF] on the relaxed variational principle for Euler equations, there are more and more interests in Lagrangian descriptions. We refer to [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF][START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF][START_REF] Fang | Stochastic differential equations with coefficients in Sobolev spaces[END_REF][START_REF] Zhang | Stochastic flows of SDEs with irregular coefficients and stochastic transport equations[END_REF][START_REF] Zhang | Quasi-invariant stochastic flows of SDEs with non-smooth drifts on compact manifolds[END_REF] for new developments and various generalizations of [START_REF] Di Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], to [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF][START_REF] Ambrosio | Geodedics in the space of measure-preserving maps and plans[END_REF] for generalized flows to Euler equations and to [START_REF] Antoniouk | Generalized stochastic flows and applications to incompressible viscous fluids[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Arnaudon | Generalized stochastic Lagrangian paths for the Navier-Stokes equation[END_REF] for generalized flows to Navier-Stokes equations.

Connections between Navier-Stokes equations and stochastic evolution have a quite long history: it can be traced back to a work of Chorin [START_REF] Chorin | Numerical study of slightly visous flow[END_REF]. In [START_REF] Le Jan | Stochastic cascades and 3-dimensional Navier-Stokes equations[END_REF], Le Jan and Sznitman used a backward-in-time branching process to express Navier-Stokes equations through Fourier transformations. In [START_REF] Busnello | A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations[END_REF], a representation formula using noisy flow paths for 3-dimensional Navier-Stokes equation was obtained. An achievement has been realized by Constantin and Iyer in [START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations[END_REF] by using stochastic flows. We also refer to [START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations[END_REF] for a more complete description on the history of the developments.

For reader's convenience, let us first state Constantin and Iyer's result [START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations[END_REF]:

Theorem 1.1 (Constantin-Iyer). Let ν > 0, W be an n-dimensional Wiener process, k ≥ 1, and u 0 ∈ C k+1,α a given deterministic divergence-free vector field. Let the pair (X, u) satisfy the stochastic system dX t = √ 2ν dW t + u t (X t ) dt,

u t = EP ∇X -1 t * u 0 • X -1 t , (1.2) 
where P is the Leray-Hodge projection and the star * denotes the transposed matrix. Then u satisfies the incompressible Navier-Stokes equations (1.1).

Using this stochastic representation, Constantin and Iyer were able to give a self-contained proof of the local existence of the solution to the system (1.1). Two proofs of Theorem 1.1 were provided in [START_REF] Constantin | A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations[END_REF]: the first one uses heavily the fact that the diffusion coefficient of the stochastic differential equation (SDE) in (1.2) is constant, and transforms it into a random ODE by absorbing the Wiener process into the drift coefficient u; the second one applies the generalized Itô formula to the quantity ∇X -1 t * u 0 • X -1 t which, combined with the stochastic PDE fulfilled by the inverse X -1 t , leads to the desired result. Note that if x → u t (x) is 2π-periodic with respect to each component, then SDE (1.2) defines a flow of diffeomorphims of the torus T n . For the sake of simplicity, we only consider this last situation in Section 2.

In order to avoid the computation of the inverse X -1 t of X t , X. Zhang used in [START_REF] Zhang | A stochastic representation for backward incompressible Navier-Stokes equations[END_REF] the idea that the inverse flow can be described by SDEs driven by time-reversed Brownian motion; he established a similar representation formula for the backward incompressible Navier-Stokes equations.

In this note, we first give in Section 2 a more geometric interpretation to the formula of u t in Theorem 1.1, then provide an alternative proof using directly Kunita's formula ([17, p.265, Theorem 2.1]) for the pull-back of vector fields under the stochastic flow: surprisingly enough, it is simpler to use the inverse flow. More precisely, we get the following expression

T n u t , v dx = E T n u 0 , (X -1 t ) * v dx , ∀ t ≥ 0, (1.3) 
which means that the evolution of u t in the direction v is equal to the average of the evolution of v under the inverse flow X -1 t in the initial direction u 0 . The purpose of Section 3 is to establish a stochastic representation formula for the Navier-Stokes equations on a compact Riemannian manifold M , where the difficulty is to deal with the de Rham-Hodge Laplacian operator . We shall use the idea in [START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF] to decompose as a sum of the square of Lie derivatives: = i∈I L 2 A i , where the family I could be finite or countable. In general, the vector fields A i are not of divergence free. See Section 3 for the conditions on {A i ; i ∈ I} which ensure such a decomposition. A new formula in Section 3 is

u t = E P ρ t (X -1 t ) * u * 0 # (1.4)
where ρ t is the density of the associated stochastic flow X t , and we use * to transform a vector field to a differential form, # to transform a differential form to a vector field.

In Section 4, we shall treat two important examples: tori and spheres for which we prove that the divergence-free eigenvector fields of enjoy all required properties in Section 3. Therefore, they will generate volume-preserving stochastic flows for which Formula (1.4) holds with ρ t = 1. Finally, in Section 5 we shall present some explicit computations in the case of the sphere, to exhibit the properties of {A i ; i ∈ I} used in Section 3.

An alternative proof of Constantin-Iyer's result

Before giving the proof, let us prepare some materials. Let M be a compact Riemannian manifold without boundary and ϕ : M → M a diffeomorphism. Given a vector field A on M , the pull-back vector field ϕ -1 * (A) is defined by

ϕ -1 * (A)f (x) = A(f • ϕ -1 )(ϕ(x)), for any f ∈ C 1 (M ), x ∈ M.
Equivalently,

ϕ -1 * (A)(x) = dϕ -1 (ϕ(x))A(ϕ(x)) = (dϕ(x)) -1 A(ϕ(x)), (2.1) 
where dϕ is the differential of ϕ. For two smooth vector fields A, B on M , the Lie derivative L A B is defined as

(L A B)(x) = lim t→0 ϕ -1 t * (B)(x) -B(x) t ,
where ϕ t is the flow generated by A and ϕ -1 t * (B) = (ϕ t ) -1 * (B). It is well known that L A B = [A, B] = AB -BA. We have the following simple result. Lemma 2.1. If A and B are vector fields of divergence free on M , then so is L A B.

Proof. We can provide two different proofs. (i) Since the vector fields A and B are of divergence free, it holds that M Af dx = M Bf dx = 0 for any function f ∈ C 1 (M ). Therefore,

M (L A B)f dx = M A(Bf ) dx - M B(Af ) dx = 0.
This clearly implies that L A B is of divergence free.

(ii) By the definition of L A B, it suffices to show that ϕ -1 t * (B) is of divergence free for all t ≥ 0. To this end, take any f ∈ C 1 (M ), we have

M ∇f, ϕ -1 t * (B) dx = M ϕ -1 t * (B)f (x) dx = M B(f • ϕ -1 t )(ϕ t (x)) dx.
Since A is of divergence free, the flow ϕ t preserves the volume measure of M . Thus

M ∇f, ϕ -1 t * (B) dx = M B(f • ϕ -1 t )(y) dy = 0
since the vector field B is also of divergence free. The above equality implies that ϕ -1 t * (B) is of divergence free. Now we present another proof of Theorem 1.1, using directly [17, Theorem 2.1, p.265]. Note that for the part we use in this theorem, it is sufficient that u t is of C 2,α which insures that X t is a flow of diffeomorphisms.

Proof of Theorem 1.1. Let (X, u) be the pair solving the system (1.2). Then X = (X t ) t≥0 is a stochastic flow of C 2 -diffeomorphisms on T n . Since the diffusion coefficient of the SDE is constant and the drift u is of divergence free, we know that the flow X t preserves the volume measure of the torus T n . Let v be a vector field of divergence free on T n , we have by the expression of u in (1.2) that

T n u t , v dx = E T n ∇X -1 t * u 0 • X -1 t , v dx = E T n u 0 • X -1 t , ∇X -1 t v dx = E T n u 0 , ∇X -1 t (X t ) v(X t ) dx ,
where in the last equality we have used the measure-preserving property of X -1 t . According to (2.1), we get

T n u t , v dx = E T n u 0 , X -1 t * (v) dx , ∀ t ≥ 0. (2.
2)

The formula (2.2) means that the evolution of u t in the direction v is equal to the average of the evolution of v under the inverse flow X -1 t in the initial direction u 0 . Now by [17, p.265

], if u t is of C 1,α , we have X -1 t * (v) = v + √ 2ν n i=1 t 0 X -1 s * (∂ i v) dW i s + ν t 0 X -1 s * (∆v) ds + t 0 X -1 s * ([u s , v]) ds,
where

∂ i v denotes the partial derivative of v. Substituting this expression of X -1 t * (v) into (2.
2), we arrive at

T n u t , v dx = T n u 0 , v dx + νE t 0 T n u 0 , X -1 s * (∆v) dxds + E t 0 T n u 0 , X -1 s * ([u s , v]) dxds.
(2.3)

As the vector field ∆v is of divergence free, we have by (2.2) that

E t 0 T n u 0 , X -1 s * (∆v) dxds = t 0 T n u s , ∆v dxds. (2.4)
Next by Lemma 2.1, we know that [u s , v] is also of divergence free, therefore again by (2.2),

E t 0 T n u 0 , X -1 s * ([u s , v]) dxds = t 0 T n u s , [u s , v] dxds = t 0 T n u s , (u s • ∇)v -(v • ∇)u s dxds = t 0 T n u s , (u s • ∇)v dxds - 1 2 t 0 T n (v • ∇)|u s | 2 dxds = t 0 T n u s , (u s • ∇)v dxds,
where in the last equality we have used the fact that v is of divergence free. Substituting this equality and (2.4) into (2.3), we obtain for all t ≥ 0 that

T n u t , v dx = T n u 0 , v dx + ν t 0 T n u s , ∆v dxds + t 0 T n u s , (u s • ∇)v dxds.
The above equality implies that for a.e. t ≥ 0, it holds

d dt T n u t , v dx = ν T n u t , ∆v dx + T n u t , (u t • ∇)v dx.
Multiplying both sides by a real-valued function α ∈ C 1 c ([0, ∞)) and integrating by parts, we arrive at α(0)

T n u 0 , v dx + ∞ 0 T n α ′ (t) u t , v + να(t) u t , ∆v + α(t) u t , (u t • ∇)v dxdt = 0.
This implies that u t solves strongly the Navier-Stokes equation, since u t was assumed to be of C 2,α .

Extension to compact Riemannian manifolds

In this section, we shall establish the stochastic representation for Navier-Stokes equations on a compact Riemannian manifold M of dimension n. To this end, we assume that there exists a (possibly infinite) family of smooth vector fields {A i ; i ∈ I} on M satisfying the following conditions:

(a) for all x ∈ M , i∈I A i (x), u 2 TxM = |u| 2 TxM for any u ∈ T x M ; (b) i∈I ∇ A i A i = 0; (c) i∈I A i ∧ ∇ V A i = 0 for any vector field V .
Here ∇ denotes the covariant derivative with respect to the Levi-Civita connection on M and ∧ the exterior product. First of all, we give the following example.

Example 3.1 (Gradient system). By Nash's embedding theorem, M can be isometrically embedded into R m for some m > n. For any x ∈ M , denote by P x the orthogonal projection from R m onto T x M . Let e = {e 1 , • • • , e m } be an orthonormal basis of R m . According to [23, Section 4.2], we define Now we shall decompose the de Rham-Hodge Laplacian operator as the sum of L 2 A i , where L A denotes the Lie derivative with respect to A. For a differential form ω on M , it holds that

A i (x) = P x (e i ), x ∈ M, i = 1, • • • , m. Then {A 1 , • • • , A m }
L A dω = dL A ω, (3.1) 
where d is the exterior derivative. Let I(A) be the inner product by A, that is, for a differential q-form ω,

(I(A)ω)(V 2 , • • • , V q ) = ω(A, V 2 , • • • , V q ).
Following [START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF], we define, for a differential q-form ω,

δ(ω) = i∈I I(A i )(L A i ω). (3.2)
Let δ be the adjoint operator of d, which admits the expression

δ(ω)(v 2 , • • • , v q ) = n j=1 (∇ u j ω)(u j , v 2 , • • • , v q ), (3.3) 
where

{u 1 , • • • , u n } is an orthonormal basis of T x M .
Proposition 3.2. Under conditions (a) and (b), for any differential 1-form ω, δ(ω) = δ(ω).

Proof. We have

I(A i )L A i ω = (L A i ω)(A i ) = L A i (ω(A i )) = ω(∇ A i A i ) + (∇ A i ω)(A i ). (3.4) Let {u 1 , • • • , u n } be an orthonormal basis of T x M , then condition (a) yields i∈I A i (x), u j A i (x), u k = u j , u k = δ jk .
Therefore, replacing A i (x) by n j=1 A i (x), u j u j at the last term in (3.4), and summing over i ∈ I leads to δ(ω) according to (3.3); the sum of the first term on the right hand side of (3.4) vanishes by condition (b). Proof. Applying Cartan's formula

Proof. By (3.2), we have δ(ω)(V ) = i∈I (L A i ω)(A i , V ). Next, (L A i ω)(A i , V ) = L A i ω(A i , V ) -ω(A i , L A i V ) = (∇ A i ω)(A i , V ) + ω(∇ A i A i , V ) + ω(A i , ∇ A i V ) -ω(A i , L A i V ) = (∇ A i ω)(A i , V ) + ω(∇ A i A i , V ) + ω(A i , ∇ V A i ), since ∇ A i V -∇ V A i = L A i V . By condition (c), i∈I ω(A i , ∇ V A i ) =
L A i ω = I(A i )dω + dI(A i )ω to L A i ω, we have L 2 A i ω = I(A i )dL A i ω + dI(A i )L A i ω = I(A i )L A i (dω) + dI(A i )L A i ω,
where we used (3.1) for the second equality. Now by Propositions 3.2 and 3.3, we get

i∈I L 2 A i ω = δdω + dδω = ω.
The theorem is proved.

Recall that on a Riemannian manifold, there is a one-to-one correspondence between the space of vector fields and that of differential 1-forms. Given a vector field A (resp. differential 1-form θ), we shall denote by A * (resp. θ # ) the corresponding differential 1-form (resp. vector field). The action of the de Rham-Hodge Laplacian on the vector field A is defined as follows:

A := ( A * ) # . Proof. We have

I(V )(A i ∧ ∇ V A i ) = A i , V ∇ V A i -∇ V A i , V A i . Let {v 1 , • • • , v n } be an orthonormal basis, then by condition (c), 0 = i∈I n j=1 A i , v j ∇ v j A i -∇ v j A i , v j A i = i∈I ∇ A i A i - i∈I div(A i )A i .
The first term vanishes by condition (b); therefore (3.7) follows.

Remark 3.6. When the manifold M is embedded in some R N , the relation (3.7) was proved in [23, p.102]. However, in order to prove the next result, the equality (3.7) is not sufficient, we have to assume the following condition: Proof. Let ω be a differential 1-form. We have

(d) i∈I div(A i )L A i = 0.
L A i (ω(B)) = (L A i ω)(B) + ω(L A i B), and 
L 2 A i (ω(B)) = (L 2 A i ω)(B) + ω(L 2 A i B) + 2(L A i ω)(L A i B)
. By the integration by parts formula, In what follows, we consider the vector fields {A i ; i ∈ I} which satisfy the conditions (a)-(c). Let W t = {W i t ; i ∈ I} be a family of independent standard Brownian motions; consider the Stratonovich SDE on M :

M (L A i ω)(L A i B) dx = M L A i (ω(L A i B)) dx - M ω(L 2 A i B) dx = - M div(A i )ω(L A i B) dx - M ω(L 2 A i B) dx. Therefore, M L 2 A i (ω(B)) dx = M (L 2 A i ω)(B) dx - M ω(L 2 A i B) dx -2 M div(A i )ω(L A i B) dx. By condition (d), i∈I M div(A i )ω(L A i B) dx = 0. If we denote by ˆ B = i∈I L 2 A i B,
dX t = i∈I A i (X t ) • dW i t + u t (X t ) dt, X 0 = x ∈ M. (3.9) Assume that u t ∈ C 1,α , then X t is a stochastic flow of C 1 -diffeomorphisms of M . Let d (X t ) # (dx) = ρ t dx, d (X -1 t ) # (dx) = ρt dx,
where (X t ) # (dx) means the push-forward measure of dx by X t . By [18, Lemma 4.3.1], ρ admits the expression ρt (x) = exp -

i∈I t 0 div(A i )(X s (x)) • dW i s - t 0 div(u s )(X s (x)) ds . (3.10) Since for any f ∈ C(M ), it holds M f (x) dx = M f X -1 t (X t ) dx = M f (X -1 t )ρ t dx = M f ρ t (X t )ρ t dx, we have ρ t (X t )ρ t = 1. (3.11)
Before stating the main result of this work, we introduce a notation. Let f : M → M be a C 1 -map, then for each x ∈ M , df (x) :

T x M → T f (x) M . We define (df ) * (x) : T f (x) M → T x M by (df ) * (x)v, u TxM = df (x)u, v T f (x) M , u ∈ T x M, v ∈ T f (x) M.
Let ω be a differential 1-form on M , the pull-back f * ω of ω by f is defined by

f * ω, v x = ω f (x) , df (x)v . Then if f is a diffeomorphism, f * ω, v x = ω, f * v f (x) .
Theorem 3.9 (Stochastic Lagrangian representation). Let M be a compact Riemannian manifold such that there is a family of vector fields {A i ; i ∈ I} satisfying the conditions:

(a) for all x ∈ M , i≥1 A i (x), u 2 TxM = |u| 2 TxM for any u ∈ T x M ; (b) i≥1 ∇ A i A i = 0; (c) i≥1 A i ∧ ∇ V A i = 0 for any vector field V ; (d) i≥1 div(A i )L A i = 0 holds on vector fields.
Let ν > 0 and u 0 be a divergence-free vector field on M . Assume that u t ∈ C 2,α . Then the pair (X, u) satisfies

dX t = √ 2ν m i=1 A i (X t ) • dW i t + u t (X t ) dt, X 0 = x, u t = EP ρ t (dX -1 t ) * • u 0 (X -1 t ) , (3.12) 
if and only if u solves the Navier-Stokes equations on M :

∂ t u + ∇ u u -ν u + ∇p = 0, div(u) = 0, u| t=0 = u 0 . (3.13) 
Moreover, u t has the following more geometric expression

u t = E P ρ t (X -1 t ) * u * 0 # . (3.14) 
Proof. Let v be a divergence-free vector field on M . We have

M u t , v dx = E M ρ t (dX -1 t ) * • u 0 (X -1 t ), v dx = E M ρ t (dX -1 t ) v, u 0 (X -1 t ) dx = E M ρ t (X t ) ρt dX -1 t (X t )v(X t ), u 0 dx.
Now using (2.1) and (3.11), we get the following expression, similar to (2.2):

M u t , v dx = E M u 0 , X -1 t * (v) dx . (3.15) 
Again by [17, p.265, Theorem 2.1] and (3.8), we have

X -1 t * (v) = v + m i=1 t 0 X -1 s * (L A i v) dW i s + ν m i=1 t 0 X -1 s * (L 2 A i v) ds + t 0 X -1 s * (L us v)ds = v + m i=1 t 0 X -1 s * (L A i v) dW i s + ν t 0 X -1 s * ( v) ds + t 0 X -1 s * (L us v)ds. Substituting X -1 t * (v) into (3.15), we have M u t , v dx = M u 0 , v dx + ν t 0 E M u 0 , X -1 s * ( v) dx ds + t 0 E M u 0 , X -1 s * (L us v) dx ds.
Now by (3.15), we have, for any vector field v of divergence free,

M u t , v dx = E M ρ t (X -1 t ) * u * 0 , v dx .
Then (3.14) follows. The proof of Theorem 3.9 is complete.

4 Volume-preserving flows on the torus and the sphere It is usually difficult to find on a general Riemannian manifold a family of vector fields of divergence free, which satisfy the conditions (a)-(d) in Section 3. In this part, we shall treat two important examples: torus T n and sphere S n in which this is possible.

Case of torus T 2

For the simplicity of exposition, we only consider the two dimensional torus T 2 . Let Z 2 be the set of lattice points in R 2 and define Z 2 0 = Z 2 \ {(0, 0) * }, where * means the column vector. For k ∈ Z 2 0 , we define k ⊥ = (k 2 , -k 1 ) * and

A k (θ) = cos(k • θ) |k| β • k ⊥ |k| , B k (θ) = sin(k • θ) |k| β • k ⊥ |k| , θ ∈ T 2 , (4.1) 
where β > 1 is some constant. Then the family {A k , B k : k ∈ Z 2 0 } constitutes an orthogonal basis of the space of divergence free vector fields V on T 2 such that T 2 V dθ = 0 (see [START_REF] Cipriano | Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus[END_REF]). We shall show that the family {A k , B k ; k ∈ Z 2 0 } of vector fields satisfy the conditions (a)-(c). Firstly, for any u ∈ R 2 , we remark that

A k (θ), u 2 + B k (θ), u 2 = k ⊥ , u 2 |k| 2(β+1) cos 2 (k • θ) + sin 2 (k • θ) = k ⊥ , u 2 |k| 2(β+1) . Thus k∈Z 2 0 A k (θ), u 2 + B k (θ), u 2 = k∈Z 2 0 k ⊥ , u 2 |k| 2(β+1) .
Notice that the transform k → k ⊥ on Z 2 0 is one-to-one and preserves the Euclidean norm | • |, we have

k∈Z 2 0 k ⊥ , u 2 |k| 2(β+1) = k∈Z 2 0 k, u 2 |k| 2(β+1) and |u| 2 |k| 2 = k, u 2 + k ⊥ , u 2 , therefore k∈Z 2 0 |u| 2 |k| 2β = 2 k∈Z 2 0 k ⊥ , u 2 |k| 2(β+1) .
Consequently,

k∈Z 2 0 A k (θ), u 2 + B k (θ), u 2 = |u| 2 2 k∈Z 2 0 1 |k| 2β = ν 0 |u| 2 , (4.2) 
where

ν 0 = 1 2 k∈Z 2 0 1 |k| 2β . Therefore (4.2) implies that A k √ ν 0 , B k √ ν 0 , k ∈ Z 2 0
satisfies the condition (a). Secondly, by the definition of A k ,

∇ A k A k = k ⊥ |k| β+1 A k , ∇ θ cos(k • θ) = - k ⊥ |k| 2(β+2) cos(k • θ) sin(k • θ) k ⊥ , k = 0.
Similarly, ∇ B k B k = 0. Therefore condition (b) is satisfied. Finally, for any vector field V on T 2 , we have

∇ V A k = k ⊥ |k| β+1 V, ∇ θ cos(k • θ) = - k ⊥ |k| β+1 sin(k • θ) V, k .
In the same way,

∇ V B k = k ⊥ |k| β+1 cos(k • θ) V, k .
Hence, for any u 1 , u 2 ∈ R 2 , it holds that

A k , u 1 ∇ V A k , u 2 + B k , u 1 ∇ V B k , u 2 = - V, k sin(k • θ) cos(k • θ) |k| 2(β+1) k ⊥ , u 1 k ⊥ , u 2 + V, k sin(k • θ) cos(k • θ) |k| 2(β+1) k ⊥ , u 1 k ⊥ , u 2 = 0,
that is, the condition (c) is also satisfied. Now let {u t ; t ≥ 0} be a family of C 2,α -vector fields of divergence free on T 2 . Consider the following SDE

dX t = 2ν ν 0 k∈Z 2 0 A k (X t ) • dW k t + B k (X t ) • d W k t + u t (X t ) dt, X 0 = x ∈ T 2 , (4.3) 
where {W k t , W k t ; k ∈ Z 2 0 } is a family of independent standard real Brownian motions. When β > 3, the SDE (4.3) defines a flow of C 1 -diffeomorphisms of T 2 (see [START_REF] Cipriano | Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus[END_REF]). In this case, by (3.10), for almost surely w, x → X t (x, w) preserves the measure dx; therefore by Theorem 3.9, we have Theorem 4.1. u t ∈ C 2,α with initial value u 0 is a solution of the Navier-Stokes equations on T 2 if and only if

u t = E P (X -1 t ) * u * 0 # . (4.4)

Case of sphere S n

Let be the de Rham-Hodge Laplacian operator acting on vector fields over S n . For ℓ ≥ 1, set c ℓ,δ = (ℓ + 1)(ℓ + n -2). Then {c ℓ,δ ; ℓ ≥ 1} are the eigenvalues of corresponding to the divergence free eigenvector fields. Denote by D ℓ the eigenspace associated to c ℓ,δ and

d ℓ = dim(D ℓ ) the dimension of D ℓ . It is known that d ℓ ∼ O(ℓ n-1 ) as ℓ → +∞. For ℓ ≥ 1, let {V ℓ,k ; k = 1, . . . , d ℓ } be an orthonormal basis of D ℓ in L 2 : S n V ℓ,k (x), V α,β (x) dx = δ ℓα δ kβ .
Weyl's theorem implies that the vector fields {V ℓ,k ; k = 1, . . . , d ℓ , ℓ ≥ 1} are smooth. We refer to [START_REF] Raimond | Flots browniens isotropes sur la sphère[END_REF] for a detailed study on isotropic flows on S n , many properties below were proved there. But we are more familiar with [START_REF] Fang | Isotropic stochastic flow of homeomorphisms on S d for the critical Sobolev exponent[END_REF] to which we refer known results. Let {b ℓ ; ℓ ≥ 1} be a family of positive numbers such that ∞ ℓ=1 b ℓ < +∞. Set

A ℓ,k = nb ℓ d ℓ V ℓ,k .
Below we shall consider the family

A ℓ,k ; 1 ≤ k ≤ d ℓ , ℓ ≥ 1 .
Let's first check the condition (a). By [16, (A.13)], we have, for x, y

∈ S n n d ℓ d ℓ k=1 V ℓ,k (x), y 2 = sin 2 θ, (4.5) 
where θ is the angle between x and y. Let u ∈ T x S n ; then x, u = 0. By (4.5),

n d ℓ d ℓ k=1 V ℓ,k (x), u 2 = |u| 2 .
Therefore,

ℓ≥1 d ℓ k=1 A ℓ,k (x), u 2 = ℓ≥1 nb ℓ d ℓ d ℓ k=1 V ℓ,k (x), u 2 = ν 0 |u| 2 , where ν 0 = ℓ≥1 b ℓ .
Next, by [16, Propositions A.3 and A.5],

d ℓ k=1 ∇ V ℓ,k V ℓ,k = 0. ( 4.6) 
thus the condition (b) is satisfied. It remains to check the condition (c). To this end, we need a bit more description on V ℓ,k . Let {e 1 , • • • , e n+1 } be the canonical basis of R n+1 . We denote by P 0 = e n+1 the north pole. When n ≥ 3, the group SO(n + 1) acts transitively on S n . Let x ∈ S n be fixed, then there is g ∈ SO(n + 1) such that x = χ g (P 0 ) = gP 0 . Then

V ℓ,k (gP 0 ) = d ℓ n n i=1 Q ℓ ki (g)dχ g (P 0 )e i , (4.7) 
where {Q ℓ ; ℓ ≥ 1} is the family of irreducible unitary representations of SO(n + 1) which keep the representation h → dχ h (P 0 ). It is important that the element Q ℓ qi has an explicit formula for 1 ≤ q, i ≤ n:

Q ℓ qi (g) = tγ ℓ (t) - 1 -t 2 n -1 γ ′ ℓ (t) g qi -γ ℓ (t) + t n -1 γ ′ ℓ (t) g q,n+1 g n+1,i , (4.8) 
with t = g n+1,n+1 and γ ℓ (cos θ) = π 0 cos θ -√ -1 sin θ cos ϕ ℓ-1 sin n ϕ dϕ c n , where c n = π 0 sin n ϕ dϕ. Set E j = dχ g (P 0 )e j ; then {E 1 , • • • , E n } is an orthonormal basis of T x S n . Fix j, we consider ĝ(s) ∈ SO(n + 1) which leaves invariant e i for i = j, i = n + 1 and ĝ(s)e j = cos s e j -sin s e n+1, ĝ(s)e n+1 = sin s e j + cos s e n+1 .

Then by [16, p.596],

∇ E j V ℓ,k (x) = d ℓ n n i=1 d ℓ β=1 Q ℓ kβ (g) d ds s=0 Q ℓ βi (ĝ(s)) E i . (4.9) 
Combining (4.7) and (4.9), we get

d ℓ k=1 V ℓ,k ∧ ∇ E j V ℓ,k = d ℓ n n q,i=1 d ℓ β,k=1 Q ℓ kβ Q ℓ kq d ds s=0 Q ℓ βi (ĝ(s)) E q ∧ E i = d ℓ n n q,i=1 d ds s=0 Q ℓ qi (ĝ(s)) E q ∧ E i .
In (4.8), we replace g by ĝ(s); therefore t = cos s, the term g qi = 0 for q = i, g i,n+1 = 0 if i = j, g n+1,i = 0 if i = j. We have g jj = cos s and g n+1,j g j,n+1 = -sin 2 s. It follows that

d ℓ k=1 V ℓ,k ∧ ∇ E j V ℓ,k = 0.
The condition (c) is satisfied. Notice that using (4.8), we have in fact the stronger result

d ℓ k=1
V ℓ,k ⊗ ∇ E j V ℓ,k = 0. Now let {u t ; t ≥ 0} be a family of C 2,α -vector fields of divergence free on S n . Let b ℓ = 1/ℓ 1+α . Consider the following SDE

dX t = 2ν ν 0 ℓ≥1 d ℓ k=1 A ℓ,k (X t ) • dW ℓ,k t + u t (X t ) dt, X 0 = x ∈ S n , (4.10) 
where W ℓ,k t ; ℓ ≥ 1, 1 ≤ k ≤ d ℓ is a family of independent standard real Brownian motions. When α > 2, the SDE (4.10) defines a flow of C 1 -diffeomorphisms of S n (see [START_REF] Jan | Integration of Brownian vector fields[END_REF][START_REF] Luo | Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres[END_REF]). In this case, for almost surely w, x → X t (x, w) preserves the measure dx; therefore by Theorem 3.9, we have 

  are smooth vector fields satisfying conditions (a), (b) and (c). Note that condition (c) does not often appear. For a justification of (c), we refer to [13, Remark 2.3.1, p.39]. For the case of spheres, we shall do explicit computations in Appendix to illustrate conditions (a), (b) and (c).
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 33 Under (a), (b) and (c), for any differential 2-form ω, δ(ω) = δ(ω).
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 342 0. Summing over i ∈ I and according to (b) and (3.3), we get the result. Now the de Rham-Hodge Laplacian operator = dδ + δd admits the following decomposition (see[START_REF] Elworthy | On the geometry of diffusion operators and stochastic flows[END_REF]): Under the conditions (a)-(c), for any differential 1-form ω, we have i∈I L i ω = ω.(3.5)

(3. 6 ) 3 . 5 .

 635 Lemma The conditions (b) and (c) imply i∈I div(A i )A i = 0.(3.7)

Unfortunately the vector fields {A 1 ,Theorem 3 . 7 .

 137 • • • , A m } in Example 3.1 do not satisfy condition (d). See the appendix. Under (a), (b), (c) and (d), we have, for any vector field B,

Proposition 3 . 8 .

 38 then summing over i and according to (3.5), we getM ∆(ω(B)) dx = M ( ω)(B) dx -M ω( ˆ B) dx. It follows that M ( ω)(B) dx = M ω( ˆ B) dx; therefore B = ˆ B. If div(B) = 0, then div( B) = 0.Proof. Notice first that δ(B * ) = div(B) = 0, then by(3.6), div( B) = δ( B * ) = δdδ(B * ) = 0, which completes the proof.
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 42 The velocity u t ∈ C 2,α with initial value u 0 is a solution of the Navier-Stokes equation on S n if and only ifu t = E P (X -1 t ) * u * 0 # . (4.11) 
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Since M is torsion-free, we have

By (3.16) and (3.17), we know that for a.e. t ≥ 0, it holds

Multiplying both sides by α ∈ C 1 c ([0, ∞)) and integrating by parts on [0, ∞), we arrive at

The above equation is the weak formulation of the Navier-Stokes (3.13) on the manifold M . Since u t ∈ C 2,α , it is a strong solution to (3.13).

For proving the converse, we use the idea in [START_REF] Zhang | A stochastic representation for backward incompressible Navier-Stokes equations[END_REF]Theorem 2.3]. Let u t ∈ C 2,α be a solution to (3.13), then

Consider the SDE in (3.12) with drift term u t . Define

Then the same calculation as above leads to

It follows that (z t ) solves the following heat equation on M

By uniqueness of solutions, we get that z t = 0 for all t ≥ 0. Thus u t = ũt .

To prove (3.14), we note that

5 Appendix: example of the sphere For reader's convenience, we shall exhibit properties (a)-(c) in Section 3 in the case of sphere S n . We denote by , the canonical inner product of R n+1 . Let x ∈ S n , the tangent space T x S n of S n at the point x is given by

Then the orthogonal projection P x : R n+1 → T x S n has the expression:

Let {e 1 , • • • , e n+1 } be an orthonormal basis of R n+1 ; then the vector fields A i (x) = P x (e i ) have the expression:

Then {γ(t); t ∈ [0, 1]} is the geodesic on S n such that γ(0) = x, γ ′ (0) = v. We have A i (γ(t)) = e i -γ(t), e i γ(t). Taking the derivative with respect to t and at t = 0, we get

(5.1)

Hence,

x, e i e i -x, e i 2 x = -n(x -x) = 0.

(

Replacing v by A i in (5.1), we have ∇ A i A i = -x, e i e i + x, e i 2 x; therefore summing over i, we get n+1 i=1 ∇ A i A i = 0.

(5.4)

Now let v ∈ T x S n and a, b ∈ T x S n , we have

= a, e i x, e i v, b -x, e i b, e i v, a . 

Summing over i yields