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Let X be a real-valued stationary Gaussian random field defined on R d (d ≥ 1), with almost every realization of class C 2 . This paper is concerned with the random variable giving the number of points in T (a compact set of R d ) where the gradient

More precisely, it deals with the finiteness of the variance of N X (T, v), under some non-degeneracy hypothesis on X. For d = 1, the so-called "Geman condition" has been proved to be a sufficient condition for N X (T, v) to admit a finite second moment. This condition on the fourth derivative r (4) of the covariance function of X does not depend on v and requires t → r (4) (0)-r (4) (t) t to be integrable in a neighbourhood of zero. We prove that for d ≥ 1, a generalization of the Geman condition remains a sufficient condition for N X (T, v) to admit a second moment. No assumption of isotropy is required.

Introduction

Let d be a positive integer and let X : Ω × R d → R be a stationary Gaussian random field. We assume that almost every realization is of class C 2 on R d . Let T be a compact set in R d such that the boundary of T has a finite (d -1)-dimensional Lebesgue measure. For any v ∈ R d , we consider the number N X (T, v) of points in T where the gradient of X, denoted by X , reaches the value v: N X (T, v) = #{t ∈ T : X (t) = v}.

For v = 0, it is nothing but the number of stationary points of X in T . In this paper, we establish a sufficient condition on the covariance function r of the random field X in order that N X (T, v) admits a finite variance.

The existence of the second moment of N X (T, v) has been studied since the late 60s, first in dimension one and for a level equal to the mean, i.e. v = 0. Cramér and Leadbetter were the first to propose in [START_REF] Cramér | Stationary and Related Stochastic Processes[END_REF] a sufficient condition on the covariance function r in order that N X (T, 0) belongs to L 2 (Ω). If X satisfies some nondegeneracy assumptions, this simple condition requires that the fourth derivative r (4) satisfies ∃δ > 0, δ 0 r (4) (0) -r (4) (t) t dt < +∞.

It is known as the Geman condition for Geman proved some years after in [START_REF] Geman | On the variance of the number of zeros of a stationary Gaussian process[END_REF] that it was not only sufficient but also necessary. The issue of the finiteness of the higher moments of N X (T, 0) has also been discussed in many papers (see [START_REF] Belyaev | On the number of crossings of a level by a Gaussian random process[END_REF][START_REF] Cuzick | Conditions for finite moments of the number of zero crossings for Gaussian processes[END_REF][START_REF] Malevich | On condition for finiteness of the factorial moments of the number of zeros of Gaussian stationary processes[END_REF] for instance and references therein). Kratz and León generalized Geman's result in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF] to the number of crossings of any level v ∈ R and also to the number of a curve crossings.

Concerning the problem in higher dimension, it has been an open question for a long time. Elizarov gave in [START_REF] Elizarov | On the variance of the number of stationary points of a homogeneous Gaussian field[END_REF] a sufficient condition for N X (T, 0) to be in L 2 (Ω). Even though his condition is weaker than ours, his proof is short and elliptical and it only concerns the number of stationary points. Under the additional hypothesis that X is isotropic and of class C 3 , Estrade and León proved in [START_REF] Estrade | A central limit theorem for the Euler characteristic of a Gaussian excursion set[END_REF] that for any v ∈ R d , N X (T, v) admits a finite second moment.

Beside the specific works already mentioned, we will intensively refer in the present paper to [START_REF] Adler | Random Fields and Geometry[END_REF] and [START_REF] Azaïs | Level Sets and Extrema of Random Processes and Fields[END_REF] as recent and complete books dedicated to the geometry of random fields.

The paper is organized as follows. In Section 1, we introduce our notations and assumptions. Our proof begins with the use of Rice formulas in Section 2.1 to give an expression of N X (T, v) in an integral form. It allows us to restrict the problem to the one of the integrability in a neighbourhood of zero in R d of the function

t → E[ (det X (0)) 2 / X (0) = X (t) = v ] t -d .
We are able to bound this function and, thanks to a regression method implemented in Section 2.2, to study the asymptotic properties of the bound around zero. Section 3 is devoted to the main result of this paper, namely Theorem 3.1. It gives an extension of Geman condition in dimension d > 1 that is sufficient to establish that N X (T, v) is square integrable for any v.

Notations and derivatives

We deal with a stationary Gaussian field X = {X(t), t ∈ R d } and we denote by r its covariance function t → Cov(X(0), X(t)). We assume that almost every realization of X is of class C 2 on R d . That implies that r is of class C 4 on R d .

We fix an othonormal basis of R d , according to the canonical scalar product that we denote by • , • . We consider the partial derivatives of X and r computed in this basis. We write (X i ) 1≤i≤d and (X i,j ) 1≤i,j≤d the partial derivatives of X of first and second order, respectively, and r i , r i,j , r

i,j,m and r (4) i,j,m,n the partial derivatives of r, from order one to four, respectively. We refer to the gradient of X at t as X (t) and to the Hessian matrix of X at t as X (t). Similarly, we write r (t) the Hessian of r at t. We will sometimes denote by r (3) i,j (t) the vector (r

i,j,m (t)) 1≤m≤d and by r (4) i,j (t) the matrix (r (4) i,j,m,n (t)) 1≤m,n≤d . We also use the same notation for t ∈ R d and the column vector containing its coordinates.

In every space R m (m is any positive integer), we denote by • the norm associated to the canonical scalar product. We use the standard notations o(•) and O(•) to describe the behaviour of some functions in a neighbourhood of zero.

In this paper, we will make extensive use of the relationships between the partial derivatives of r and the covariances between the partial derivatives of X. We recall them here. For s, t ∈ R d and for 1 ≤ i, j, m, n ≤ d, the following relations hold:

We will need the assumption that for any t ∈ R d \{0}, the vector (X (0), X (t), (X i,j (0)) 1≤i≤j≤d , (X i,j (t)) 1≤i≤j≤d ) is not degenerate. As a consequence, Var[X(t)] = r(0) = 0 and so we may assume that r(0) = 1. As another consequence, the covariance matrix of X (0) is not degenerate, which allows us to assume that -r (0) = I d or, equivalently, that the first-order derivatives of X are uncorrelated and of unit variance. This assumption is taken from the proof of Lemma 11.7.1 in [START_REF] Adler | Random Fields and Geometry[END_REF]. We explain it here in a few words. The covariance matrix of

X (0) is -r (0). A square root Q of (-r (0)) -1 will satisfy -Q r (0) Q = I d . We now define a new random field X Q on R d by X Q (t) = X(Q t).
It is not hard to see that X Q is still stationary, with unit variance, and that the covariance matrix of X Q (0) is I d . Note that this does not imply that X Q is isotropic. From now on, we will abandon the notation X Q , although we will still assume that -r (0) = I d .

We gather all the assumptions made on X in one assumption referred to as (H):

(H)      almost every realization of X is of class C 2 , ∀t = 0, Cov (X (0), X (t), (X i,j (0)) 1≤i≤j≤d , (X i,j (t)) 1≤i≤j≤d ) is of full rank, r(0) = 1 and -r (0) = I d .
Note that the major assumptions in condition (H) are the first two ones. The last assumption has been added to make the intermediate proofs and computations easier, but the main result of our paper remains true if we remove it.

With these assumptions in mind, we are able to write the next Taylor formulas around 0 for the covariance function r and its derivatives:

                   r(t) = 1 - 1 2 1≤i≤d t 2 i + 1 4! i,j,m,n r (4) 
i,j,m,n (0)

t i t j t m t n + o( t 4 ) r (t) = -I d + 1 2 Θ(t) + o( t 2 ) r (3) i,j (t) = r (4) i,j (0)t + o( t ), for all 1 ≤ i, j ≤ d r (4) i,j (t) = r (4) i,j (0) + o(1), for all 1 ≤ i, j ≤ d , where the d×d matrix Θ(t) is defined by Θ(t) m,n = r (4) m,n (0)t , t = 1≤i,j≤d r (4) 
i,j,m,n (0)t i t j .

We note that, for any t = 0, Θ(t) is inversible. Indeed, since Θ(t) is the covariance matrix of vector X (0) t, if it was not inversible, X (0) t would be a degenerate Gaussian vector and so there would exist a linear dependence between the coordinates of X (0). That would be inconsistent with assumption (H). Hence, in what follows, we denote by ∆(t) the inverse matrix of Θ(t) for t = 0. Besides, we also remark that t → Θ(t) and t → ∆(t) are homogeneous functions of respective degrees 2 and -2. We fix a compact set T in R d , such that the boundary of T has a finite (d -1)dimensional Lebesgue measure. For instance, T can be a bounded rectangle in R d .

Preliminary results

Rice formula. For any

v ∈ R d , N X (T, v)
is the number of roots in T of the vectorial random field X -v. The well-known Rice formula ([4] Theorem 6.2 or [START_REF] Adler | Random Fields and Geometry[END_REF] Corollary 11.2.2) not only gives a closed formula for the expectation of N X (T, v) but also states that it is finite in our context. So the variance of N X (T, v) is finite if and only if its second-order factorial moment is finite. Another Rice formula gives the second factorial moment of N X (T, v) under hypothesis (H) ([4] Theorem 6.3 or [START_REF] Adler | Random Fields and Geometry[END_REF] Corollary 11.5.2):

E[N X (T, v)(N X (T, v) -1)] = T ×T E[| det X (s) det X (t)| / X (s) = X (t) = v] p s,t (v, v) ds dt ,
where p s,t denotes the probability density function of the Gaussian vector (X (s), X (t)). This formula holds whether both sides are finite or not. We introduce

F (v, t) = E[| det X (0) det X (t)| / X (0) = X (t) = v] ; v, t ∈ R d ,
and we use the stationarity of X to transform the double integral in the Rice formula into a simple integral:

E[N X (T, v)(N X (T, v) -1)] = T0 |T ∩ (T -t)| F (v, t) p 0,t (v, v) dt, where |T ∩(T -t)| is the Lebesgue measure of T ∩(T -t) and T 0 = t -t , (t, t ) ∈ T 2 .
This formula allows us to give a simple criteria for N X (T, v) to be square integrable.

Notation. Let u : R d → R m . We write u ∈ L 1 (V 0 , t -d dt) if there exists a positive constant δ such that B(0,δ)

u(t) t d dt < +∞. Lemma 2.1. Assume that X fulfills condition (H). For any v ∈ R d , we introduce G(v, •) : t ∈ R d -→ G(v, t) = E[(det X (0)) 2 / X (0) = X (t) = v] . Then G(v, •) ∈ L 1 (V 0 , t -d dt) ⇒ N X (T, v) ∈ L 2 (Ω). Proof. Note that the function t → |T ∩ (T -t)| F (v, t) p 0,t (v, v) is continuous on R d \{0}, because
the random field X is Gaussian. So it is integrable in every bounded domain that does not include a neighbourhood of zero. We are now concerned with its behaviour in a neighbourhood of zero. We first remark that, as t tends to 0, the term |T ∩ (T -t)| is equivalent to |T |. Next, we use Cauchy-Schwarz inequality and stationarity to write

F (v, t) ≤ (G(v, t) G(v, -t)) 1/2 .
Let us now study t → p 0,t (v, v) as t tends to 0. We know that

p 0,t (v, v) ≤ p 0,t (0, 0) = (2π) -d/2 (det Γ(t)) -1/2 ,
where Γ(t) is the covariance matrix of the 2d-dimensional Gaussian vector (X (0), X (t)).

It is given blockwise by

Γ(t) = I d -r (t) -r (t) I d and so det Γ(t) = det(I d -r (t) 2 ) = det Θ(t) + o( t 2 ) = det Θ(t) det I d + o( t 2 ) ∆(t) = t 2d det Θ( t t ) det I d + o(1) ∆( t t ) ,
where we have used the homogeneity properties of Θ and ∆. Since min u∈S d-1 det Θ(u) is strictly positive and t → ∆( t t ) is bounded, there exists c > 0 such that det Γ(t) ≥ c t 2d for t in a neighbourhood of zero. Hence, for some positive constant

C, p 0,t (v, v) ≤ C t -d . Consequently, if G(v, •) ∈ L 1 (V 0 , t -d dt) then t → |T ∩ (T -t)| F (v, t) p 0,t (v, v
) is bounded by a function that is integrable in a neighbourhood of 0, thanks to Cauchy-Schwarz inequality. That concludes the proof of the lemma.

Our aim is now to study the behavior of G(v, t) as t → 0, for a fixed v ∈ R d . Precisely, we will provide a sufficient condition for G(v, •) to belong to L 1 (V 0 , t -d dt).

Regression.

In order to get an estimate for G(v, t), we compute the conditional law of X (0) with respect to the event {X (0) = X (t) = v}. Let K = d(d + 1)/2. We consider the symmetric matrix X (0) as a K-dimensional Gaussian column vector by putting the coefficients of its upper triangular part in a vector that we write ∇ 2 X(0). So the indices 1 ≤ k ≤ K of this vector have to be seen as double indices (k = (i, j) with 1 ≤ i ≤ j ≤ d). For t = 0, we write the following K-dimensional regression system:

(1)

∇ 2 X(0) = A(t) X (0) + B(t) X (t) + Z(t) ,
where A(t) and B(t) are matrices of size K × d and Z(t) is a K-dimensional centered Gaussian vector, independent from X (0) and X (t). Hence, conditioned on {X (0) = X (t) = v}, ∇ 2 X(0) is a Gaussian vector with mean (A(t) + B(t))v and covariance matrix Γ Z (t). Next proposition is simply the result of a Gaussian computation, formulated according to our future needs.

Proposition 2.2. If X fulfills condition (H), then the regression coefficients of system (1) are given by (2)

A(t) = r (3) (t) N 2 (t) and B(t) = r (3) (t) N 1 (t) ,
where r (3) (t) has to be considered as a K × d matrix and N 1 (t) and N 2 (t) are two d × d matrices defined on R d \{0} by

(3) N 1 (t) = (I d -(r (t)) 2 ) -1 and N 2 (t) = r (t) (I d -(r (t)) 2 ) -1 .
Besides, the covariance matrix Γ Z (t) of the K-dimensional Gaussian vector Z(t) is such that for any 1 ≤ k, l ≤ K and for t ∈ R d \{0},

(4) Γ Z (t) k,l = Cov(Z(t) k , Z(t) l ) = r (4) k,l (0) -r (3) 
k (t) , N 1 (t) r (3) 
l (t) .

Proof. We denote by X 1 the vector ∇ 2 X(0) of size K and by X 2 the vector (X (0), X (t)) of size 2d. We write C 1 the K × K covariance matrix of X 1 , C 2 the 2d × 2d covariance matrix of X 2 and C 12 the K × 2d matrix of the covariances between the coordinates of X 1 and these of X 2 . Then, let us recall that the conditional distribution of X 1 with respect to X 2 (that are both centered) is Gaussian, with mean vector C 12 C -1 2 X 2 and covariance matrix C 1 -C 12 C -1 2 C T 12 . Thanks to the relations recalled in Section 1, we have

C 1 = r (4) (0) , C 2 = I d -r (t) -r (t) I d , C 12 = O K,d r (3) (t) ,
where r (4) (0) stands for the K × K matrix (r

k,l (0)) 1≤k,l≤K , O K,d for the K × d zero matrix and, for any t ∈ R d , r (3) (t) stands for the K ×d matrix (r

(3) k,i (t)) 1≤k≤K, 1≤i≤d .
Let us note that C 2 , which is the covariance matrix of (X (0), X (t)), is not degenerate for t = 0 because of hypothesis (H). We note N (t) its inverse. It is not

hard to find that N (t) = N 1 (t) N 2 (t) N 2 (t) N 1 (t)
where N 1 (t) and N 2 (t) are two square matrices of dimensions d × d. To show (3), we just have to solve the system

N 1 (t) -r (t) N 2 (t) =I d -r (t) N 1 (t) + N 2 (t) =0.
Computing the conditional mean of X 1 with respect to X 2 , we get

C 12 C -1 2 X 2 = r (3) (t) N 2 (t) X (0) + r (3) (t) N 1 (t) X (t)
, and thus we deduce the regression coefficients as announced in [START_REF] Adler | Random Fields and Geometry[END_REF]. Moreover, the covariance matrix of the conditional distribution of X 1 with respect to X 2 is given by

C 1 -C 12 C -1 2 C T 12 = r (4) (0) -r (3) (t) N 1 (t) r (3) (t)
T . Its coefficients are exactly those written in formula [START_REF] Azaïs | Level Sets and Extrema of Random Processes and Fields[END_REF]. That concludes the proof.

Sufficient Geman condition

We now state our main result. Assumption (H) is still in force and we introduce a new condition:

(G) there exists δ > 0 such that

B(0,δ) r (4) (0) -r (4) (t) t d dt < +∞ .
Condition (G) is weaker than X almost surely of class C 3 , since in that case, r (4) (0) -r (4) (t) = o( t ) as t tends to zero. It is a generalization of Geman condition known in dimension d = 1. In this particular case, it has been proved to be a sufficient and necessary condition to have N X (T, v) ∈ L 2 (Ω) for any v ∈ R (see [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF]).

It turns out that our condition (G) remains a sufficient condition in dimension

d > 1 for N X (T, v) to be in L 2 (Ω). Theorem 3.1. If X fulfills conditions (H) and (G), then for any v ∈ R d , N X (T, v) ∈ L 2 (Ω) .
Proof of Theorem 3.1. We will proceed in several steps.

First step: study of function G. Recall that G has been introduced in Lemma 2.1. Lemma 3.2. Suppose that X fulfills condition (H) and let V ⊂ R d be a compact set. Then (i) for any v ∈ V, G(v, t) = G(0, t) + o( t ), (ii) there exists a homogeneous polynomial Q (d) of degree d, which does not depend on X, such that G(0, t) = Q (d) (Γ Z (t)), where Q (d) (Γ Z (t)) is the evaluation of the polynom Q (d) at the coefficients of matrix Γ Z (t).

Proof. (i)

We use the natural identification between symmetric d×d matrices and vectors in R K , where K = d(d+1)/2, to define det(y) as the determinant of the d×d symmetric matrix whose upper triangular part contains the coordinates of y ∈ R K . It is a degree d homogeneous polynomial function of K variables. With this notation, and using the regression system (1), we get for

v ∈ R d , t ∈ R d \{0}, G(v, t) = E det(S(t)v + Z(t)) 2 ,
where S(t) stands for A(t) + B(t). Thanks to formula (3),

S(t) = r (3) (t) (N 2 (t) + N 1 (t)) = r (3) (t) (I d -r"(t)) -1 ,
and since I d -r"(t) → 2I d and r (3) (t) = O( t ) as t → 0, we get the following asymptotics:

(5)

S(t) = A(t) + B(t) = O( t ) as t → 0.
Let us come back to the computation of G. By developping the square of the determinant and bringing together the terms according to the powers of the coordinates (S(t)v) k of the K-dimensional vector S(t)v, we get det (S(t)v + Z(t))

2 = det(Z(t)) 2 + 1≤k≤K (S(t)v) k Q k (2d-1) (Z(t)) + 1≤k,l≤K (S(t)v) k (S(t)v) l Q kl (2d-2) (S(t)v + Z(t)) ,
where the Q k (2d-1) 's and the Q kl (2d-2) 's are multivariate polynomial functions of respective degrees 2d -1 and 2d -2. Note that E Q k (2d-1) (Z(t)) = 0 since Z(t) is a centered Gaussian vector and Q k (2d-1) has an odd degree. Then, by taking the expectation, applying (5) and the fact that Γ Z (t) is bounded for t in any compact set, we obtain that, uniformly with respect to v ∈ V,

G(v, t) = E[ det(Z(t)) 2 ] + o( t ) as t → 0. (6) Recall that G(0, t) = E[ det(Z(t)) 2 ], hence point (ii) is proved. (ii) We now compute E[ det(Z(t)) 2
] by applying Wick's formula. Actually, let us consider for a while a K-dimensional centered Gaussian vector Y and let us compute E[ det(Y ) 2 ]. This quantity is equal to an alternate sum of terms with the following shape:

E[Y i1 • • • Y i 2d ]
where i 1 , . . . , i 2d belong to {1, . . . , K}. Wick's formula says that the expectation of the product of an even number, say 2d, of K centered Gaussian variables can be written as a homogeneous polynomial function That yields:

r (3) k (t) = 1 0 r (4) k (ut) t du r i,j (t) = -δ i,j + 1 0 r (4) i,j (ut) t, t (1 -u) du.
Hence, using functions ε and ε, and the fact that Θ(t) i,j = r (4) i,j (0) t , t , we get ). Thanks to [START_REF] Geman | On the variance of the number of zeros of a stationary Gaussian process[END_REF], we rewrite (9) in the following way:

r (4) k (0) t -r (3) k (t) = ε(t) k t (10) r i,j (t) = -δ i,j + 1 2 Θ(t)
Γ Z (t) k,l -γ(t) k,l = ε(t) k t , ∆(t)r (4) 
l (0) t =: S 1 + r (4) 
k (0) t -ε(t) k t , ∆(t)ε(t) l t =: S 2 + r (4) 
k (0) t -ε(t) k t , (∆(t) -N 1 (t)) (r (4) 
l (0) t -ε(t) l t) =: S 3 .

Let ρ := r (4) (0) . For the following computations, we recall that Θ is continuous and homogeneous of degree 2 on R d and that for t ∈ R d \{0}, ∆(t) = Θ(t) -1 . We introduce δ := max v∈S d-1 ∆(v) . Thanks to Cauchy-Schwarz inequality, we may bound the first term S 1 and the second one S 2 as follows:

|S 1 | ≤ δρ ε(t) , |S 2 | ≤ δ r (4) (0) -ε(t) ε(t) ≤ δρ ε(t) + δ ε(t) 2 .
We now focus on the third term S 3 . In order to bound it, we write a precise expansion of N 1 (t) -∆(t) around zero, based on formula [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF]. We have

N 1 (t) = I d -r (t) 2 -1 = Θ(t) -E(t) + O( t 4 ) -1 = ∆(t) I d -E(t)∆(t) + O( t 4 )∆(t) -1
where

E(t)∆(t) + O( t 4 )∆(t) = E(t) t 2 + O( t 2 ) ∆( t t
) , which tends to 0. 

If A is a d × d matrix, (I d -A) -1 = I d + A + o(A)
t 2 N 1 (t) -∆(t) ≤ c δ 2 ε(t) + d t 2 .
Consequently, since ε(t) and ε(t) tend to zero as t tends to zero, there exists a neighbourhood V of zero in R d and c > 0 such that, for any t ∈ V \{0},

|S 3 | ≤ (δ + ε(t) ) 2 (cδ 2 ε(t) + d t 2 ) ≤ c ( ε(t) + t 2 ).
So, for any 1 ≤ k, l ≤ K, Γ Z (t) k,l -γ(t) k,l is bounded by a term proportional to ε(t) + ε(t) + t 2 in a neighbourhood of zero. This concludes the proof of Lemma 3.5.

Let us now combine all our intermediate results to complete the proof of the theorem. Our aim is to prove that G(v, •) ∈ L 1 (V 0 , t -d dt) in order to conclude thanks to Lemma 2.1. We recall that Lemma 3.2 also allows us to write that G(v, t) = Q (d) (Γ Z (t)) + o( t ) as t tends to zero. Using Proposition 3.4, we get for t = 0

G(v, t) = Q (d) (Γ Z (t)) -Q (d) (γ(t)) + o( t ) = Q (d) (γ(t)) , Γ Z (t) -γ(t) + o Γ Z (t) -γ(t) + o( t ). Since Q (d) (γ(t)
) is bounded for t in any compact set of R d , we deduce from Lemma 3.5 that there exists a neighbourhood of zero W in R d and a positive constant c such that, for any t ∈ W, G(v, t) ≤ c ( ε(t) + ε(t) + t ) .

A change of variable easily shows that condition (G) implies that ε ∈ L 1 (V 0 , t -d dt) and the same holds for ε. Obviously, we also have t → t ∈ L 1 (V 0 , t -d dt). Consequently, under condition (G), G(v, •) ∈ L 1 (V 0 , t -d dt). The proof of Theorem 3.1 is complete.

Conclusion and perspectives

In brief, our paper addresses the issue of the finiteness of the variance of N X (T, v) in dimension d > 1, with no assumption of isotropy on X. We do not restrict ourselves to the number of stationary points N X (T, 0). In fact, a sufficient condition is established in Theorem 3.1. It is named (G) and appears as a generalization to higher dimensions of Geman condition. As in dimension one, it does not depend on the considered level

v ∈ R d .
An open question is whether, in dimension d > 1, (G) remains a necessary condition for N X (T, v) to admit a second moment. Another natural question concerns the finiteness of the moments of N X (T, v) of order higher than two. In particular, sufficient conditions on the covariance function of X should be investigated. Note that in [START_REF] Malevich | On condition for finiteness of the factorial moments of the number of zeros of Gaussian stationary processes[END_REF], the author deals with the higher moments of N Y (T, v), where Y : Ω × R d → R d is a multivariate random field, and an answer is given through a condition on the spectral density. The latter problem is not the same, but close to ours.

As it is done in dimension one in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF], our work could be extended to the study of the finiteness of the variance of N X (T, φ) := {t ∈ T : X (t) = φ(t)}, where φ : R d → R d is a function of class C 1 . Does our condition remain sufficient with some assumptions on φ?

We are convinced that the simple and explicit sufficient condition we have exhibited will be of interest for many applications, especially for statistic purposes.

Let us mention here briefly a specific consequence of our result. Actually, the random variable N X (T, 0) is involved in the computation of another random variable linked to the geometrical properties of X: the Euler characteristic of an excursion set. Let us explain why under our sufficient condition for N X (T, 0) to be in L 2 (Ω), the Euler characteristic of any excursion set also admits a second moment. This question has been raised forty years ago in [START_REF] Adler | Level crossings for random fields[END_REF] and is still subject to investigation, see [START_REF] Taheriyoun | A note on the higher moments of the Euler characteristic of the excursion sets of random fields[END_REF] for instance.

To simplify, we assume that T is a d-dimensional compact rectangle and we consider an excursion set of X above level u : A u (T ) := {t ∈ T : X(t) ≥ u}. We refer to Section 9.4 in [START_REF] Adler | Random Fields and Geometry[END_REF] and to [START_REF] Estrade | A central limit theorem for the Euler characteristic of a Gaussian excursion set[END_REF] for precise definitions and explanations about the next formula. The modified Euler characteristic of the excursion set A u (T ) is defined by ϕ(T, u) = d i=0 (-1) i µ i (T, u), where µ i (T, u) = #{t ∈ T : X(t) ≥ u, X (t) = 0, index(X (t)) = d -i} and the "index" stands for the number of negative eigenvalues. Since each µ i (T, u) is bounded by N X (T, 0), it is clear that ϕ(T, u) is square integrable as soon as N X (T, 0) does. So condition (G) appears as a sufficient condition.
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	We denote by E(t) the d × d matrix such that E(t) i,j = 2 εi,j (t) t , t , which allows
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of degree d evaluated at the covariances of the K Gaussian variables. Hence, there exists a degree d homogeneous polynomial function Q (d) such that [START_REF] Cuzick | Conditions for finite moments of the number of zero crossings for Gaussian processes[END_REF])

where Γ Y is the covariance matrix of Y . Taking Y = Z(t), we deduce from [START_REF] Cramér | Stationary and Related Stochastic Processes[END_REF] that G(v, t) = Q (d) (Γ Z (t)) + o( t ). Lemma 3.2 is then proved.

Second step: an auxiliary function. This step is dedicated to the properties of a function that will turn out to be, to some extent, close to Γ Z (t), as t tends to zero. Let us recall that the expression of Γ Z (t) is given by formula [START_REF] Azaïs | Level Sets and Extrema of Random Processes and Fields[END_REF]. We introduce γ(t) = (γ(t) k,l ) 1≤k,l≤K defined for t = 0 by ( 8)

l (0) t , ∆(t) being the inverse matrix of Θ(t) introduced in Section 1. Function γ only depends on r through its fourth-order derivatives at zero. Clearly, it is homogeneous of degree zero: for any

Proof of Remark 3.3. The conditional covariance matrix can be computed thanks to the formula recalled in the proof of Proposition 2.2. The covariance matrix of vector ∇ 2 X(0) is the K × K matrix C 1 = (r (4) (0)). The covariance matrix of vector (X (0), X (0)t) is the 2d

and the matrix of the covariances between the coordinates of vector ∇ 2 X(0) and these of (X (0), X (0)t) is the K × 2d matrix

, where r

k,i (0) stands for the d-dimensional line vector (r

k,i,j (0)) 1≤j≤d (i th line of matrix r (4)

We now state a property of the auxiliary function γ that is interesting for its own.

Proof of Proposition 3.4. We first check the result in the particular case of dimension one. For

Hence, for any x ∈ R, Q (1) (x) = x. Moreover, according to the definition of γ (see [START_REF] Elizarov | On the variance of the number of stationary points of a homogeneous Gaussian field[END_REF]), for t = 0, γ(t) = r (4) (0) -(r (4) (0)t) 2 r (4) (0)t 2 = 0. By computing explicitely the polynomial Q (2) and the function γ(t), we give in the Appendix an alternative proof of Proposition 3.4 in the case d = 2.

We now give a general proof. According to Remark 3.3 and to the definition of Q (d) prescribed in [START_REF] Cuzick | Conditions for finite moments of the number of zero crossings for Gaussian processes[END_REF], we have

Besides, one can check the following result that we read in [START_REF] Azaïs | On the distribution of the maximum of a Gaussian field with d parameters[END_REF]. Let M be a d × d symmetric positive matrix and let (v i ) 1≤i≤d be an orthonormal basis of R d . Then, denoting by M the (d-1)×(d-1) matrix ( M v i , v j ) 2≤i,j≤d , the following inequality holds:

We apply this result with M = X (0) 2 , v 1 = t t , taking for (v i ) 2≤i≤d any vectors satisfying the required hypothesis. As a result,

So, applying the conditional expectation with respect to the event {X (0) = X (0)t = 0}, we get Q (d) (γ(t)) ≤ 0. That concludes the proof since Q (d) (γ(t)) only takes non negative values.

Third step: a comparison between Γ Z (t) and γ(t). We introduce the following functions defined on R d ,

They all take values in R d 4 and are symmetric functions with respect to the indices (i, j, m, n) ∈ [[1, d]] 4 . Since r is C 4 , ε is continuous and ε(t) = o(1) as t tends to 0. The same holds for ε(t) and ε(t).

Lemma 3.5. If X satisfies condition (H), then there exists a neighbourhood W of zero in R d and a positive constant c such that, for any t ∈ W\{0},

Proof of Lemma 3.5. Formulas ( 4) and ( 8) allow us to write:

We now use Taylor expansions to get precise upperbounds. For any t ∈ R d , for any 1 ≤ k ≤ K and for any 1 ≤ i, j ≤ d, let us consider the functions u ∈ R → r

(3) k (ut) and u ∈ R → r i,j (ut). We can write the following Taylor expansions with integral remainders between u = 0 and u = 1, up to order zero and to order one, respectively.

We introduce the following notations: Matrix γ(t). The coefficients of the 3 × 3 symmetric matrix γ(t) are defined by [START_REF] Elizarov | On the variance of the number of stationary points of a homogeneous Gaussian field[END_REF]. For any t = (t 1 , t 2 ) = (0, 0), we have

where

where we have used Wick's formula to get the last line. The polynomial function Q (2) is defined through the identity (7), so

Using the expression of γ(t), we recover that Q (2) (γ(t)) = 0 , ∀t = 0.

Case of a separable covariance. Let us focus on the special case where r(t 1 , t 2 ) = R 1 (t 1 )R 2 (t 2 ), R 1 and R 2 being two one-dimensional covariance functions, each of them of class C 4 . Then the fourth derivatives of r are such that r