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FINITE VARIANCE OF THE NUMBER OF STATIONARY

POINTS OF A GAUSSIAN RANDOM FIELD

ANNE ESTRADE AND JULIE FOURNIER

Abstract. Let X be a real-valued stationary Gaussian random field defined

on Rd (d ≥ 1), with almost every realization of class C2. This paper is con-
cerned with the random variable giving the number of points in T (a compact

set of Rd) where the gradient X′ takes a fixed value v ∈ Rd, NX′ (T, v) = {t ∈
T : X′(t) = v}. More precisely, it deals with the finiteness of the variance

of NX′ (T, v), under some non-degeneracy hypothesis on X. For d = 1, the

so-called ”Geman condition” has been proved to be a sufficient condition for

NX′ (T, v) to admit a finite second moment. This condition on the fourth de-

rivative r(4) of the covariance function of X does not depend on v and requires

t 7→ r(4)(0)−r(4)(t)
t

to be integrable in a neighbourhood of zero. We prove that

for d ≥ 1, a generalization of the Geman condition remains a sufficient condi-

tion for NX′ (T, v) to admit a second moment. No assumption of isotropy is

required.
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Introduction

Let d be a positive integer and let X : Ω × Rd → R be a stationary Gaussian
random field. We assume that almost every realization is of class C2 on Rd. Let T
be a compact set in Rd such that the boundary of T has a finite (d−1)-dimensional

Lebesgue measure. For any v ∈ Rd, we consider the number NX′(T, v) of points in
T where the gradient of X, denoted by X ′, reaches the value v:

NX′(T, v) = #{t ∈ T : X ′(t) = v}.
For v = 0, it is nothing but the number of stationary points of X in T . In this
paper, we establish a sufficient condition on the covariance function r of the random
field X in order that NX′(T, v) admits a finite variance.

The existence of the second moment of NX′(T, v) has been studied since the late
60s, first in dimension one and for a level equal to the mean, i.e. v = 0. Cramér and
Leadbetter were the first to propose in [6] a sufficient condition on the covariance

function r in order that NX′(T, 0) belongs to L2(Ω). If X satisfies some non-
degeneracy assumptions, this simple condition requires that the fourth derivative
r(4) satisfies

∃δ > 0,

∫ δ

0

r(4)(0)− r(4)(t)
t

dt < +∞.

It is known as the Geman condition for Geman proved some years after in [10]
that it was not only sufficient but also necessary. The issue of the finiteness of the
higher moments of NX′(T, 0) has also been discussed in many papers (see [5, 7, 12]
for instance and references therein). Kratz and León generalized Geman’s result in
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[11] to the number of crossings of any level v ∈ R and also to the number of a curve
crossings.

Concerning the problem in higher dimension, it has been an open question for a
long time. Elizarov gave in [8] a sufficient condition for NX′(T, 0) to be in L2(Ω).
Even though his condition is weaker than ours, his proof is short and elliptical and
it only concerns the number of stationary points. Under the additional hypothesis
that X is isotropic and of class C3, Estrade and León proved in [9] that for any

v ∈ Rd, NX′(T, v) admits a finite second moment.
Beside the specific works already mentioned, we will intensively refer in the

present paper to [2] and [4] as recent and complete books dedicated to the geometry
of random fields.

The paper is organized as follows. In Section 1, we introduce our notations and
assumptions. Our proof begins with the use of Rice formulas in Section 2.1 to give
an expression of NX′(T, v) in an integral form. It allows us to restrict the problem
to the one of the integrability in a neighbourhood of zero in Rd of the function

t 7→ E[ (detX ′′(0))2 /X ′(0) = X ′(t) = v ] ‖t‖−d .

We are able to bound this function and, thanks to a regression method implemented
in Section 2.2, to study the asymptotic properties of the bound around zero. Section
3 is devoted to the main result of this paper, namely Theorem 3.1. It gives an
extension of Geman condition in dimension d > 1 that is sufficient to establish that
NX′(T, v) is square integrable for any v.

1. Notations and derivatives

We deal with a stationary Gaussian field X = {X(t), t ∈ Rd} and we denote
by r its covariance function t 7→ Cov(X(0), X(t)). We assume that almost every
realization of X is of class C2 on Rd. That implies that r is of class C4 on Rd.

We fix an othonormal basis of Rd, according to the canonical scalar product that
we denote by 〈· , ·〉. We consider the partial derivatives of X and r computed in this
basis. We write (X ′i)1≤i≤d and (X ′′i,j)1≤i,j≤d the partial derivatives of X of first and

second order, respectively, and r′i, r
′′
i,j , r

(3)
i,j,m and r

(4)
i,j,m,n the partial derivatives of

r, from order one to four, respectively. We refer to the gradient of X at t as X ′(t)
and to the Hessian matrix of X at t as X ′′(t). Similarly, we write r′′(t) the Hessian

of r at t. We will sometimes denote by r
(3)
i,j (t) the vector (r

(3)
i,j,m(t))1≤m≤d and by

r
(4)
i,j (t) the matrix (r

(4)
i,j,m,n(t))1≤m,n≤d. We also use the same notation for t ∈ Rd

and the column vector containing its coordinates.
In every space Rm (m is any positive integer), we denote by ‖ · ‖ the norm

associated to the canonical scalar product. We use the standard notations o(·) and
O(·) to describe the behaviour of some functions in a neighbourhood of zero.

In this paper, we will make extensive use of the relationships between the partial
derivatives of r and the covariances between the partial derivatives of X. We recall
them here. For s, t ∈ Rd and for 1 ≤ i, j,m, n ≤ d, the following relations hold:

Cov(X(s), X(t)) = r(s− t) Cov(X ′i(s), X(t)) = r′i(s− t)
Cov(X ′i(s), X

′
j(t)) = −r′′i,j(s− t) Cov(X ′′i,j(s), X(t)) = r′′i,j(s− t)

Cov(X ′′i,j(s), X
′
m(t)) = −r(3)i,j,m(s− t) Cov(X ′′i,j(s), X

′′
m,n(t)) = r

(4)
i,j,m,n(s− t).
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We will need the assumption that for any t ∈ Rd\{0}, the vector

(X ′(0), X ′(t), (X ′′i,j(0))1≤i≤j≤d, (X
′′
i,j(t))1≤i≤j≤d)

is not degenerate. As a consequence, Var[X(t)] = r(0) 6= 0 and so we may assume
that r(0) = 1. As another consequence, the covariance matrix of X ′(0) is not de-
generate, which allows us to assume that −r′′(0) = Id or, equivalently, that the
first-order derivatives of X are uncorrelated and of unit variance. This assump-
tion is taken from the proof of Lemma 11.7.1 in [2]. We explain it here in a few
words. The covariance matrix of X ′(0) is −r′′(0). A square root Q of (−r′′(0))−1

will satisfy −Qr′′(0)Q = Id. We now define a new random field XQ on Rd by
XQ(t) = X(Qt). It is not hard to see that XQ is still stationary, with unit vari-

ance, and that the covariance matrix of
(
XQ

)′
(0) is Id. Note that this does not

imply that XQ is isotropic. From now on, we will abandon the notation XQ, al-
though we will still assume that −r′′(0) = Id.

We gather all the assumptions made on X in one assumption referred to as (H):

(H)


almost every realization of X is of class C2,
∀t 6= 0, Cov

(
(X ′(0), X ′(t), (X ′′i,j(0))1≤i≤j≤d, (X

′′
i,j(t))1≤i≤j≤d)

)
is of full rank,

r(0) = 1 and − r′′(0) = Id.

Note that the major assumptions in condition (H) are the first two ones. The
last assumption has been added to make the intermediate proofs and computations
easier, but the main result of our paper remains true if we remove it.

With these assumptions in mind, we are able to write the next Taylor formulas
around 0 for the covariance function r and its derivatives:

r(t) = 1− 1

2

∑
1≤i≤d

t2i +
1

4!

∑
i,j,m,n

r
(4)
i,j,m,n(0) ti tj tm tn + o(‖t‖4)

r′′(t) = −Id +
1

2
Θ(t) + o(‖t‖2)

r
(3)
i,j (t) = r

(4)
i,j (0)t+ o(‖t‖), for all 1 ≤ i, j ≤ d

r
(4)
i,j (t) = r

(4)
i,j (0) + o(1), for all 1 ≤ i, j ≤ d ,

where the d×dmatrix Θ(t) is defined by Θ(t)m,n = 〈r(4)m,n(0)t , t〉 =
∑

1≤i,j≤d

r
(4)
i,j,m,n(0)titj .

We note that, for any t 6= 0, Θ(t) is inversible. Indeed, since Θ(t) is the covariance
matrix of vector X ′′(0) t, if it was not inversible, X ′′(0) t would be a degenerate
Gaussian vector and so there would exist a linear dependence between the coordi-
nates of X ′′(0). That would be inconsistent with assumption (H). Hence, in what
follows, we denote by ∆(t) the inverse matrix of Θ(t) for t 6= 0. Besides, we also re-
mark that t 7→ Θ(t) and t 7→ ∆(t) are homogeneous functions of respective degrees
2 and -2.

We fix a compact set T in Rd, such that the boundary of T has a finite (d− 1)-
dimensional Lebesgue measure. For instance, T can be a bounded rectangle in
Rd.
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2. Preliminary results

2.1. Rice formula. For any v ∈ Rd, NX′(T, v) is the number of roots in T of the
vectorial random field X ′−v. The well-known Rice formula ([4] Theorem 6.2 or [2]

Corollary 11.2.2) not only gives a closed formula for the expectation of NX′(T, v)

but also states that it is finite in our context. So the variance of NX′(T, v) is finite
if and only if its second-order factorial moment is finite. Another Rice formula gives
the second factorial moment of NX′(T, v) under hypothesis (H) ([4] Theorem 6.3
or [2] Corollary 11.5.2):

E[NX′(T, v)(NX′(T, v)− 1)]

=

∫
T×T

E[|detX ′′(s) detX ′′(t)| /X ′(s) = X ′(t) = v] ps,t(v, v) ds dt ,

where ps,t denotes the probability density function of the Gaussian vector (X ′(s), X ′(t)).
This formula holds whether both sides are finite or not. We introduce

F (v, t) = E[|detX ′′(0) detX ′′(t)| /X ′(0) = X ′(t) = v] ; v, t ∈ Rd ,

and we use the stationarity of X to transform the double integral in the Rice formula
into a simple integral:

E[NX′(T, v)(NX′(T, v)− 1)] =

∫
T0

|T ∩ (T − t)|F (v, t) p0,t(v, v) dt,

where |T∩(T−t)| is the Lebesgue measure of T∩(T−t) and T0 =
{
t− t′, (t, t′) ∈ T 2

}
.

This formula allows us to give a simple criteria forNX′(T, v) to be square integrable.

Notation. Let u : Rd → Rm. We write u ∈ L1(V0, ‖t‖−d dt) if there exists a

positive constant δ such that
∫
B(0,δ)

‖u(t)‖
‖t‖d dt < +∞.

Lemma 2.1. Assume that X fulfills condition (H). For any v ∈ Rd, we introduce

G(v, ·) : t ∈ Rd 7−→ G(v, t) = E[(detX ′′(0))2 /X ′(0) = X ′(t) = v] .

Then

G(v, ·) ∈ L1(V0, ‖t‖−ddt)⇒ NX′(T, v) ∈ L2(Ω).

Proof. Note that the function t 7→ |T ∩ (T − t)|F (v, t) p0,t(v, v) is continuous
on Rd\{0}, because the random field X is Gaussian. So it is integrable in every
bounded domain that does not include a neighbourhood of zero.
We are now concerned with its behaviour in a neighbourhood of zero. We first
remark that, as t tends to 0, the term |T ∩ (T − t)| is equivalent to |T |. Next, we
use Cauchy-Schwarz inequality and stationarity to write

F (v, t) ≤ (G(v, t)G(v,−t))1/2 .

Let us now study t 7→ p0,t(v, v) as t tends to 0. We know that

p0,t(v, v) ≤ p0,t(0, 0) = (2π)−d/2 (det Γ(t))−1/2 ,
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where Γ(t) is the covariance matrix of the 2d-dimensional Gaussian vector (X ′(0), X ′(t)).

It is given blockwise by Γ(t) =

(
Id −r′′(t)

−r′′(t) Id

)
and so

det Γ(t) = det(Id − r′′(t)2) = det
(
Θ(t) + o(‖t‖2)

)
= det Θ(t) det

(
Id + o(‖t‖2) ∆(t)

)
= ‖t‖2d det Θ(

t

‖t‖
) det

(
Id + o(1) ∆(

t

‖t‖
)

)
,

where we have used the homogeneity properties of Θ and ∆. Since
minu∈Sd−1 det Θ(u) is strictly positive and t 7→ ∆( t

‖t‖ ) is bounded, there exists

c > 0 such that det Γ(t) ≥ c ‖t‖2d for t in a neighbourhood of zero. Hence, for some
positive constant C, p0,t(v, v) ≤ C ‖t‖−d.

Consequently, if G(v, ·) ∈ L1(V0, ‖t‖−d dt) then t 7→ |T ∩ (T − t)|F (v, t) p0,t(v, v)
is bounded by a function that is integrable in a neighbourhood of 0, thanks to
Cauchy-Schwarz inequality. That concludes the proof of the lemma. �

Our aim is now to study the behavior of G(v, t) as t→ 0, for a fixed v ∈ Rd. Pre-
cisely, we will provide a sufficient condition for G(v, ·) to belong to L1(V0, ‖t‖−ddt).

2.2. Regression. In order to get an estimate for G(v, t), we compute the con-
ditional law of X ′′(0) with respect to the event {X ′(0) = X ′(t) = v}. Let
K = d(d + 1)/2. We consider the symmetric matrix X ′′(0) as a K-dimensional
Gaussian column vector by putting the coefficients of its upper triangular part in
a vector that we write ∇2X(0). So the indices 1 ≤ k ≤ K of this vector have to
be seen as double indices (k = (i, j) with 1 ≤ i ≤ j ≤ d). For t 6= 0, we write the
following K-dimensional regression system:

(1) ∇2X(0) = A(t)X ′(0) +B(t)X ′(t) + Z(t) ,

where A(t) and B(t) are matrices of size K × d and Z(t) is a K-dimensional cen-
tered Gaussian vector, independent from X ′(0) and X ′(t). Hence, conditioned
on {X ′(0) = X ′(t) = v}, ∇2X(0) is a Gaussian vector with mean (A(t) + B(t))v
and covariance matrix ΓZ(t). Next proposition is simply the result of a Gaussian
computation, formulated according to our future needs.

Proposition 2.2. If X fulfills condition (H), then the regression coefficients of
system (1) are given by

(2) A(t) = r(3)(t)N2(t) and B(t) = r(3)(t)N1(t) ,

where r(3)(t) has to be considered as a K × d matrix and N1(t) and N2(t) are two
d× d matrices defined on Rd\{0} by

(3) N1(t) = (Id − (r′′(t))2)−1 and N2(t) = r′′(t) (Id − (r′′(t))2)−1.

Besides, the covariance matrix ΓZ(t) of the K-dimensional Gaussian vector Z(t)
is such that for any 1 ≤ k, l ≤ K and for t ∈ Rd\{0},

(4) ΓZ(t)k,l = Cov(Z(t)k, Z(t)l) = r
(4)
k,l (0)− 〈r(3)k (t) , N1(t) r

(3)
l (t)〉 .

Proof. We denote by X1 the vector ∇2X(0) of size K and by X2 the vector
(X ′(0), X ′(t)) of size 2d. We write C1 the K × K covariance matrix of X1, C2

the 2d× 2d covariance matrix of X2 and C12 the K × 2d matrix of the covariances
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between the coordinates of X1 and these of X2. Then, let us recall that the condi-
tional distribution of X1 with respect to X2 (that are both centered) is Gaussian,
with mean vector C12C

−1
2 X2 and covariance matrix C1 − C12C

−1
2 CT12.

Thanks to the relations recalled in Section 1, we have

C1 =
(
r(4)(0)

)
, C2 =

(
Id −r′′(t)

−r′′(t) Id

)
, C12 =

(
OK,d r(3)(t)

)
,

where r(4)(0) stands for the K×K matrix (r
(4)
k,l (0))1≤k,l≤K , OK,d for the K×d zero

matrix and, for any t ∈ Rd, r(3)(t) stands for the K×d matrix (r
(3)
k,i(t))1≤k≤K, 1≤i≤d.

Let us note that C2, which is the covariance matrix of (X ′(0), X ′(t)), is not
degenerate for t 6= 0 because of hypothesis (H). We note N(t) its inverse. It is not

hard to find that N(t) =

(
N1(t) N2(t)
N2(t) N1(t)

)
where N1(t) and N2(t) are two square

matrices of dimensions d× d. To show (3), we just have to solve the system{
N1(t)− r′′(t)N2(t) =Id

−r′′(t)N1(t) +N2(t) =0.

Computing the conditional mean of X1 with respect to X2, we get

C12C
−1
2 X2 = r(3)(t)N2(t)X ′(0) + r(3)(t)N1(t)X ′(t),

and thus we deduce the regression coefficients as announced in (2). Moreover, the
covariance matrix of the conditional distribution of X1 with respect to X2 is given
by

C1 − C12C
−1
2 CT12 = r(4)(0)− r(3)(t)N1(t) r(3)(t)T .

Its coefficients are exactly those written in formula (4). That concludes the proof. �

3. Sufficient Geman condition

We now state our main result. Assumption (H) is still in force and we introduce
a new condition:

(G)

{
there exists δ > 0 such that

∫
B(0,δ)

‖r(4)(0)− r(4)(t)‖
‖t‖d

dt < +∞ .

Condition (G) is weaker than X almost surely of class C3, since in that case,
r(4)(0)− r(4)(t) = o(‖t‖) as t tends to zero. It is a generalization of Geman condi-
tion known in dimension d = 1. In this particular case, it has been proved to be
a sufficient and necessary condition to have NX′(T, v) ∈ L2(Ω) for any v ∈ R (see
[11]).

It turns out that our condition (G) remains a sufficient condition in dimension

d > 1 for NX′(T, v) to be in L2(Ω).

Theorem 3.1. If X fulfills conditions (H) and (G), then

for any v ∈ Rd, NX′(T, v) ∈ L2(Ω) .

Proof of Theorem 3.1. We will proceed in several steps.

First step: study of function G. Recall that G has been introduced in Lemma 2.1.
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Lemma 3.2. Suppose that X fulfills condition (H) and let V ⊂ Rd be a compact
set. Then

(i) for any v ∈ V, G(v, t) = G(0, t) + o(‖t‖),
(ii) there exists a homogeneous polynomial Q(d) of degree d, which does not

depend on X, such that G(0, t) = Q(d)(Γ
Z(t)), where Q(d)(Γ

Z(t)) is the evaluation

of the polynom Q(d) at the coefficients of matrix ΓZ(t).

Proof.
(i) We use the natural identification between symmetric d×dmatrices and vectors in

RK , whereK = d(d+1)/2, to define d̃et(y) as the determinant of the d×d symmetric
matrix whose upper triangular part contains the coordinates of y ∈ RK . It is a
degree d homogeneous polynomial function of K variables. With this notation, and
using the regression system (1), we get for v ∈ Rd, t ∈ Rd\{0},

G(v, t) = E
[
d̃et(S(t)v + Z(t))2

]
,

where S(t) stands for A(t) +B(t). Thanks to formula (3),

S(t) = r(3)(t) (N2(t) +N1(t)) = r(3)(t) (Id − r”(t))−1 ,

and since Id − r”(t) → 2Id and r(3)(t) = O(‖t‖) as t → 0, we get the following
asymptotics:

(5) S(t) = A(t) +B(t) = O(‖t‖) as t→ 0.

Let us come back to the computation of G. By developping the square of the deter-
minant and bringing together the terms according to the powers of the coordinates
(S(t)v)k of the K-dimensional vector S(t)v, we get

d̃et (S(t)v + Z(t))
2

= d̃et(Z(t))2 +
∑

1≤k≤K

(S(t)v)kQ
k
(2d−1)(Z(t))

+
∑

1≤k,l≤K

(S(t)v)k (S(t)v)lQ
kl
(2d−2)(S(t)v + Z(t)) ,

where the Qk
(2d−1)’s and the Qkl

(2d−2)’s are multivariate polynomial functions of

respective degrees 2d − 1 and 2d − 2. Note that E
[
Qk

(2d−1)(Z(t))
]

= 0 since Z(t)

is a centered Gaussian vector and Qk
(2d−1) has an odd degree. Then, by taking the

expectation, applying (5) and the fact that ΓZ(t) is bounded for t in any compact
set, we obtain that, uniformly with respect to v ∈ V,

G(v, t) = E[d̃et(Z(t))2] + o(‖t‖) as t→ 0.(6)

Recall that G(0, t) = E[d̃et(Z(t))2], hence point (ii) is proved.

(ii) We now compute E[d̃et(Z(t))2] by applying Wick’s formula. Actually, let us
consider for a while a K-dimensional centered Gaussian vector Y and let us com-
pute E[d̃et(Y )2]. This quantity is equal to an alternate sum of terms with the
following shape: E[Yi1 · · ·Yi2d ] where i1, . . . , i2d belong to {1, . . . ,K}. Wick’s for-
mula says that the expectation of the product of an even number, say 2d, of K
centered Gaussian variables can be written as a homogeneous polynomial function
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of degree d evaluated at the covariances of the K Gaussian variables. Hence, there
exists a degree d homogeneous polynomial function Q(d) such that

(7) E[d̃et(Y )2] = Q(d)(Γ
Y ) ,

where ΓY is the covariance matrix of Y . Taking Y = Z(t), we deduce from (6) that
G(v, t) = Q(d)(Γ

Z(t)) + o(‖t‖). Lemma 3.2 is then proved. �

Second step: an auxiliary function. This step is dedicated to the properties of a

function that will turn out to be, to some extent, close to ΓZ(t), as t tends to zero.
Let us recall that the expression of ΓZ(t) is given by formula (4).

We introduce γ(t) = (γ(t)k,l)1≤k,l≤K defined for t 6= 0 by

(8)

γ(t)k,l = r
(4)
k,l (0)−

∑
1≤i,j,m,n≤d

r
(4)
k,i,m(0)r

(4)
l,j,n(0)∆(t)m,ntitj

= r
(4)
k,l (0)− 〈r(4)k (0) t ,∆(t)r

(4)
l (0) t〉,

∆(t) being the inverse matrix of Θ(t) introduced in Section 1. Function γ only
depends on r through its fourth-order derivatives at zero. Clearly, it is homogeneous

of degree zero: for any t in Rd\{0}, γ(t) = γ
(

t
‖t‖

)
.

Remark 3.3. For any t 6= 0, γ(t) is the covariance matrix of ∇2X(0) conditioned
on {X ′(0) = X ′′(0)t = 0}.

Proof of Remark 3.3. The conditional covariance matrix can be computed
thanks to the formula recalled in the proof of Proposition 2.2. The covariance
matrix of vector ∇2X(0) is the K × K matrix C1 = (r(4)(0)). The covariance

matrix of vector (X ′(0), X ′′(0)t) is the 2d × 2d matrix C2 =

(
Id 0
0 Θ(t)

)
and the

matrix of the covariances between the coordinates of vector ∇2X(0) and these

of (X ′(0), X ′′(0)t) is the K × 2d matrix C12 =
(
OK,d (r

(4)
k,i(0)t) 1≤k≤K

1≤i≤d

)
, where

r
(4)
k,i(0) stands for the d-dimensional line vector (r

(4)
k,i,j(0))1≤j≤d (ith line of matrix

r
(4)
k (0)). Hence, the covariance matrix of∇2X(0) /X ′(0) = X ′′(0)t = 0 is the K×K

matrix C1 − C12C
−1
2 CT12. Its (k, l)-coefficient is exactly γ(t)k,l. �

We now state a property of the auxiliary function γ that is interesting for its own.

Proposition 3.4. If X satisfies condition (H), then ∀t ∈ Rd\{0}, Q(d)(γ(t)) = 0.

Proof of Proposition 3.4. We first check the result in the particular case of di-
mension one. For d = 1, K = 1 and Q(1) is a one variable polynomial such that, if Y

is a Gaussian centered random variable, Q(1)(Γ
Y ) = E

[
d̃et(Y )2

]
= E[Y 2] = Var[Y ] = ΓY .

Hence, for any x ∈ R, Q(1)(x) = x. Moreover, according to the definition of γ (see

(8)), for t 6= 0, γ(t) = r(4)(0)− (r(4)(0)t)2

r(4)(0)t2
= 0.

By computing explicitely the polynomial Q(2) and the function γ(t), we give in
the Appendix an alternative proof of Proposition 3.4 in the case d = 2.
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We now give a general proof. According to Remark 3.3 and to the definition of
Q(d) prescribed in (7), we have

Q(d)(γ(t)) = E
[
det(X ′′(0)2) /X ′(0) = X ′′(0)t = 0

]
.

Besides, one can check the following result that we read in [3]. Let M be a d × d
symmetric positive matrix and let (vi)1≤i≤d be an orthonormal basis of Rd. Then,

denoting by M̃ the (d−1)×(d−1) matrix (〈Mvi , vj〉)2≤i,j≤d, the following inequality
holds:

det(M) ≤ 〈Mv1 , v1〉 det(M̃) .

We apply this result with M = X ′′(0)2, v1 = t
‖t‖ , taking for (vi)2≤i≤d any vectors

satisfying the required hypothesis. As a result,

det
(
X ′′(0)2

)
≤
〈
X ′′(0)2

t

‖t‖
,
t

‖t‖

〉
det(M̃) = ‖t‖−2 〈X ′′(0)t ,X ′′(0)t〉 det(M̃).

So, applying the conditional expectation with respect to the event {X ′(0) = X ′′(0)t = 0},
we get Q(d)(γ(t)) ≤ 0. That concludes the proof since Q(d)(γ(t)) only takes non
negative values. �

Third step: a comparison between ΓZ(t) and γ(t). We introduce the following func-

tions defined on Rd,

ε : t 7→ r(4)(0)− r(4)(t), ε̄ : t 7→
∫ 1

0

ε(ut) du, ε̂ : t 7→
∫ 1

0

ε(ut)(1− u) du.

They all take values in Rd4 and are symmetric functions with respect to the indices
(i, j,m, n) ∈ [[1, d]]4. Since r is C4, ε is continuous and ε(t) = o(1) as t tends to 0.
The same holds for ε̄(t) and ε̂(t).

Lemma 3.5. If X satisfies condition (H), then there exists a neighbourhood W of
zero in Rd and a positive constant c such that, for any t ∈ W\{0},∥∥ΓZ(t)− γ(t)

∥∥ ≤ c (‖ε̄(t)‖+ ‖ε̂(t)‖+ ‖t‖2
)
.

Proof of Lemma 3.5. Formulas (4) and (8) allow us to write:

ΓZ(t)k,l − γ(t)k,l =
〈
r
(4)
k (0) t ,∆(t)r

(4)
l (0) t

〉
−
〈
r
(3)
k (t) , N1(t)r

(3)
l (t)

〉
=
〈
r
(4)
k (0) t− r(3)k (t) ,∆(t)r

(4)
l (0) t

〉
+
〈
r
(3)
k (t) ,∆(t)

(
r
(4)
l (0) t− r(3)l (t)

)〉
(9)

+
〈
r
(3)
k (t) , (∆(t)−N1(t)) r

(3)
l (t)

〉
.

We now use Taylor expansions to get precise upperbounds. For any t ∈ Rd, for any

1 ≤ k ≤ K and for any 1 ≤ i, j ≤ d, let us consider the functions u ∈ R 7→ r
(3)
k (ut)

and u ∈ R 7→ r′′i,j(ut). We can write the following Taylor expansions with integral
remainders between u = 0 and u = 1, up to order zero and to order one, respectively.
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That yields:

r
(3)
k (t) =

∫ 1

0

r
(4)
k (ut) t du

r′′i,j(t) = −δi,j +

∫ 1

0

〈
r
(4)
i,j (ut) t, t

〉
(1− u) du.

Hence, using functions ε̄ and ε̂, and the fact that Θ(t)i,j =
〈
r
(4)
i,j (0) t , t

〉
, we get

r
(4)
k (0) t− r(3)k (t) = ε̄(t)k t(10)

r′′i,j(t) = −δi,j +
1

2
Θ(t)i,j − 〈ε̂i,j(t) t , t〉.

We denote by Ê(t) the d× d matrix such that Ê(t)i,j = 2〈ε̂i,j(t) t , t〉, which allows

us to rewrite the last equality r′′(t) = −Id + 1
2Θ(t)− 1

2 Ê(t). That yields

(11) r′′(t)2 = Id −Θ(t) + Ê(t) +O(‖t‖4),

because Θ(t) = O(‖t‖2) and Ê(t) = o(‖t‖2). Thanks to (10), we rewrite (9) in the
following way:

ΓZ(t)k,l − γ(t)k,l =
〈
ε̄(t)k t ,∆(t)r

(4)
l (0) t

〉
=: S1

+
〈
r
(4)
k (0) t− ε̄(t)k t ,∆(t)ε̄(t)l t

〉
=: S2

+
〈
r
(4)
k (0) t− ε̄(t)k t , (∆(t)−N1(t)) (r

(4)
l (0) t− ε̄(t)l t)

〉
=: S3.

Let ρ := ‖r(4)(0)‖. For the following computations, we recall that Θ is continuous
and homogeneous of degree 2 on Rd and that for t ∈ Rd\{0}, ∆(t) = Θ(t)−1. We
introduce δ := maxv∈Sd−1 ‖∆(v)‖. Thanks to Cauchy-Schwarz inequality, we may
bound the first term S1 and the second one S2 as follows:

|S1| ≤ δρ‖ε̄(t)‖,

|S2| ≤ δ‖r(4)(0)− ε̄(t)‖‖ε̄(t)‖ ≤ δρ‖ε̄(t)‖+ δ‖ε̄(t)‖2.

We now focus on the third term S3. In order to bound it, we write a precise
expansion of N1(t)−∆(t) around zero, based on formula (11). We have

N1(t) =
(
Id − r′′(t)2

)−1
=
(

Θ(t)− Ê(t) +O(‖t‖4)
)−1

= ∆(t)
(
Id − Ê(t)∆(t) +O(‖t‖4)∆(t)

)−1
where Ê(t)∆(t) +O(‖t‖4)∆(t) =

(
Ê(t)

‖t‖2
+O(‖t‖2)

)
∆(

t

‖t‖
) , which tends to 0.

If A is a d× d matrix, (Id −A)−1 = Id +A+ o(A) as ‖A‖ tends to zero, so we get

N1(t) = ∆(t) + ∆(t) Ê(t) ∆(t) + ∆(t) o
(
Ê(t)∆(t)

)
+O(1),

and hence

‖t‖2 (N1(t)−∆(t)) = ∆(
t

‖t‖
)
Ê(t)

‖t‖2
∆(

t

‖t‖
) + ∆(

t

‖t‖
) o

(
Ê(t)

‖t‖2

)
∆(

t

‖t‖
) +O(‖t‖2).
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Since ‖Ê(t)‖ ≤ 2 ‖ε̂(t)‖ ‖t‖2 and t 7→ ∆(
t

‖t‖
) is bounded, there exists a neighbour-

hood V of zero in Rd and constants c, d > 0 such that, for any t ∈ V\{0},

‖t‖2 ‖N1(t)−∆(t)‖ ≤ c δ2 ‖ε̂(t)‖+ d‖t‖2.

Consequently, since ε̄(t) and ε̂(t) tend to zero as t tends to zero, there exists a
neighbourhood V ′ of zero in Rd and c′ > 0 such that, for any t ∈ V ′\{0},

|S3| ≤ (δ + ‖ε̄(t)‖)2(cδ2‖ε̂(t)‖+ d‖t‖2) ≤ c′(‖ε̂(t)‖+ ‖t‖2).

So, for any 1 ≤ k, l ≤ K,
∣∣ΓZ(t)k,l − γ(t)k,l

∣∣ is bounded by a term proportional

to ‖ε̄(t)‖ + ‖ε̂(t)‖ + ‖t‖2 in a neighbourhood of zero. This concludes the proof of
Lemma 3.5. �

Let us now combine all our intermediate results to complete the proof of the
theorem. Our aim is to prove that G(v, ·) ∈ L1(V0, ‖t‖−ddt) in order to conclude
thanks to Lemma 2.1. We recall that Lemma 3.2 also allows us to write that
G(v, t) = Q(d)(Γ

Z(t)) + o(‖t‖) as t tends to zero. Using Proposition 3.4, we get for
t 6= 0

G(v, t) = Q(d)(Γ
Z(t))−Q(d)(γ(t)) + o(‖t‖)

=
〈(
Q(d)

)′
(γ(t)) ,ΓZ(t)− γ(t)

〉
+ o

(
‖ΓZ(t)− γ(t)‖

)
+ o(‖t‖).

Since
∥∥∥(Q(d)

)′
(γ(t))

∥∥∥ is bounded for t in any compact set of Rd, we deduce from

Lemma 3.5 that there exists a neighbourhood of zero W in Rd and a positive
constant c such that, for any t ∈ W,

G(v, t) ≤ c (‖ε̄(t)‖+ ‖ε̂(t)‖+ ‖t‖) .

A change of variable easily shows that condition (G) implies that ε̄ ∈ L1(V0, ‖t‖−ddt)
and the same holds for ε̂. Obviously, we also have t 7→ ‖t‖ ∈ L1(V0, ‖t‖−ddt). Con-
sequently, under condition (G), G(v, ·) ∈ L1(V0, ‖t‖−ddt). The proof of Theorem
3.1 is complete. �

4. Conclusion and perspectives

In brief, our paper addresses the issue of the finiteness of the variance ofNX′(T, v)
in dimension d > 1, with no assumption of isotropy on X. We do not restrict our-
selves to the number of stationary points NX′(T, 0). In fact, a sufficient condition
is established in Theorem 3.1. It is named (G) and appears as a generalization to
higher dimensions of Geman condition. As in dimension one, it does not depend
on the considered level v ∈ Rd.

An open question is whether, in dimension d > 1, (G) remains a necessary con-

dition for NX′(T, v) to admit a second moment. Another natural question concerns

the finiteness of the moments of NX′(T, v) of order higher than two. In particu-
lar, sufficient conditions on the covariance function of X should be investigated.
Note that in [12], the author deals with the higher moments of NY (T, v), where
Y : Ω× Rd → Rd is a multivariate random field, and an answer is given through a
condition on the spectral density. The latter problem is not the same, but close to
ours.
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As it is done in dimension one in [11], our work could be extended to the study

of the finiteness of the variance of NX′(T, φ) := {t ∈ T : X ′(t) = φ(t)}, where
φ : Rd → Rd is a function of class C1. Does our condition remain sufficient with
some assumptions on φ?

We are convinced that the simple and explicit sufficient condition we have ex-
hibited will be of interest for many applications, especially for statistic purposes.

Let us mention here briefly a specific consequence of our result. Actually, the ran-
dom variable NX′(T, 0) is involved in the computation of another random variable
linked to the geometrical properties of X: the Euler characteristic of an excursion
set. Let us explain why under our sufficient condition for NX′(T, 0) to be in L2(Ω),
the Euler characteristic of any excursion set also admits a second moment. This
question has been raised forty years ago in [1] and is still subject to investigation,
see [13] for instance.

To simplify, we assume that T is a d-dimensional compact rectangle and we
consider an excursion set of X above level u : Au(T ) := {t ∈ T : X(t) ≥ u}. We
refer to Section 9.4 in [2] and to [9] for precise definitions and explanations about
the next formula. The modified Euler characteristic of the excursion set Au(T ) is
defined by

ϕ(T, u) =

d∑
i=0

(−1)iµi(T, u),

where µi(T, u) = #{t ∈ T : X(t) ≥ u, X ′(t) = 0, index(X ′′(t)) = d − i} and
the “index” stands for the number of negative eigenvalues. Since each µi(T, u)

is bounded by NX′(T, 0), it is clear that ϕ(T, u) is square integrable as soon as

NX′(T, 0) does. So condition (G) appears as a sufficient condition.

Appendix A. Computations in dimension d = 2

We introduce the following notations:

µ1 = r
(4)
1111(0) ; ν1 = r

(4)
1112(0) ; ν = r

(4)
1122(0) ; ν2 = r

(4)
1222(0) ; µ2 = r

(4)
2222(0) .

Note that in the case d = 2, we have K = 3 and from now on, we use the lexi-
cographic order to denote the “double” indices k, i.e. 1 = (1, 1) , 2 = (1, 2) , 3 =
(2, 2).

Matrix γ(t). The coefficients of the 3 × 3 symmetric matrix γ(t) are defined
by (8). For any t = (t1, t2) 6= (0, 0), we have

γ11(t) = α
D(t) t

4
2 ; γ12(t) = − α

D(t) t1t
3
2 ; γ13(t) = α

D(t) t
2
1t

2
2 ;

γ22(t) = α
D(t) t

2
1t

2
2 ; γ23(t) = − α

D(t) t
3
1t2 ; γ33(t) = α

D(t) t
4
1 .

where α = µ1µ2ν − µ1ν
2
2 − µ2ν

2
1 − ν3 + 2νν1ν2

and D(t) = det

(
µ1t

2
1 + νt22 + 2ν1t1t2 ν1t

2
1 + ν2t

2
2 + 2νt1t2

ν1t
2
1 + ν2t

2
2 + 2νt1t2 νt21 + µ2t

2
2 + 2ν2t1t2

)
.

Polynomial function Q(2). Let Y = (Y1, Y2, Y3) be a centered Gaussian vec-
tor. Then

E[d̃et(Y )2] = E[(Y1Y3 − (Y2)2)2] = E[(Y1Y3)2]− 2E[Y1Y3(Y2)2] + E[(Y2)4]

= 2E[Y1Y3]2 + E[(Y1)2]E[(Y3)2]− 2E[Y1Y3]E[(Y2)2]− 4E[Y1Y2]E[Y2Y3] + 3E[(Y2)2]2
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where we have used Wick’s formula to get the last line. The polynomial function
Q(2) is defined through the identity (7), so

Q(2)(γ) = 2γ13
2 + γ11γ33 − 2γ13γ22 − 4γ12γ23 + 3γ22

2.

Using the expression of γ(t), we recover that Q(2)(γ(t)) = 0 , ∀t 6= 0.

Case of a separable covariance. Let us focus on the special case where r(t1, t2) =
R1(t1)R2(t2), R1 and R2 being two one-dimensional covariance functions, each of

them of class C4. Then the fourth derivatives of r are such that r
(4)
kl (0)− r(4)kl (t) =

o(‖t‖) for any (k, l) 6= (1,1), (3,3). Indeed, for instance r
(4)
12 (t) = R

(3)
1 (t1)R′2(t2),

and all the R
(j)
i ’s for i = 1, 2 and j = 0, 1, 2, 3 are at least of class C1. Hence, r

satisfies our Geman condition (G) if and only if R1 and R2 both satisfy the usual
one-dimensional Geman condition.
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