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Abstract—This paper describes an energy-aware scheduling
approach intended for use in heterogeneous multiprocessors
supporting hardware acceleration with Dynamic and Partial Re-
configuration. Scheduler decisions rely on pragmatic power and
energy models to map the load across cores and reconfigurable
regions with regards to the actual power costs. Results on a
multithreaded H.264/AVC profile decoder with three possible
hardware functions on a Xilinx Zynq based platform report
energy gains up to 44.1% over full software execution and 49.6%
over static hardware / software execution, while ensuring real-
time decoding requirement.

I. INTRODUCTION

The use of heterogeneous multiprocessor System-on-Chips
has increased because of their potential to address energy
efficiency, power and heat density problems. Despite the
promises, the increasing level of heterogeneity greatly affects
the design and mapping complexity in upcoming systems
and applications. Indeed it is no longer simply a question of
mapping efficiently concurrent processes to the best cores, but
also to consider dynamic aspects such as power management
or hardware acceleration and their impact on energy efficiency.

Hardware acceleration is a relatively well-known player in
the energy performance equation which is regaining attention
today with the advent of Dynamic and Partial Reconfiguration
(DPR). Partial reconfiguration is a technique related to FPGAs
that can be used to extend their inherent flexibility: it allows to
reprogram specific regions with new functionality while other
regions continue to run. Drastic reduction of hardware resource
utilization results in less static power thus significant better
energy efficiency, adding to the inherent benefits of dedicated
hardware. However, a variety of parameters such as FPGA par-
titioning, accelerator parallelism or software execution strongly
affect the actual processing efficiency, and other techniques
such as blanking or DPR based clock gating can also be used
to further decrease power. As a result, the quantity and scope
of decisions in a dynamically reconfigurable multi-core system
highly complexifies the scheduler’s job. It is however critical
to provide good support at this level since bad decisions can
affect energy efficiency to the point of total ineffectiveness.
We address in the following the definition and evaluation of
an energy-aware scheduling and mapping approach for multi-
processor systems supporting hardware acceleration with DPR,
and report representative application results and achievements
that are denoting promising prospects in this field.
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The outline of the paper is the following. We first re-
view existing works in the field of heterogeneous multi-core
scheduling, pointing out relative novelty in the use of DPR for
that matter. In section 3, we introduce pragmatic power and
energy models underlying the proposed scheduling procedure.
We then describe the decision schemes used in the energy-
aware scheduling and mapping process. Detailed results on
a multithreaded H.264/AVC decoder on a Xilinx Zynq based
platform are analyzed and discussed. Finally, main conclusions
from these results are presented and future directions for
extension and exploitation are proposed.

II. OVERVIEW OF HETEROGENEOUS MULTIPROCESSOR
STRATEGIES

With the rise of multi-core heterogeneous architectures,
there has been many works addressing efficient scheduling
application workloads with multiple cores, possibly of different
types. Early investigations focused primarily on improving
load balancing to achieve better performance (throughput,
instructions-per-cycle, etc.). Recently the challenge of het-
erogeneous thread scheduling and global power management
switched on delivering higher power-performance levels (per-
formance per Watt). Many works explored the energy effi-
ciency benefits of heterogeneity, that are more extensively
discussed for instance in [1]. There is a broad consensus on
the fact that exploiting heterogeneity is essential for a better
use of energy, the necessary counterpart being that it greatly
complexifies the scheduler.

Of the work addressing this problem, [2] proposed a
scheduler for a system of processors based on execution
prediction to map future processing needs to the most suited
processor. Their method applies to single-ISA heterogeneity
supporting differing voltages and frequencies. [3] extended
a symbiotic scheduling heuristic [4], originally developed
to enhance throughput and lower response time, for chip
multiprocessors with simultaneous multithreading cores. They
report up to 7.4% savings in energy, 10.3% savings in energy-
delay product, and 35% savings in power. [5] is another
contribution considering both scheduling and power manage-
ment to address process variations in CMPs. They conducted
a design exploration, proposed a number of schedulers to
satisfy different objectives, and developed a linear program-
ming solution for power management. The authors in [6]
examined the scalability problem for manycores, comparing
basic scheduling heuristics and proposed scheduling and power
management algorithms for heterogeneous systems scaling up
to 256 cores. A recent study [7] addressed a study including
the ARM big.LITTLE architecture, associating an energy



efficient processor cluster (Cortex-A7) with a higher perfor-
mance processor (Cortex-A15). They report that different class
of resource allocation heuristics (race-to-idle vs. never-idle)
have very different results on different platforms, indicating
that the efficiency of a strategy greatly depends on platform
characteristics and can go as far as getting inefficient in some
cases.

Aside from the question of core specialization, hetero-
geneity also extends to the aspects arising at run-time due
for example to power management [8]. The dynamic use of
different power states (P-states, sleep states) available for each
core matches the problem of low power scheduling which had
a long history of research over the last 20 years. Surveys have
been described for example in [9] and [10] from the abundant
literature. Our own previous experimental studies in this field
[11] came to similar conclusions as [7] and [12] concerning
the importance of platform characteristics and application
knowledge on the efficiency of a strategy. Likewise, results
indicate that custom strategies, i.e. more specialized schedulers
dedicated to an application or application domain, can reach
significant levels of energy gains (in the 5% to 50% range
for video processing applications on representative platforms)
compared to existing OS and platform-based strategies.

From this large literature, existing works often consider a
specific perspective on the heterogeneous scheduling problem:
a type of architecture, one precise objective (manycore scal-
ing, process variability), limited heterogeneity (similar cores,
DVFS), etc. In addition, a type of heterogeneity remains
uncovered regarding the recent advancement of graphic and
reconfigurable processing units: the possibility of hardware (or
accelerated) execution of tasks. [1] is thus extending hetero-
geneity to hardware acceleration enabled with the progresses
of Dynamic and Partial Reconfiguration (DPR) and High-
Level Synthesis (HLS). Hardware acceleration delivers orders
of magnitude performance and energy efficiency compared to
software execution, and the flexibility introduced with DPR
can improve these benefits. The underlying heterogeneous
mapping and scheduling problem have started lately to be re-
investigated and this paper extends the conclusions of [13] on
the definition of low power scheduling policies able to support
efficient execution of dynamic hardware and software tasks.

III. POWER MODELING

The remainder of this paper addresses a scheduling method
capable of taking relevant run-time decisions to reduce the
energy use while satisfying performance constraints. As such
it requires that the power impact of resource allocation deci-
sions can be realistically predicted. This section describes the
underlying formal characterization, which results in great part
from previous work reported in [13], and is divided in two
main components: a platform and an application model.

A. Platform model

The platform is described by enumerating the execution
units (EU) available and providing information on the cor-
responding power characteristics. To cope with the target
reconfigurable multi-core platform, two main execution units
are considered : a) processor cores and b) reconfigurable
regions (RR).

The power model used for CPU cores is based on the type
of core and is defined by the related static power P static

corej , the
idle power P idle

corej and the run power P run
corej , where j is the id

of the execution unit.

As a RR needs to be configured before a task can run,
which takes time and power that has also to be assessed,
the reconfiguration controller can be modeled by its power
P reconf . In turn, the reconfiguration time depends on the area
of the RR to configure (T reconf

RRj
).

The power model for the RRs is defined by the static power
consumption of the resources (e.g. slices, BRAM, clock tree,
etc) in the given RR (P static

RRj
). The related idle and run power

depend on the actual task to be configured on this region. So
the corresponding idle and run power are not defined in the
platform model, instead they are characterized in the following
application model.

B. Application model

An application is characterized by a set of tasks (G) with
their data and execution dependencies modeled by a task flow
graph. Each task can have one or several implementations
available, at least every task has a software implementation.
An implementation is a description of how the task is being
executed on a software or hardware EU. The model of an
implementation reflects the task id (i), the EU id (j), execution
time (Ti,j), and idle / run power consumption for hardware
execution (P idle

i,RRj
, P run

i,RRj
). In case of software execution, the

task idle / run power numbers are derived from the core idle
and run power described in the platform model.

IV. SCHEDULER SPECIFICATION

The scheduling procedure involves two steps: a waiting
task list is first determined and sorted according to a specific
strategy (e.g. Earliest Deadline First), then a task implemen-
tation is mapped on a given execution unit according to an
energy efficiency criteria. In the following, this process is
further referred to as Energy Aware Heterogeneous Scheduler
(EAHS).

A. Task Scheduling

Most common task scheduling strategies are a) FIFO (First
In First Out) the first task arriving in the waiting state will be
the first scheduled, b) EDF (Earliest Deadline First) which
consists of sorting tasks to first schedule the one that must
finish first and finally c) priority sort, a priority is assigned to
each task and the highest priority task is executed first.

However these strict definitions may be alleviated in case
of heterogeneous scheduling. Considering a scenario where the
top task in the waiting list is blocked, waiting for matching
execution unit to be free, then all other tasks in the waiting list
are blocked despite the fact that they may be run on other free
EUs. This will increase the application delay and execution
units under-utilization. Thus we propose a soft scheduling
approach which consists of using one of the previously men-
tioned strategies, but letting the possibility to bypass a task
blocked because a corresponding mapping is not possible for
the moment (e.g. either the reconfiguration controller is busy
or compatible execution unit(s) not free).



B. Task Mapping

When managing task allocation on the architecture re-
sources, the choice of an implementation has a major impact on
reducing energy consumption. A cost function is thus defined
to help identifying the most energy efficient mapping from
the different possibilities. This cost is computed each time
a task has to be mapped, for all possible implementations,
which is based on energy and execution time estimations of
the implementation being processed.

Energy estimation is given in equation (1):

∀j ; Ecost
j =

{
Erun

i,j when ρi,j = 0

Erun
i,j + Econf

j when ρi,j = 1.

}
(1)

where

Erun
i,j = P run

i,j × Ti,j
Econf

j = T reconf
RRj

× P reconf

and ρi,j represents the need to perform a reconfiguration. For
instance if the same implementation is already configured,
ρi,j = 0 means that RRj can be used directly to run task
i, otherwise ρi,j = 1 and a reconfiguration is required before
execution. For all non reconfigurable EUs: ρi,j = 0.

To execute a new task, the scheduler has to check first
that the execution unit EUj currently evaluated is free. If
not, the task can be implemented later and this delay must be
considered for decision. Task execution time is thus estimated
in equation (2):

∀j ; T cost
j = Ti,j + T reconf

RRj
× ρi,j + T busy

j (2)

where T busy
j represents the time during which the EUj is busy,

running another task i′. It is derived from the execution time
Ti′,j , the begin time of the task currently running, and the
current scheduling time.

The final cost for EUj is computed in equation (3), where
α is a user parameter (real value between 0 and 1) to promote
performance (α close to 0) or energy efficiency scheduling (α
close to 1).

∀j ;

Costj = α
Ecost

j

max(Ecost) + (1− α) T cost
j

max(T cost) (3)

The cost function is evaluated for all available implementations
and execution units for the current top task in the waiting list.
The lowest Costj value is selected and the task is implemented
on EUj . However, if EUj is busy the task is kept waiting and
will be implemented later.

V. APPLICATION STUDY

The application considered in this case study is a
H.264/AVC profile video decoder. The input specification code
used is a version derived from the ITU-T reference code [16]
to better cope with hardware design constraints. From the code
profiling, five major functions are highlighted and define the
task set G as

G = {Exp Golomb, MB Header, Inv CAV LC,

Inv QTr, Inv Pred, DB Filter}. (4)

An ESL design methodology [15] is used to provide real imple-
mentations for the possible hardware functions. The deblock-
ing filter (DB Filter), inverse CAVLC (Inv CAV LC), and
inverse quantization and transform block (Inv QTr) con-
tribute together to 76% of the global execution time on a
single CPU core. They represent the three functionalities of
the decoder that are generated from high level synthesis for
hardware execution and can be either software or hardware
executed.

This video decoder supports the possibility of slice de-
composition of frames as defined in the H.264/AVC standard.
A slice represents an independent zone of a frame, therefore
decoding one slice (of a frame) is independent from another
(slice of the same frame). This way, the decoder can process
different slices of a frame in parallel and this application is an
interesting case study for multi-core scheduling. We have thus
considered a decomposition of the image where four streams
process four slices of a same frame.

A. Modeling

The platform used in this case study is a Xilinx ZC702
[17] which is composed of a dual core ARM Cortex-A9 and
a Xilinx Artix-7 equivalent FPGA. This development board
allows power measurement for both FPGA and CPU core
power supply. Thus measurement series are carried out under
the following default setup conditions: 1V core voltage, 22◦C
room temperature, 667MHz ARM core frequency and 100MHz
FPGA. The power values exposed in table I are setup from
direct measurements on the ZC702 evaluation board.

TABLE I. MODEL PARAMETERS FOR A ZYNQ ZC702 PLATFORM.

Model Value Model Value

P static
core 89.82 mW P reconf 72 mW

P idle
core 55.83 mW T reconf

RR1
1.36 ms

P run
core 119.4 mW T reconf

RR2
1.36 ms

The task graph corresponding to the H.264 use case is
shown in Figure 1. In this application configuration, reconfig-

Exp_Golomb MB_Header

Slice_1

Slice_2

Slice_3

Slice_4

Slice_n

Inv_CAVLC Inv_QTr

Inv_Pred
DB_Filter

Fig. 1. H.264/AVC profile decoder task graph.

urable regions defined for DPR execution are sized to host all
hardware tasks and maximize the use of parallelism, with the
methodology described in [18]. The two resulting RRs (RR1

and RR2) are then implemented and characterized in terms of



power and execution time on the ZC702 platform, leading to
the task model parameters reported in table II.

TABLE II. MODEL PARAMETERS FOR H.264/AVC PROFILE DECODER
ON A XILINX ZYNQ PLATFORM.

Task EU P run
i,j P idle

i,j Ti,j

i j (mW) (mW) (ms)

Exp Golomb
core1 119.4 - 6
core2

MB Header
core1 119.4 - 5.9
core2

Inv CAV LC

core1 119.4 - 6.6
core2
RR1 33.5 55.1 4.5
RR2

Inv QTr

core1 119.4 - 3.1
core2
RR1 5.8 34.2 1.5
RR2

Inv Pred
core1 119.4 - 3.2
core2

DB Filter

core1 119.4 - 10.5
core2
RR1 6.4 44.3 0.9
RR2

B. Scheduling Results

The proposed scheduler is compared against four common
scheduling strategies. User parameter α is set to 0.8 in a way to
promote energy efficiency and to introduce a few performance
concerns. Analysis on the H.264 decoder is carried out using a
SystemC/TLM simulator [18] and results are reported in Table
III and Figure 2. FPGA area is expressed in terms of Xilinx
slice resources along with execution time and energy consumed
to decode one frame. An energy-delay metric is also computed
to provide additional measure and comparison of the energy
performance trade-off [14]. Two solutions are highlighted for
an EDF full software scheduling execution. The first one is
tailored for the proposed platform (two cores) but can not
achieve real-time video decoding (58.7ms per frame). As the
application hyperperiod should be less than 40ms, the platform
model is extended for a total of four ARM Cortex-A9 cores.

Another reference result is the scheduling profile obtained
using two cores and static hardware accelerators (EDF Static).
Indeed for this application configuration and task parallelism,
a very large reconfigurable area would be required (39536
slices), which can be hard to implement on a real FPGA.
Therefore another solution is introduced (EDF SmartStatic)
which implements only one static accelerator for each possible
hardware function (DB Filter, Inv CAV LC, Inv QTr)
to sequentially map different task invocation to the unique
corresponding accelerator.

Software execution requires a large amount of energy
(35mJ) while static implementations benefit from dedicated
hardware efficiency with 21.1mJ (EDF Static) and 19.5mJ
(EDF SmartStatic). However EDF SmartStatic is slower than
EDF Static (35.4ms vs. 19.3ms) because less accelerator in-
stances limit the exploitation of task parallelism. The outcome
is visible in the energy-delay product: EDF Static obtains the
best score (407) followed by EDF SmartStatic (690) and EDF
Software (1350).

As for the DPR solution (two cores, two RRs), EAHS has
a score which is close to EDF Static (478). In this case, energy
consumption dropped from 21.1mJ to 16mJ compared to EDF
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Fig. 2. Energy consumption versus time for different scheduling solutions
along with energy-delay product.

Static, but execution time increased due to reconfigurations and
fewer hardware resources. In addition, it is worth noting that
EAHS provides a solution which consumes 3.4mJ less and is
5.6ms faster than EDF SmartStatic thanks to a better use of
reconfigurable resources.

Although these results are indicative of energy efficiency,
they are not completely rigorous regarding the effective ex-
ecution constraint which is to process frames periodically,
every 40ms typically. In this case, the objective is not so
much to minimize the performance energy product but to meet
execution deadlines at the lowest energy cost. Therefore, pre-
vious energy results are adjusted in Table IV for an execution
constraint of 40ms.

The result is that EDF Static consumes more energy than
the four other solutions, close to 40mJ. It is due to the large
static and idle power consumption arising from the amount of
hardware accelerators when they are not in use. This solution
which had the best energy-delay previously is in fact the worst
if we consider the effect of idle power consumption. EAHS
takes advantage of less reconfigurable resources in this case
and provides the best energy efficiency with 20.06mJ, which
is about 50% better than EDF Static and 6.8% more efficient
than EDF SmartStatic.

The corresponding EAHS scheduling profile is presented
in Figure 3, showing the usage of each execution unit during
time for two 40ms periods. As defined in the platform model,
two Cortex-A9 cores are used together with two reconfigurable
regions. Reconfigurations are clearly visible (in pink) between
different executions of tasks on the two RRs. All four invoca-
tions of each hardware accelerator are successively configured.
The first four invocations of Inv CAV LC are implemented
using both RRs, so that they can run in parallel by pair. Then
one RR is used for four sequential invocations of Inv QTr
and the other is configured to run four sequential invocations
of DB Filter. We see clearly in this application example
the ability of the scheduler to maximize the use of hardware
execution (more energy efficient), to take advantage of parallel
execution, and to minimize the number of reconfigurations
(having non-negligible energy overheads), which are essential
conditions ensuring DPR energy efficiency in practical appli-
cations.

VI. CONCLUSION

This paper described a hardware / software scheduling
strategy for energy efficient application execution on hetero-



TABLE III. COMPARISON OF DIFFERENT SCHEDULER RESULTS ON H.264 VIDEO APPLICATION.

Scheduler
N# FPGA area Execution time Energy consumption energy-delay

Cores (eq. slices) (ms) (mJ) product
EDF Software 2 0 58.7 29.67 1742
EDF Software 4 0 38.54 35.02 1350

EDF Static 2 39536 19.31 21.09 407
EDF SmartStatic 2 6372 35.4 19.47 690

EAHS 2 6600 29.8 16.04 478

TABLE IV. COMPARISON OF DIFFERENT SCHEDULER ENERGY CONSUMPTION ON A 40MS PERIOD H.264/AVC PROFILE DECODER.

40ms period energy (mJ) Energy Gain EDF SW 4Cores EDF Static EDF SmartStatic EAHS
35.87 EDF SW 4Cores - 9.9% -66.7% -78.8%
39.81 EDF Static -11.0% - -85.0% -98.5%
21.52 EDF SmartStatic 40.0% 45.9% - -7.3%
20.06 EAHS 44.1% 49.6% 6.8% -

RR 1 ICAVLC 0 ICAVLC 1 IQTrIQTrIQTrIQTr 0 ICAVLC 0 ICAVLC 3 IQTrIQTrIQTrIQTr 0

RR 2 ICAVLC 3 ICAVLC 2 DBF 1DBF 2DBFDBF 0 ICAVLC 2 ICAVLC 1 DBF 3DBF 1DBFDBF 0

Core 1 Exp Gol MB Head Inv Pred 0Inv Pred 1 Exp Gol MB Head Inv Pred 0Inv Pred 3 Ex...

Core 2 Inv Pred 3Inv Pred 2 Inv Pred 2Inv Pred 1

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70 ms 75.0 80 ms
16.04mJ

20.06 mJ

16.04mJ

20.06 mJ

CAPTION : reconfiguration SW Running HW Running Idle

Fig. 3. EAHS scheduling and mapping results on the H.264/AVC profile decoder.

geneous multi-core systems with dynamically reconfigurable
accelerators. Results show net improvements in energy sav-
ings both against full software execution (44.1%) and static
hardware / software execution (49.6%). The global study
shows therefore that a great potential lies in the exploitation
of DPR assuming scheduling is based on reliable decision
support able to clearly identify a low energy solution among
the large overall mapping space. It is also likely that the
acceleration potential of applications gives room for improving
these results as more accelerators would fit in less space.
Future works will thus address methods for exploring this
potential. Interesting improvements can also be foreseen from
extending the proposed EAHS strategy with DVFS in the first
place, as a standard multiprocessor technique to reduce power,
but also blanking to further exploit DPR in accelerator static
power limitation.
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