
HAL Id: hal-01192792
https://hal.science/hal-01192792v1

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizations for real-time implementation of
H264/AVC video encoder on DSP processor

Nejmeddine Bahri, Imen Werda, Thierry Grandpierre, Mohamed Ali Ben
Ayed, Nouri Masmoudi, Mohamed Akil

To cite this version:
Nejmeddine Bahri, Imen Werda, Thierry Grandpierre, Mohamed Ali Ben Ayed, Nouri Masmoudi,
et al.. Optimizations for real-time implementation of H264/AVC video encoder on DSP processor.
International Review on Computers and Software (IRECOS), 2013, 8 (9), pp.2025-2035. �hal-01192792�

https://hal.science/hal-01192792v1
https://hal.archives-ouvertes.fr

Optimization for Real-Time Implementation of

Baseline H264/AVC Video Encoder on DSP

Processor

N.Bahri, I.Werda, M.Ben Ayed, N.Masmoudi

National School of Engineers, LETI Laboratory

University of Sfax, Tunisia

nejmeddine.bahri@gamil.com

T.Grandpierre, M.Akil

ESIEE Engineering, LIGM laboratory

 PARIS-EST University, France

t.grandpierre@esiee.fr

Abstract—Real-time H.264/AVC high definition video

encoding represents a challenging workload to most existing

programmable processors. Moreover, the new technologies of

programmable processors such as GPU and multicore DSP offer

a very promising solution to overcome these constraints. In this

paper, an optimized implementation of H264/AVC video encoder

on a single core among the six cores of TMS320C6472 DSP for

CIF (352x288) resolution is presented in order to move

afterwards to a multicore HD implementation. Algorithmic

optimization was applied to the intra prediction module to reduce

the computational time. Furthermore, based on the DSP

architectural features, various structural and hardware

optimizations were adopted to minimize external memory access.

The parallelism between CPU processing and data transfers was

fully exploited using an EDMA controller. A second core is

reserved to perform real time frame capture from a digital

camera to the DSP memory using the Ethernet protocol.

Experimental results of our structural and hardware

optimizations on a single core running at 700 MHz for CIF

resolution improve the encoding speed by 33.95%. The proposed

fast intra prediction algorithm can save 58% of the intra

prediction computational time and accelerate the encoding speed

by 13.58% without inducing any PSNR degradation or bit-rate

increase. All these optimizations lead to a total reduction in

execution time by up to 42.91% satisfying the real-time encoding

25 f/s and allowing the possibility to reach real time

implementation for HD resolutions when exploiting multicore

features.

Keywords—H264/AVC encoder, TMS320C6472 DSP,

algorithmic and structural optimizations, EDMA, real time.

I. INTRODUCTION

H.264/AVC [1] is a video encoder standard. It achieves
better video coding efficiency by saving up to 50% of bit-rate
as compared to previous standards and maintaining the same
visual quality. However, this efficiency is accompanied by a
high computational complexity due to many new modules
included in this standard such as intra and inter predictions
designed to reduce spatial and temporal redundancies
respectively [1]. When moving to HD resolutions, the encoding
time is drastically increased. This requires high-performance
processing capability to satisfy the real time constraint 25 f/s.
Many investigations have been proposed to reduce the
computational complexity of the H264/AVC encoder.

Algorithmic optimizations are applied in order to reduce the
computational time without affecting the rate-distortion
[2],…,[15]. Other works implement specific modules on
hardware accelerators such as FPGA platforms while keeping
the algorithmic part of the encoder on another processor
[16],…,[20]. This unfortunately induces extra-communication
latencies among the different components of the platform.
Finally, some propositions have profited of the new multicore
technologies of embedded processors to achieve parallel
processing by partitioning different tasks on different units
[21],…,[23]. Actually, most of the existing real-time
H.264/AVC encoders are implemented on DSP platforms since
they offer software flexibility that is important to allow
upgradability but also relatively low software development cost
and time-to-market reduction [24],…,[33]. The counter part is
that their computing power doesn’t allow encoding real-time
HD resolution without internal fixed IP that can’t be upgraded
to follow latest protocol enhancements. In order to reach real
time HD video encoding and achieve a better encoding
efficiency in terms of video quality and bit-rate comparing to
H264/AVC existing DSP implementations on the market, we
propose to exploit the merits of multicore DSP such as the
Texas Instruments’ DSP TMS320C6472 which is based on 6
cores. In this paper, we present an optimized implementation of
the baseline H264/AVC encoder on a single CPU core among
the six cores of TMS320C6472 DSP for CIF (352x288)
resolution. Based on this work, we hope to move afterwards to
a multicore HD implementation. The rest of our paper is
structured as follows: next section presents an overview on
H264/AVC encoder structure. Section three details the related
works on H264/AVC encoder optimizations. The internal
architecture of our platform is described in section four.
Section five highlights our proposed optimizations.
Experimental results and discussion are presented in section
six. Finally, section seven concludes this paper and present
perspectives of HD encoding on multicore.

II. OVERVIEW OF H264/AVC ENCODER STRUCTURE

The H.264/AVC video coding structure as shown on “Fig.
1” is a hybrid of temporal and spatial predictions. The principle
of coding a video sequence is detailed as follows: for the
baseline profile, there are two frame types: I frames, where
only the intra prediction module is applied and P frames where
both intra and inter predictions are performed. The frame is

This work is a cooperation between the National School of Engineers of
Sfax Tunisia and ESIEE Engineering PARIS. It is sponsored by the French

ministries of Foreign Affairs and the Higher Education and Research and the
Tunisian ministry of Higher Education and Scientific Research in the context

of Hubert Curien Partnership (PHC UTIQUE) under the CMCU project

number 12G1108.

divided into macroblocks (MB) of 16x16 pixels. Each MB
undergoes the two prediction types:

Bitstream

Intra

Pred

ME MC
Deblk

Filter

Ref1

Ref2

Ref3

Transf Quant

Inv.Transf Inv. Quant

Entropy

coder
+

+

video

intra

inter

-

Reconstructed

Frame

Fig. 1. H264/AVC video encoder structure

Intra-prediction: it is dedicated to remove the spatial
redundancies within the image and includes two different
block-size predictions:

 Intra4×4: it is performed for each 4x4 block and
containing nine directional prediction modes as shown
on “Fig. 2”.

 Intra16×16: it is applied for each 16x16 MB and
including four directional prediction modes as
illustrated on “Fig. 3”.

To perform intra prediction, the current MB needs the TOP, the
LEFT and the TOP LEFT neighboring pixels of its neighboring
MBs already encoded and reconstructed as illustrated on “Fig.
4”.

M A B C D E F G H

I

J

K

L

Mean

(A...D

,I...L)

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

M A B C D E F G H

I

J

K

L

0 (Vertical) 1 (Horizontal) 2 (DC)

3 (diagonal down-left) 4 (diagonal down-right) 5 (vertical-right)

6 (Horizontal-down) 7 (vertical-left) 8 (Horizontal-up)

Fig. 2. Intra4x4 prediction modes

V

H

3 (Plane)

V

H

Mean(H+V)

2 (DC)

V

H

…
.

1 (Horizontal)

V

H

….

0 (Vertical)

Fig. 3. Intra16x16 prediction modes

Inter-prediction: It is used to reduce temporal redundancies
in the video. It consists of determining the motion vector of the
current MB in frame i with respect to its position in multiple
reference frames i-n. n represents the time difference between
the actual encoded frame and the reference frame within the

display order. The search of the motion vector is limited to a
specific area called "search window" as presented on “Fig. 5”.

4x4

Block

Current

 MB

TOP MB

LEFT

 MB

TOP LEFT MB
TOP neighboring pixels

L

e

f

t

n

e

i

g

h

b

o

ri

n

g

TOP LEFT

Fig. 4. Data dependencies for intra prediction

Reference

 Frame

Current Frame

Current MB

Search

window

Fig. 5. Data dependencies for inter prediction

For inter prediction, there are seven different block sizes, as
shown on “Fig. 6”, namely 16×16, 8×16, 16×8, P8x8 {8×8,
8×4, 4×8 and 4×4} in order to reach more motion vector
precision. Many rate distortion calculations are performed to
determine the best predicted MB between all the intra and inter
prediction modes using the following formula:

Costmode = Distortion (MB) + λmode x Rate (MB) (1)

The Distortion is determined by means of the most
commonly metric which is the Sum of Absolute Difference
(SAD) computed between the current MB and the predicted
MB. The mode that minimizes the cost is chosen as the best
prediction mode.

0
0

0

0

1

1

1

2 3

0

0

0

1

1

1

2 3

16x16 16x8 8x16 P8x8

8x4 4x8 4x48x8

0

Fig. 6. Inter prediction modes

A DCT-like integer transform and quantification are
applied to the residual MB which is the difference between the
current and the best predicted MB. Transform coefficients are
quantized and entropy coded to form the bit-stream to be
transmitted or stored in a file. The decoding chain composed
by the inverse quantification and inverse transform is used to
reconstruct the MB needed for the prediction of the subsequent
MBs. The reconstructed frame is filtered using a de-blocking
filter to remove artifacts. This filter requires the use of 4 rows
of pixels for the TOP and 4 columns of pixels for the LEFT
neighboring MBs as shown on “Fig. 7”.

4x4

Block

Current

 MB

TOP MB

LEFT

 MB

Fig. 7. Data dependencies for de-blocking filter

III. RELATED WORKS

A. Software solutions

The H264/AVC modules profiling shows that inter and
intra predictions represent the lion’s share of the encoder
computation time. Using a fast motion estimation approaches
[24], computational complexity of inter prediction module is
drastically reduced. As a result, the required time for checking
intra prediction modes becomes relatively important compared
to that of the inter prediction module. Therefore, a fast intra
mode decision algorithm is required. This complexity is due
essentially to the Rate Distortion (RD) computations performed
for each mode in order to select the best one. Many solutions
and techniques have been proposed such as:

 Reducing the number of candidate modes instead of
performing all the RD calculations of intra4x4 and
16x16 prediction modes [2],…,[6].

 Comparing boundaries variance and/or MB variance to
a threshold in order to achieve early termination of cost
computation [7],…,[10].

 Extracting the direction MB histogram to have an idea
of the MB direction in order to reduce the candidate
modes [11],…,[15].

B. Hardware/software solutions

Many hardware/software co-design architectures for
H.264/AVC encoder are proposed in order to take advantage of
hardware parallelism. Based on H264/AVC encoder profiling,
a partitioning of the H264 modules is determined. In fact, the
most time-consuming and systematic modules are accelerated
using hardware IPs implemented on Field Programmable Gate
Array (FPGA) platforms [16],…,[20]. The rest of the modules
will be performed on another processor. Then the
communication between the processors and the hardware block
is examined.

C. DSP based solutions

Software flexibility, time-to-market reduction, low power
consumption and low cost make DSPs an attractive solution for
high performance applications and embedded systems
implementations. Motivated by these merits and encouraged by
the great evolution of DSP architectures, several proposals
have taken advantage of DSP features (high processing
frequency, optimized architecture) in order to achieve real
time video encoding [24],…,[33].

D. Analysis of previous works

Concerning the algorithmic optimizations cited above for
the intra prediction module, even if some of these algorithms

were able to reduce the intra prediction computation time, they
still have some drawbacks. First, they increase the H264/AVC
complexity computation due to the pre-calculations required
for computing the edge direction and boundary variance.
Moreover, methods reducing the number of intra candidate
modes affect only the RD calculations whereas intra prediction
also includes other modules such as computing residual block,
transform, quantification which are performed to prepare the
neighboring pixels for the next block. Finally, it is crucial to
consider that these approaches induce a bit-rate increase when
the rate control option is turned off and lead to a serious
degradation of PSNR quality. On the other hand, inflexibility
and the inherent long time to market are the most important
drawbacks of FPGA implementations. Thus, to implement the
whole H264/AVC encoder on an FPGA platform, a huge
FPGA surface and a lot of design and compilation time with
tremendous VHDL expertise are required. Finally, the low
hardwired block frequency makes it difficult to attain real time
encoding especially for HD resolutions. Regarding the DSP
based solutions; the existing mono-core DSP encoder
implementations still cannot meet real-time constraints
particularly for HD resolutions. In fact, it is only with large
memory-size and high clock frequency platforms that real-time
H.264/AVC encoding is possible.

IV. DSP PLATFORM DESCRIPTION

Our choice for using a DSP platform was motivated by its
merits described above. To reach real time encoding for HD
quality as our final goal, we decide to work on multicore DSP
which is the renowned TMS320C6472 DSP [34]. It belongs to
the latest generation of multicore DSPs made by Texas
Instrument. Low power consumption and a competitive price
tag make the TMS320C6472 DSP ideal for high-performance
applications and suitable for many embedded implementations.
As presented on “Fig. 8”, six C64x + DSP cores, 4.8 M-Byte
(MB) of memory on chip, very long instruction word (VLIW)
architecture, Single Instruction Multiple Data (SIMD)
instruction set and a frequency of 700 MHz for each core are
combined to deliver 33600 MIPS performance.

Fig. 8. Internal architecture of TMS320C6472 DSP

Each C64x+ core integrates a large amount of on-chip
memory organized as a two-level memory system. The level-1
(L1) program and data memories on this C64x+ core are 32 K-
Byte (KB) each. This memory can be configured as mapped
RAM, cache, or some combination of the two. The level 2 (L2)
memory is shared between program and data space and is 608
KB in size. L2 memory can also be configured as mapped

RAM, cache, or some combination of the two. In addition to
L1 and L2 memory dedicated to each core, the six cores also
share 768 KB of L2 shared memory. Shared L2 memory is
managed by a separate controller and can be configured as
either program or data memory. This large quantity of on-chip
memory can eliminate access to external DDR2 memory,
therefore reducing the power dissipation and accelerating the
execution of algorithms since internal memory is faster than
external memory. Performance is also enhanced by the EDMA
controller able to manage memory transfers independently
from the CPU. Therefore, no additional overhead is caused
when large data blocks are moved between internal and
external memory. TMS320C6472 DSP supports different
communication peripherals as Gigabit Ethernet for IP
networks, UTOPIA 2 for telecommunications and Serial
RapidIO for DSP-to-DSP communications.

V. PROPOSED OPTIMIZATIONS

To take advantages of multicore technology and the
potential parallelism presented in the H264 standard, we must
as a first step, elaborate an optimized H264/AVC architecture
on a single core DSP even for a low resolution such as CIF
format and then we should be able to move to HD multicore
implementation. The video frame is captured from a camera
and converted into YUV 4:2:0 format adequate for the baseline
profile. Then, the RAW stream is transferred to the DSP
memory in order to be processed by the DSP core to obtain the
compressed bit-stream subsequently transferred to a video
decoder or stored in a file. To achieve real time encoding,
several optimizations are proposed and implemented hereunder
on a unique DSP core.

A. Algorithmic optimization

To overcome the drawbacks of previously proposed
algorithms for the intra prediction module, a fast intra
prediction approach is presented. When adopting this approach,
pre-calculations are not required to achieve early termination
mode decision. The aim of the proposed approach is to reduce
the whole intra prediction complexity and not only the RD
calculations as adopted by most of the previous algorithms.
The best way to achieve this proposal is choosing the
appropriate condition to decide either performing or skipping
the whole intra4x4 or intra16x16 module. Our proposed
scheme is a result of several analyses that we performed on
several CIF sequences (Akiyo, Foreman, Container, News,
Tb420, mobile, Bus, ice…etc). These analyses show that:

 For P frames, the inter mode is the most selected mode
compared to intra16x16 and intra4x4, as presented on
“Fig. 9” which shows the mode decision percentages
for CIF video sequences with different quantification
parameters (QPI, QPP). As a result, when a fast intra
mode decision is performed in P frames, no important
degradation in visual quality is noticed.

Fig. 9. Mode decision percentages for CIF video sequences

 16x16, 16x8 and 8x16 inter prediction block sizes are
generally used for backgrounds and stationary blocks
whereas P8x8 block sizes are used in detailed and fast
motion areas as illustrated by “Fig. 10”.

16x16

16x8

8x4

4x4

4x8

8x8

8x16

Fig. 10. MB regions for inter prediction modes

 Intra16x16 is generally used for backgrounds, stationary
and homogenous blocks characterized by a tiny
luminance change, whereas intra4x4 is used for high
luminance texture areas as shown on “Fig. 11”.

intra16x16 intra 4x4

Fig. 11. MB regions for intra prediction modes

Considering these observations, we can affirm that there is
a high correlation between intra and inter prediction modes. So,
a fast intra mode decision based on inter prediction modes is
proposed. This is depicted in the flowchart of “Fig. 12”:

For I Frames, intra mode decision is not changed: the full
intra prediction process is performed and all intra16x16 and
intra4x4 modes are checked.

For P Frames, the intra mode decision is linked to the best
inter prediction mode as follows:

 If the best inter mode is P8x8, which means that 8x8,
8x4, 4x8 or 4x4 block size is selected, intra4x4 is
performed and the whole intra16x16 is skipped
because the MB is considered not homogenous and
characterized by a detailed texture.

 Otherwise, intra16x16 is performed and the whole
intra4x4 is skipped because the MB is considered a
homogenous smooth area.

0% 15%

85%

QPI=22 / QPP=23

intra16x16

intra4x4

inter

1% 14%

85%

QPI=27 / QPP=28

intra16x16

intra4x4

inter

2% 12%

86%

QPI=32 / QPP=33

intra16x16

intra4x4

inter

4% 11%

85%

QPI=37 / QPP=38

intra16x16

intra4x4

inter

Frame type ?

I Frame P Frame

Check both intra4x4 and

intra16x16 modes

Perform inter prediction

 (7 modes)

Best inter

mode= P8x8 ?

Check only intra4x4 modes

and skip the whole intra16x16

MB is not homogenous

Check only intra16x16 modes

and skip the the whole intra4x4

MB is considered homogenous

NoYes

Fig. 12. Flowchart of the proposed algorithm

For performance comparison, our proposed approach will
be evaluated according to three criteria:

 ΔPSNR: It is the PSNR difference between the
proposed and the reference algorithms.

 ΔBits (%): It represents the percentage increase in bit-
rate for the implemented scheme compared to the
reference software.

 ΔTime (%): This criterion is defined as the percentage
of time saving for intra prediction module when
performing the proposed scheme.

The above three criteria are detailed by the following
equations:

𝐵𝑖𝑡𝑠(%) =
Bitrate(proposed)−Bitrate(reference)

Bitrate(reference)
x100 (2)

∆𝑃𝑆𝑁𝑅(𝑑𝑏) = 𝑃𝑆𝑁𝑅(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) − 𝑃𝑆𝑁𝑅(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (3)

∆𝑇𝑖𝑚𝑒(%) =
𝑇𝑖𝑚𝑒(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) − 𝑇𝑖𝑚𝑒(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑇𝑖𝑚𝑒(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
𝑥100 (4)

Table I shows the performance of our scheme realized on 5
CIF sequences: Akiyo, Foreman, News, Paris, and Container.

TABLE I. PERFORMANCE EVALUATIONS OF THE PROPOSED ALGORITHM

Sequence ΔPSNR (dB) ΔBits (%) ΔTime (%)

Akiyo -0.00 +0.00 58.7

Foreman -0,02 +0,14 57.2

News -0.00 +0,17 59.0

Paris -0.01 -0,003 55.6

Container -0.00 +0,01 58.4

As presented in this table, we can observe that our proposed
algorithm does not affect the PSNR quality. It provides a slight
increase in bit-rate by 0.07% in average. Finally, our approach
can save up to 58% of intra prediction computation time.

B. Data structure optimizations

It consists of designing and optimizing data structures that
enable the processing of input video into H264 encoder

modules. This structure should efficiently exploit the DSP core
architecture and especially the internal memory which is faster
than external SDRAM memory. Each core of TMS320C6472
DSP has a 608 KB internal memory LL2RAM shared between
program and data. Preferably and to the extent possible, we
should load both program and data within the LL2RAM. Two
implementation variants are proposed.

1) « MB level » implementation
This implementation represents the basic data structure

processing in H264/AVC standard, based on encoding a MB
followed by another until we finish the entire frame MBs. The
principle of this first proposed architecture is detailed as
follows: the program size is around 120 KB and is loaded into
the internal memory LL2RAM (608 KB). As a result, 488 KB
of memory space remains free. For YUV 4:2:0 baseline profile
format (for each 4 pixels, we have 4 luminance Y, 1
chrominance U, and 1 chrominance V components).
Consequently, for a CIF resolution, each frame requires
148.5KB (=352x288x1.5). If we consider the reference frame,
we have to extend its 4 sides by a MB (16 pixels) needed for
the window search in order to perform the motion estimation.
In our implementation, only one reference frame is used, so a
total of 180KB (= (352+32) x (288+32) x 1.5) are required. In
addition, 64 KB are reserved for the compressed output bit-
stream. All these data are stored in the external memory given
their large sizes. To avoid working directly with external
memory, some data are copied into the internal memory such
as current MB, window search and reconstructed MB for the 3
YUV components. Quantization and transform matrixes,
predicted MBs, SAD matrix, neighboring pixels buffers are
also loaded into the LL2RAM in order to accelerate the data
processing and minimize external memory access. The total
size of data loaded into LL2RAM is 28.24 KB, so 459.76 KB
of internal memory are not allocated so still free for future
enhancements. The steps for encoding a luminance MB are
detailed on “Fig. 13”.

…...

…...

…...

Luma Y Reference Frame Luma Y Reconstructed Frame

Luma Y

Current Frame

External memory DDR2

Internal memory LL2RAM

Search window

Current MB
Reconstructed MB

step1

S
tep

 2

S
te

p
 3

CPU

Bitstream

Fig. 13. « MB level » implementation

The DSP core loads the current MB (16x16) and the search
window (48x48) respectively from the current and the
reference frames from the external to internal memory. The
data process is now totally performed by the DSP core without

external memory accesses. The reconstructed MB (20x20),
extended by 4 pixels at the left and the top needed in the MB
filtering, is transferred from the local memory into the external
memory at the reconstructed frame. This process is repeated
until the completion of the entire current frame MBs. The
advantages of this architecture are essentially its adaptability to
any DSP even if it does not have a large internal memory and
small internal memory requirement even for HD resolution
(55.54 KB for 720p resolution). We notice that it is practically
independent from the video resolution. The major drawbacks
of this architecture are the multiple accesses to the external
memory for each loading of a current MB, reading of the
search window and saving of the reconstructed MB in the
reconstructed frame. It also needs to save the left and top
neighboring pixels used in the prediction and filtering of the
next MBs after each MB processing.

2) « One MBs row level» implementation
To avoid the first architecture’s drawbacks, a second

implementation is proposed. The principle of this
implementation as shown on “Fig. 14” consists of loading one
MBs row (16 x frame_width) from the current frame and 3
MBs rows (48 x (16+ frame_width +16)) for the search
window from the reference frame to the appropriate buffers
created in the internal memory. The DSP core encodes the
whole current MBs row without external memory access. Then,
the reconstructed MBs row (20 x (16+ frame_width +16)) is
transferred from the LL2RAM to the SDRAM memory in the
reference frame. Thus, it is not necessary to create another
memory buffer for the reconstructed frame. We can exploit the
reference frame to store the reconstructed MBs row, since the
overwritten data are not useful (they are already copied into the
3 MBs rows of the search window). Passing to the second
current MBs row, it is not necessary to load 3 MBs rows for the
search window from the reference frame, just shift up the last
two MBs rows of the search window in the internal memory
and bring the third from the fourth line of the reference image
as presented on “Fig. 15”.

…...
…...

Luma Y Reconstructed & reference frame

Luma Y Current Frame

External memory

Internal memory LL2RAM

3 MBs rows Search window

Current MBs row Reconstructed MB row

CPU

Bitstream

…...

…...

…...
…...
…...

…...

…...

…...
…...
…...

S
tep

 1 S
te

p
 3

S
tep

 2

Fig. 14. « one MBs row level » implementation

The required data size in the internal memory for the CIF
resolution for this second proposition is 68.56 KB instead of 28

KB for the first architecture. However, it outstandingly reduces
the access to external memory. Finally, instead of performing
multiple accesses to the external memory for loading and
storing data for the "MB level" architecture which are in a total
of 22 (number of MBs per row for CIF resolution); we only
perform one access for "one MBs row level" architecture. In
addition, when proceeding at the MBs row level, all left
boundaries required in the next MB prediction and filtering are
already available in the memory, so the left neighboring pixels
backup is removed. Moreover, this reduces the backup of TOP
boundaries, since we require storing the top boundaries only
one time after finishing the processing of the whole MBs row
whereas, the "MB level" implementation needs to store the top
neighboring pixels after processing each current MB.

Row of MBs (Y-1)

Row of MBs (Y)

Row of MBs (Y+1)

Row of MBs (Y)

Row of MBs (Y+1)

Row of MBs (Y+2)It
er

at
io

n
 i+

1
It

er
at

io
n

 i

Insert new row

}

}

Shift already 2

loaded rows

24 MBs

Fig. 15. Reference search window load

C. Hardware optimizations

1) « ping pong MBs row level» implementation: EDMA

based solution
To reduce the H264/AVC encoding latency, we propose a

bus interleaved architecture. A ping-pong buffer is configured
to support the current and reconstructed MBs transfers,
ensuring better parallelism efficiency between data transfers
and CPU processing of the next MBs row. The C6472 DSP
includes an Enhanced Direct Memory Access controller
(EDMA) [35] which handles data transfers programmed
between two memory-mapped slave endpoints without direct
CPU involvement. The parallelism between CPU processing
and EDMA data transfers can significantly accelerate the DSP
processing. Ping-pong buffers are configured to support the
current and reconstructed MBs transfers.

Three execution phases are performed as follows:
 Phase 1: While the CPU encodes the current MBs rows

composed of one luminance (Y) and two chrominance
(UV) components on the "ping" buffer, three DMA
requests start loading the three components (YUV)
respectively from the following MBs rows located at
the current frame buffers in external memory into the
correspondent "pong" buffers in internal memory.
Consequently, with this technique, we can save the
transfer time of the current MBs rows.

 Phase 2: the filtering module is performed after the
CPU terminates encoding all the MBs in the current
row. Thereby, we can exploit this processing order to
parallelize MBs row filtering with preparing the three
MBs rows of the search windows for motion
estimation of the next current MBs row (pong buffer).
The CPU performs the filtering module of the whole
"ping" reconstructed MBs rows (luma and chroma

components), in parallel, the EDMA controller shifts
up the last two rows of the search window in the
internal memory and load the third from the
correspondent row of the reference image located at
the external memory. This phase permits to reduce the
transfer time of the search window.

 Phase 3: at the end of the "ping" reconstructed MBs
rows, the CPU moves to process the content of the
"pong" buffer that becomes the new current MBs rows.
At the same time, three EDMA channels are triggered
to save the "ping" reconstructed MBs rows for the
three components, luma and two chromas, from the
internal to the external memory. Then, three other
EDMA channels start loading the next current MBs
rows on the "ping" buffer, and so on. The advantage of
these steps is to reduce the encoding latency: the CPU
doesn't need to wait for storing the reconstructed MBs
rows to move to processing the next current MBs rows
as described on “Fig. 16”.

The whole data amount in internal memory for this
architecture is 88 KB only for CIF resolution. Therefore, 400
KB are still not utilized; it will be interesting for higher
resolution encoding.

C

P

U

External memory Internal memory

…...

…...

…...

 Ping SRC [0]

…...
…...
…...

…...

 Pong SRC [1]

 Ping RECT [0]

…...

 Pong RECT [1]

Current frame

Reconstructed and

reference frame

3 MBs rows Search window

Bitstream

…...

EDMA

channels

…...

…...

EDMA

channels

EDMA transfer

CPU processing

…...

EDMA transfer

Fig. 16. Phase 3 of the « ping pong MBs row level» implementation

2) Cache activation
Each local L2 memory of DSP cores can be configured as

all SRAM or as part 4-way set-associative cache (32 KB, 64
KB, 128 KB or 256 KB). As we still have 400 KB of free space
in L2 memory, 256 KB are configured as cache memory in
order to speed up the data processing, reduce CPU access time
(read or write) to its data, and minimize the probability of
cache misses. To activate the local L2 cache, the chip support
library (CSL) API “CACHE_setL2Size” is used [36]. Also, we
must enable caching external address ranges by setting the
Memory Attribute Registers (MARs) using the CSL API
command “CACHE_enableCaching”.

3) Real time video encoding demo
For real time experimentation, the video input for the

H264/AVC encoder needs to capture frames from camera at

the rate of 25 f/s. For 4:2:0 video format, we need a
transmission channel bandwidth equal to 29 Mbps for CIF
resolution ((352 x 288 x 1.5) x 8bits x 25 f/s) and 263.67
Mbps for HD 720p resolution ((1280 x 720 x 1.5) x 8bits x 25
f/s). To perform a real time video encoding demo, we used a
USB webcam connected to a Personal Computer (PC) which
sends the raw YCrCb pixels to the DSP board using the Gigabit
Ethernet link of the C6472 DSP. A TCP socket client (PC)-
server (DSP) communication is established [37]. Texas
Instrument Network Developers Kit (NDK) is used on the DSP
side [38]. It provides a TCP/IP stack, network applications, and
EMAC device drivers that work with DSP/BIOS the real time
OS from TI. The phase of sending and receiving data between
the client (PC) and the server (DSP) is presented on “Fig. 17”
and detailed as follows: on the DSP, two cores are exploited.
One is devoted to establish TCP/IP connection with the client
(PC). It is engaged at first to receive the current frame sent by
the client after camera capture and save it into the external
memory. The second core will encode this current frame and
save the bit-stream in the external memory to be thereafter sent
by the first core to client (PC) in order to be stored in a file or
decoded. A ping pong buffers for the current frame and the bit-
stream are configured on the external memory in order to
parallelize the current frame encoding by core 1 and reception
of the next frame by core 0.

Visual C/C++ project

OpenCv library

Frame capture,

resize,

conversion from

RGB to YUV4:2:0

Transfer data

using TCP/IP

protocol

TCP Stream socket

Client (@IP, port

number) TCP Stream socket

Server (@IP, port number)

External memory

SDRAM

Ping current

frame SRC[0]

Pong current

frame SRC[1]

RECT frame

Bitstream[0]

Core 1

DSP/BIOS

project

H264

encoder. Out

CSL APIs

EVMC6472 DSP

Send

current

frame

1

Recv

Bitstream

Core 0

DSP/BIOS

project

TCP server. out

Network

developer's Kit

& CSL APIs

2
3

4
5

6

Bitstream[1]

Fig. 17. Real time video encoding demo

The strategy of our implementation is described on “Fig.
18” and consists of the following steps:

 Establish connection between client (PC) and server
core (0): create sockets, assign address to sockets (IP
address, TCP port number) and wait for incoming
connection by the server.

 On the client side, The PC captures frame from the
camera or a file and converts it from RGB to YUV
4:2:0 format using the API openCv library [39].

 The client sends the captured frame to the server core
(0) which will receive the stream socket and save it
into the external memory in the ping buffer SRC[0].
Core (1) is in a wait state.

 Once the current frame reception is finished, core (0)
sends an inter processor communication interruption

(IPC) to core (1) to trigger the encoding of the current
frame SRC[0]. The generated bit-stream is stored into
the ping buffer Bitstream[0]. At the same time, the
client sends the next frame to core (0) which will
receive this frame and store it into the pong buffer
SRC[1]. Then, core (0) remains in a wait state until the
reception of an IPC interruption from core (1) to
indicate that the bit-stream is ready in the external
memory after achieving the encoding of the ping buffer
SRC[0].

 When receives an IPC interruption from core (1), core
(0) sends an IPC to core (1), which is in a wait state, in
order to trigger the encoding of the pong buffer
SRC[1] and to ensure that the core (1) will not starting
the processing before core (0) finish receiving the next
current frame. Then, core (0) sends the ping buffer
Bitstream [0] from external memory to the client (PC)
and receive the next frame and save it into SRC[0]. At
the same time, core (1) processes the pong buffer
SRC[1] and saves the bit-stream into the pong buffer
Bitstream [1] in order to avoid the overlap with the
core (0).

 The work is then looped in a reverse order of current
frame and bit-stream through ping pong buffers.

Considering this method, we can save the time of data
transfers between the client and the server.

Client (PC) Sever (core 0) H264 encoder (core 1)

Establish connection between client and server

i=0

Send current frame

SRC[i&1]

i=0

recv current frame

SRC[i&1]

i=0

Wait an IPC from

core0

Send an IPC to core 1

Encode the Current

frame SRC[i&1]

Bitstream[i&1] is

ready in external

memory

Send an IPC to core 0

Send current frame

SRC[i&1]

recv current frame

SRC[i&1]

Wait an IPC from

core1

i++

Encode the Current

frame SRC[i&1]

Bitstream[i&1] is

ready in external

memory

Send

bitsream[(i^1)&1] to

client

Recv bitsream from

the server and store it

into a file or send it to

a decoder

end

Close socket ()Close socket ()

i++

No

Yes

end
No

exit

Send an IPC to core 1
Wait an IPC from

core0

Send an IPC to core 0

Yes

Fig. 18. The steps of performing real time demo video encoder

4) cache coherency
Multicore processing often leads to a cache coherency

problem. This is due to the simultaneous access of two or more
CPUs with a separate cache memory for each core to the same
location in a shared memory. In general purpose
multiprocessor, programmers don’t have such problem because

it is controlled automatically by complex hardware. But in our
multicore DSP architecture, designers have to control it since
there is no such automatic controller. In order to deal with
cache coherency, the CSL library [36] from TI provides two
API commands:

 CACHE_wbL2((void *)XmtBuf, bytecount,
CACHE_WAIT) to write back the cached data from
the cache memory to its location in the shared memory.

 CACHE_invL2((void *)RcvBuf, bytecount,
CACHE_WAIT) to invalidate cache lines and oblige
the CPU to read the data from its location in the shared
memory.

In our case, when core (0) receives the current frame from
the client, it should write back the cached data to external
memory. In the other side, core (1) should invalidate the
current frame addresses in the cache before starting the frame
encoding. Also, when core (1) terminates the encoding frame,
it should write back the bit-stream from cache to external
memory in order to overcome the cache coherence with core
(0) which will send the bit-stream from the external memory to
the client (PC).

VI. EXPERIMENTAL RESULTS

The proposed architectures with different optimizations are
implemented on a single core of the TMS320C6472 DSP
running at 700 MHz. Experimental simulations are performed
using CIF (352x288) video sequences with different
characteristics: Foreman, Akiyo, News and Container.
Simulation results are presented in Table II that shows the
encoding speed of the different implemented architectures. The
MB level implementation that was firstly presented, correspond
to the basic encoding design and is consequently the slowest. It
achieves 14.71 f/s which is very far from real-time. When
moving to the second implementation “one MBs row level”,
the encoding speed is improved by 26.34% and reached 19.97
f/s. Then, parallelizing data transfers and CPU processing by
exploiting EDMA controller and cache activation lead to an
increase in speed by up to 10.33% allowing to achieve 22.27
f/s. Applying the proposed fast intra mode decision algorithm,
the encoding speed is enhanced by 13.58%, surpassing the real-
time constraint which is 25f/s without inducing any PSNR
degradation or bit-rate increase as detailed in section 5.A.
Finally we can note that the applied optimizations enabled us to
achieve a gain of 42.91% starting with a slow video encoder
running at 14.71 f/s before optimization and get a real-time
video encoder running at 25.77 f/s. Our platform DSP using
only a single core allows a real time video encoding for low
resolution CIF (352x288).

Starting from these results, it is now possible to consider
real-time for higher resolutions if we exploit the potential
parallelism of the H264 standard and the merits of our
multicore DSP. We have to explore the different partitioning
methods ("GOP Level parallelism", "Frame Level parallelism"
...) and apply the most suitable for a multicore implementation.
Also, the textural and morphological characteristics of the
high-definition videos could be exploited to propose new
algorithmic optimizations for the most H264/AVC complex
modules as intra prediction and inter prediction.

TABLE II. PERFORMANCE EVALUATIONS OF THE PROPOSED IMPLEMENTATIONS

CIF sequence

MB level

implementation

One MBs row

level

implementation

Ping Pong MBs

row level

implementation:

EDMA

Ping Pong MBs row

level

implementation:

EDMA solution +

cache activated

Ping Pong MBs row level

architecture: EDMA

solution + cache activated +

Fast intra mode decision

algorithm

Foreman 14.73 19.96 21.48 22.41 25.07

Akiyo 14.83 20.19 21.71 22.40 25.98

News 14.73 20.02 21.49 22.29 26.47

Container 14.56 19.73 21.12 22.01 25.56

speed average

(f/s)
14.71 19.97 21.45 22.27 25.77

VII. CONCLUSION

In this paper, an optimized implementation of the
H264/AVC encoder on a single core of the multicore DSP
TMS320C6472 was detailed. Algorithmic, structural, and
hardware optimizations were proposed to achieve real-time
coding 25 f/s on a single DSP core for CIF resolution
(352x288). Our optimizations could save up to 42% of the
total computation time and allows reaching 25.77 f/s in
average as encoding speed for CIF resolution without visual
quality degradation or bit-rate increasing. To switch to
higher resolutions like SD and HD 720p, a multicore
implementation on the 6 DSP cores of TMS320C6472
represents the next step that we should perform in order to
attain real time encoding. Also we can benefit from the
textural and morphological characteristics of HD resolutions
to propose new algorithmic optimizations in order to
accelerate the encoding speed. Finally, using the latest
multicore DSP from Texas Instruments, the C66x DSP
TMS320C6678 integrates eight cores each running at 1.25
GHz, is expected to achieve real-time encoding for HD
1080p resolution.

REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, "Draft
ITU-T Recommendation and Final Draft international Standard of
Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10
AVC)", JVT-G050, 2003.

[2] Taeho Kim, Jechang Jeong "Fast Intra Mode Decision Using the
Angle of the Pixel Differences along the Horizontal and Vertical
Direction for H.264/AVC," Advances in Visual Computing, Lecture
Notes in Computer Science, Springer, Volume 7432, 2012, pp 648-
656.

[3] A. Elyousfi, A. Tamtaoui and E. Bouyakhf, "A New Fast Intra
Prediction Mode Decision Algorithm for H.264/AVC Encoders,"
International Journal of Electrical and Electronics Engineering 4:1
2010.

[4] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu,
“Fast mode decision algorithm for intra prediction in H.264/AVC
video coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 7, pp. 813-822, July 2005.

[5] Chao-Chung Cheng and Tian-Sheuan Chang, “Fast Three Step Intra
Prediction Algorithm for 4x4 blocks in H.264,” Proc. IEEE Canadian
Conference on Electrical and Computer Engineering, pp1981-1984,
May 2003.

[6] Jun Sung Park and Hyo Jung Song, “Fast selective intra mode
decision H.264/AVC,” IEEE Consumer Communications and
Networking Conference 2006.3rd, Vol.2, pp.1068-1072 Jan. 2006.

[7] Do Quan and Yo-Sung Ho, “Categorization for Fast Intra Prediction
Mode Decision in H.264/AVC,” IEEE Transactions on Consumer
Electronics, Vol. 56, No. 2, May 2010.

[8] Yi-Hsin Huang, Tao-Sheng Ou, and Homer H. Chen, “Fast Decision
of Block Size, Prediction Mode, and Intra Block for H.264 Intra
Prediction,” IEEE transactions on circuits and systems for video
technology, Vol.20, No.8, august 2010.

[9] Mohammed Golam Sarwer and Q. M. Jonathan Wu, “Improved Intra
Prediction of H.264/AVC,” Effective Video Coding for Multimedia
Applications, Sudhakar Radhakrishnan (Ed.), ISBN: 978-953-307-
177-0, InTech (2011).

[10] Chi-Chou Kao, Yen-Tai Lai, Chao-Feng Tseng, "Laplacian-based
H.264 intra-prediction mode decision," Communications and
Networking in China (CHINACOM), 2012 7th International ICST
Conference on , vol., no., pp.638,641, 8-10 Aug. 2012.

[11] Sourabh Rungta, Kshitij Verma and Anupam Shukla, “A Fast Mode
Selection Algorithm Using Texture Analysis for H.264/AVC,” IJCSI
International of computer Sciences Issues, Vol. 7, Issue 4,No 9, July
2010.

[12] Mohammed Golam Sarwer and Q. M. Jonathan Wu, “Improved Intra
Prediction of H.264/AVC,” Effective Video Coding for Multimedia
Applications, Sudhakar Radhakrishnan (Ed.), ISBN: 978-953-307-
177-0, InTech (2011).

[13] Yeong-Il Jeon; Chan-Hee Han; Si-Woong Lee; Hyun-Soo Kang,
"Fast Intra Mode Decision Algorithm Using Directional Gradients for
H.264," Image and Signal Processing, 2009. CISP '09. 2nd
International Congress on , vol., no., pp.1,4, 17-19 Oct. 2009.

[14] A.Elyousfi, A.Tamtaoui and E.Bouyakhf, “Fast Intra Prediction
Algorithm for H.264/AVC Based on Quadratic and Gradient Model,”
World Academy of Science, Engineering and Technology 63, 2010.

[15] Yuri V. Ivanov and C. J. Bleakley. 2010. Real-time H.264 video
encoding in software with fast mode decision and dynamic
complexity control. ACM Trans. Multimedia Comput. Commun.
Appl.6, 1, Article 5 (February 2010), 21 pages.

[16] De Cock, Jan, Stijn Notebaert, Peter Lambert, and Rik Van de Walle.
2006. “Hardware/software Co-design for H.264/AVC Intra Frame
Encoding.” In EUROMEDIA ’2006, ed. E Tzafestas, 56–60. Ghent,
Belgium: EUROSIS.

[17] [17] Colenbrander, R.R.; Damstra, A.S.; Korevaar, C.W.; Verhaar,
C.A.; Molderink, A.; , "Co-design and Implementation of the
H.264/AVC Motion Estimation Algorithm Using Co-simulation,"
Digital System Design Architectures, Methods and Tools, 2008. DSD
'08. 11th EUROMICRO Conference, p.210-215, 3-5 Sept. 2008.

[18] Chih-Hung Kuo, Li-Chuan Chang, Kuan-Wei Fan, Bin-Da Liu,
"Hardware/Software Codesign of a Low-Cost Rate Control Scheme
for H.264/AVC," IEEE Transactions on Circuits and Systems for
Video Technology Volume 20 Issue 2, February 2010.

[19] Yahya Jan, Lech Jozwiak, "CABAC Accelerator Architectures for
Video Compression in Future Multimedia: A Survey," Embedded
Computer Systems: Architectures, Modeling, and Simulation, Lecture
Notes in Computer Science Volume 5657, 2009, pp 24-35.

http://link.springer.com/book/10.1007/978-3-642-03138-0
http://link.springer.com/book/10.1007/978-3-642-03138-0

[20] Moez Kthiri, Hassen Loukil, Ahmed Ben Atitallah, Patrice Kadionik,
Dominique Dallet, Nouri Masmoudi "FPGA architecture of the LDPS
Motion Estimation for H.264/AVC Video Coding," Journal of Signal
Processing Systems , August 2012, Volume 68, Issue 2, pp 273-285.

[21] Dias, T.; Roma, N.; Sousa, L., "H.264/AVC framework for multi-core
embedded video encoders," System on Chip (SoC), 2010
International Symposium on , vol., no., pp.89,92, 29-30 Sept. 2010

[22] M. Bariani, P. Lambruschini, and M. Raggio, “An Efficient Multi-
Core SIMD Implementation for H.264/AVC Encoder,” VLSI Design,
vol. 2012, Article ID 413747, 14 pages, 2012.

[23] Shenggang Chen; Shuming Chen; Huitao Gu; Hu Chen; Yaming Yin;
Xiaowen Chen; Shuwei Sun; Sheng Liu; Yaohua Wang, "Mapping of
H.264/AVC Encoder on a Hierarchical Chip Multicore DSP
Platform," High Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference on , vol., no.,
pp.465,470, 1-3 Sept. 2010

[24] Imen Werda, Haithem Chaouch, Amine Samet, Mohamed Ali Ben
Ayed and Nouri Masmoudi, “Optimal DSP-Based Motion Estimation
Tools Implementation For H.264/AVC Baseline Encoder,” IJCSNS
International Journal of Computer Science and Network Security,
VOL.7 No.5, May 2007.

[25] Jan-Willem van de Waerdt, Gerrit A. Slavenburg, Jean-Paul van
Itegem, and Stamatis Vassiliadis. 2005. Motion estimation
performance of the TM3270 processor. In Proceedings of the 2005
ACM symposium on Applied computing (SAC '05), Lorie M.
Liebrock (Ed.).

[26] R. Vani, M. Sangeetha, "Survey on H.264 Standard," Advances in
Computer Science and Information Technology, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer, Volume 86, 2012, pp
397-410.

[27] Daw-Tung Lin, Chung-Yu Yang, "H.264/AVC Video Encoder
Realization and Acceleration on TI DM642 DSP," Advances in Image
and Video Technology Lecture Notes in Computer Science Springer
Berlin Heidelberg, Volume 5414, 2009, pp 910-920.

[28] Hung-Chih Lin; Yu-Jen Wang; Kai-Ting Cheng; Shang-Yu Yeh;
Wei-Nien Chen; Chia-Yang Tsai; Tian-Sheuan Chang; Hsueh-Ming
Hang; , "Algorithms and DSP implementation of H.264/AVC,"
Design Automation, 2006. Asia and South Pacific Conference on ,
vol., no., pp.8 pp., 24-27 Jan. 2006.

[29] Wonchul Lee, Hyojin Choi, Wonyong Sung "Algorithm and Software
Optimization of Variable Block Size Motion Estimation for
H.264/AVC on a VLIW–SIMD DSP," Journal of Signal Processing
Systems June 2008, Volume 51, Issue 3, pp 289-302.

[30] Werda, I; Kossentini, F; Ben Ayed, M.-A; Nouri Massmoudi;
"Analysis and Optimization of UB Video's H.264 Baseline Encoder
Implementation on Texas Instruments' TMS320DM642 DSP," Image
Processing, 2006 IEEE International Conference on , vol., no.,
pp.3277-3280, 8-11 Oct. 2006.

[31] Mohammadnia, M.R.; Taheri, H.; Motamedi, S.A.; "Implementation
and Optimization of Real-Time H.264/AVC Main Profile Encoder on
DM648 DSP," Signal Acquisition and Processing, 2009. ICSAP
2009. International Conference on , vol., no., pp.48-52, 3-5 April
2009.

[32] Damak, T; Werda, I; Samet, A; Masmoudi, N; "DSP CAVLC
implementation and optimization for H.264/AVC baseline encoder,"
Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE
International Conference on, vol., no., pp.45-48, Aug. 31 2008-Sept.
3 2008.

[33] Zhengming Li; Qiuyan Xing; Xiaoyong Zhu;, "H.264 video encoder
implementation and optimization based on DM642 DSP,"
Networking, Sensing and Control, 2008. ICNSC 2008. IEEE
International Conference on , vol., no., pp.891-894, 6-8 April 2008.

[34] TMS320C6472 datasheet

http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf.

[35] TMS320C6472/TMS320TCI648x DSP Enhanced DMA (EDMA3)
Controller. http://www.ti.com/lit/ug/spru727e/spru727e.pdf

[36] TMS320C6472 Chip Support Library API reference Guide.

http://software-
dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_F
DS.html

[37] TCP/IP socket programming.

http://www.cs.rutgers.edu/~pxk/rutgers/notes/sockets/

[38] TI Network Developer's Kit (NDK) v2.21 User's Guide,
http://www.ti.com/lit/ug/spru523h/spru523h.pdf

[39] Open source computer vision library (OpenCv library)
http://opencv.org/

http://link.springer.com/journal/11265
http://link.springer.com/journal/11265
http://link.springer.com/journal/11265/68/2/page/1
http://link.springer.com/book/10.1007/978-3-642-27317-9
http://link.springer.com/book/10.1007/978-3-642-27317-9
http://link.springer.com/bookseries/8197
http://link.springer.com/bookseries/8197
http://link.springer.com/bookseries/8197
http://link.springer.com/search?facet-author=%22Daw-Tung+Lin%22
http://link.springer.com/search?facet-author=%22Chung-Yu+Yang%22
http://link.springer.com/book/10.1007/978-3-540-92957-4
http://link.springer.com/book/10.1007/978-3-540-92957-4
http://link.springer.com/bookseries/558
http://link.springer.com/search?facet-author=%22Wonchul+Lee%22
http://link.springer.com/search?facet-author=%22Hyojin+Choi%22
http://link.springer.com/search?facet-author=%22Wonyong+Sung%22
http://link.springer.com/journal/11265
http://link.springer.com/journal/11265
http://link.springer.com/journal/11265/51/3/page/1
http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf
http://www.ti.com/lit/ug/spru727e/spru727e.pdf
http://www.cs.rutgers.edu/~pxk/rutgers/notes/sockets/
http://www.ti.com/lit/ug/spru523h/spru523h.pdf
http://opencv.org/

