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Abstract—Real-time H.264/AVC high definition video 

encoding represents a challenging workload to most existing 

programmable processors. Moreover, the new technologies of 

programmable processors such as GPU and multicore DSP offer 

a very promising solution to overcome these constraints. In this 

paper, an optimized implementation of H264/AVC video encoder 

on a single core among the six cores of TMS320C6472 DSP for 

CIF (352x288) resolution is presented in order to move 

afterwards to a multicore HD implementation. Algorithmic 

optimization was applied to the intra prediction module to reduce 

the computational time. Furthermore, based on the DSP 

architectural features, various structural and hardware 

optimizations were adopted to minimize external memory access. 

The parallelism between CPU processing and data transfers was 

fully exploited using an EDMA controller. A second core is 

reserved to perform real time frame capture from a digital 

camera to the DSP memory using the Ethernet protocol. 

Experimental results of our structural and hardware 

optimizations on a single core running at 700 MHz for CIF 

resolution improve the encoding speed by 33.95%. The proposed 

fast intra prediction algorithm can save 58% of the intra 

prediction computational time and accelerate the encoding speed 

by 13.58% without inducing any PSNR degradation or bit-rate 

increase. All these optimizations lead to a total reduction in 

execution time by up to 42.91% satisfying the real-time encoding 

25 f/s and allowing the possibility to reach real time 

implementation for HD resolutions when exploiting multicore 

features. 

Keywords—H264/AVC encoder, TMS320C6472 DSP, 

algorithmic and structural optimizations, EDMA, real time. 

I.  INTRODUCTION 

H.264/AVC [1] is a video encoder standard. It achieves 
better video coding efficiency by saving up to 50% of bit-rate 
as compared to previous standards and maintaining the same 
visual quality. However, this efficiency is accompanied by a 
high computational complexity due to many new modules 
included in this standard such as intra and inter predictions 
designed to reduce spatial and temporal redundancies 
respectively [1]. When moving to HD resolutions, the encoding 
time is drastically increased. This requires high-performance 
processing capability to satisfy the real time constraint 25 f/s. 
Many investigations have been proposed to reduce the 
computational complexity of the H264/AVC encoder. 

Algorithmic optimizations are applied in order to reduce the 
computational time without affecting the rate-distortion 
[2],…,[15]. Other works implement specific modules on 
hardware accelerators such as FPGA platforms while keeping 
the algorithmic part of the encoder on another processor 
[16],…,[20]. This unfortunately induces extra-communication 
latencies among the different components of the platform. 
Finally, some propositions have profited of the new multicore 
technologies of embedded processors to achieve parallel 
processing by partitioning different tasks on different units 
[21],…,[23]. Actually, most of the existing real-time 
H.264/AVC encoders are implemented on DSP platforms since 
they offer software flexibility that is important to allow 
upgradability but also relatively low software development cost 
and time-to-market reduction [24],…,[33]. The counter part is 
that their computing power doesn’t allow encoding real-time 
HD resolution without internal fixed IP that can’t be upgraded 
to follow latest protocol enhancements. In order to reach real 
time HD video encoding and achieve a better encoding 
efficiency in terms of video quality and bit-rate comparing to 
H264/AVC existing DSP implementations on the market, we 
propose to exploit the merits of multicore DSP such as the 
Texas Instruments’ DSP TMS320C6472 which is based on 6 
cores. In this paper, we present an optimized implementation of 
the baseline H264/AVC encoder on a single CPU core among 
the six cores of TMS320C6472 DSP for CIF (352x288) 
resolution. Based on this work, we hope to move afterwards to 
a multicore HD implementation. The rest of our paper is 
structured as follows: next section presents an overview on 
H264/AVC encoder structure. Section three details the related 
works on H264/AVC encoder optimizations. The internal 
architecture of our platform is described in section four. 
Section five highlights our proposed optimizations. 
Experimental results and discussion are presented in section 
six. Finally, section seven concludes this paper and present 
perspectives of HD encoding on multicore. 

II. OVERVIEW OF H264/AVC ENCODER STRUCTURE 

The H.264/AVC video coding structure as shown on “Fig. 
1” is a hybrid of temporal and spatial predictions. The principle 
of coding a video sequence is detailed as follows: for the 
baseline profile, there are two frame types: I frames, where 
only the intra prediction module is applied and P frames where 
both intra and inter predictions are performed. The frame is 

This work is a cooperation between the National School of Engineers of 
Sfax Tunisia and ESIEE Engineering PARIS. It is sponsored by the French 

ministries of Foreign Affairs and the Higher Education and Research and the 
Tunisian ministry of Higher Education and Scientific Research in the context 

of Hubert Curien Partnership (PHC UTIQUE) under the CMCU project 

number 12G1108. 
 



divided into macroblocks (MB) of 16x16 pixels. Each MB 
undergoes the two prediction types:  
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Fig. 1. H264/AVC video encoder structure 

Intra-prediction: it is dedicated to remove the spatial 
redundancies within the image and includes two different 
block-size predictions:  

 Intra4×4: it is performed for each 4x4 block and 
containing nine directional prediction modes as shown 
on “Fig. 2”. 

 Intra16×16: it is applied for each 16x16 MB and 
including four directional prediction modes as 
illustrated on “Fig. 3”. 

To perform intra prediction, the current MB needs the TOP, the 
LEFT and the TOP LEFT neighboring pixels of its neighboring 
MBs already encoded and reconstructed as illustrated on “Fig. 
4”. 
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Fig. 2. Intra4x4 prediction modes 
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Fig. 3. Intra16x16 prediction modes 

Inter-prediction: It is used to reduce temporal redundancies 
in the video. It consists of determining the motion vector of the 
current MB in frame i with respect to its position in multiple 
reference frames i-n. n represents the time difference between 
the actual encoded frame and the reference frame within the 

display order. The search of the motion vector is limited to a 
specific area called "search window" as presented on “Fig. 5”.  
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Fig. 4. Data dependencies for intra prediction 
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Fig. 5. Data dependencies for inter prediction 

For inter prediction, there are seven different block sizes, as 
shown on “Fig. 6”, namely 16×16, 8×16, 16×8, P8x8 {8×8, 
8×4, 4×8 and 4×4} in order to reach more motion vector 
precision. Many rate distortion calculations are performed to 
determine the best predicted MB between all the intra and inter 
prediction modes using the following formula: 

Costmode = Distortion (MB) + λmode x Rate (MB)             (1) 

The Distortion is determined by means of the most 
commonly metric which is the Sum of Absolute Difference 
(SAD) computed between the current MB and the predicted 
MB. The mode that minimizes the cost is chosen as the best 
prediction mode.  
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Fig. 6. Inter prediction modes 

A DCT-like integer transform and quantification are 
applied to the residual MB which is the difference between the 
current and the best predicted MB. Transform coefficients are 
quantized and entropy coded to form the bit-stream to be 
transmitted or stored in a file. The decoding chain composed 
by the inverse quantification and inverse transform is used to 
reconstruct the MB needed for the prediction of the subsequent 
MBs. The reconstructed frame is filtered using a de-blocking 
filter to remove artifacts. This filter requires the use of 4 rows 
of pixels for the TOP and 4 columns of pixels for the LEFT 
neighboring MBs as shown on “Fig. 7”. 
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Fig. 7.  Data dependencies for de-blocking filter 

III. RELATED WORKS 

A. Software solutions 

The H264/AVC modules profiling shows that inter and 
intra predictions represent the lion’s share of the encoder 
computation time. Using a fast motion estimation approaches 
[24], computational complexity of inter prediction module is 
drastically reduced. As a result, the required time for checking 
intra prediction modes becomes relatively important compared 
to that of the inter prediction module. Therefore, a fast intra 
mode decision algorithm is required. This complexity is due 
essentially to the Rate Distortion (RD) computations performed 
for each mode in order to select the best one. Many solutions 
and techniques have been proposed such as:  

 Reducing the number of candidate modes instead of 
performing all the RD calculations of intra4x4 and 
16x16 prediction modes [2],…,[6]. 

 Comparing boundaries variance and/or MB variance to 
a threshold in order to achieve early termination of cost 
computation [7],…,[10]. 

 Extracting the direction MB histogram to have an idea 
of the MB direction in order to reduce the candidate 
modes [11],…,[15].  

B. Hardware/software solutions 

Many hardware/software co-design architectures for 
H.264/AVC encoder are proposed in order to take advantage of 
hardware parallelism. Based on H264/AVC encoder profiling, 
a partitioning of the H264 modules is determined. In fact, the 
most time-consuming and systematic modules are accelerated 
using hardware IPs implemented on Field Programmable Gate 
Array (FPGA) platforms [16],…,[20]. The rest of the modules 
will be performed on another processor. Then the 
communication between the processors and the hardware block 
is examined. 

C.  DSP based solutions 

Software flexibility, time-to-market reduction, low power 
consumption and low cost make DSPs an attractive solution for 
high performance applications and embedded systems 
implementations. Motivated by these merits and encouraged by 
the great evolution of DSP architectures, several proposals 
have taken advantage of DSP features (high processing 
frequency,  optimized architecture) in order to achieve real 
time video encoding [24],…,[33]. 

D. Analysis of previous works 

Concerning the algorithmic optimizations cited above for 
the intra prediction module, even if some of these algorithms 

were able to reduce the intra prediction computation time, they 
still have some drawbacks. First, they increase the H264/AVC 
complexity computation due to the pre-calculations required 
for computing the edge direction and boundary variance. 
Moreover, methods reducing the number of intra candidate 
modes affect only the RD calculations whereas intra prediction 
also includes other modules such as computing residual block, 
transform, quantification which are performed to prepare the 
neighboring pixels for the next block. Finally, it is crucial to 
consider that these approaches induce a bit-rate increase when 
the rate control option is turned off and lead to a serious 
degradation of PSNR quality. On the other hand, inflexibility 
and the inherent long time to market are the most important 
drawbacks of FPGA implementations. Thus, to implement the 
whole H264/AVC encoder on an FPGA platform, a huge 
FPGA surface and a lot of design and compilation time with 
tremendous VHDL expertise are required. Finally, the low 
hardwired block frequency makes it difficult to attain real time 
encoding especially for HD resolutions. Regarding the DSP 
based solutions; the existing mono-core DSP encoder 
implementations still cannot meet real-time constraints 
particularly for HD resolutions. In fact, it is only with large 
memory-size and high clock frequency platforms that real-time 
H.264/AVC encoding is possible. 

IV. DSP PLATFORM DESCRIPTION 

Our choice for using a DSP platform was motivated by its 
merits described above. To reach real time encoding for HD 
quality as our final goal, we decide to work on multicore DSP 
which is the renowned TMS320C6472 DSP [34]. It belongs to 
the latest generation of multicore DSPs made by Texas 
Instrument. Low power consumption and a competitive price 
tag make the TMS320C6472 DSP ideal for high-performance 
applications and suitable for many embedded implementations. 
As presented on “Fig. 8”, six C64x + DSP cores, 4.8 M-Byte 
(MB) of memory on chip, very long instruction word (VLIW) 
architecture, Single Instruction Multiple Data (SIMD) 
instruction set and a frequency of 700 MHz for each core are 
combined to deliver 33600 MIPS performance. 

 

Fig. 8. Internal architecture of TMS320C6472 DSP 

Each C64x+ core integrates a large amount of on-chip 
memory organized as a two-level memory system. The level-1 
(L1) program and data memories on this C64x+ core are 32 K-
Byte (KB) each. This memory can be configured as mapped 
RAM, cache, or some combination of the two. The level 2 (L2) 
memory is shared between program and data space and is 608 
KB in size. L2 memory can also be configured as mapped 



RAM, cache, or some combination of the two. In addition to 
L1 and L2 memory dedicated to each core, the six cores also 
share 768 KB of L2 shared memory. Shared L2 memory is 
managed by a separate controller and can be configured as 
either program or data memory. This large quantity of on-chip 
memory can eliminate access to external DDR2 memory, 
therefore reducing the power dissipation and accelerating the 
execution of algorithms since internal memory is faster than 
external memory. Performance is also enhanced by the EDMA 
controller able to manage memory transfers independently 
from the CPU. Therefore, no additional overhead is caused 
when large data blocks are moved between internal and 
external memory. TMS320C6472 DSP supports different 
communication peripherals as Gigabit Ethernet for IP 
networks, UTOPIA 2 for telecommunications and Serial 
RapidIO for DSP-to-DSP communications. 

V. PROPOSED OPTIMIZATIONS 

To take advantages of multicore technology and the 
potential parallelism presented in the H264 standard, we must 
as a first step, elaborate an optimized H264/AVC architecture 
on a single core DSP even for a low resolution such as CIF 
format and then we should be able to move to HD multicore 
implementation. The video frame is captured from a camera 
and converted into YUV 4:2:0 format adequate for the baseline 
profile. Then, the RAW stream is transferred to the DSP 
memory in order to be processed by the DSP core to obtain the 
compressed bit-stream subsequently transferred to a video 
decoder or stored in a file. To achieve real time encoding, 
several optimizations are proposed and implemented hereunder 
on a unique DSP core. 

A. Algorithmic optimization 

To overcome the drawbacks of previously proposed 
algorithms for the intra prediction module, a fast intra 
prediction approach is presented. When adopting this approach, 
pre-calculations are not required to achieve early termination 
mode decision. The aim of the proposed approach is to reduce 
the whole intra prediction complexity and not only the RD 
calculations as adopted by most of the previous algorithms. 
The best way to achieve this proposal is choosing the 
appropriate condition to decide either performing or skipping 
the whole intra4x4 or intra16x16 module. Our proposed 
scheme is a result of several analyses that we performed on 
several CIF sequences (Akiyo, Foreman, Container, News, 
Tb420, mobile, Bus, ice…etc). These analyses show that:  

 For P frames, the inter mode is the most selected mode 
compared to intra16x16 and intra4x4, as presented on 
“Fig. 9” which shows the mode decision percentages 
for CIF video sequences with different quantification 
parameters (QPI, QPP). As a result, when a fast intra 
mode decision is performed in P frames, no important 
degradation in visual quality is noticed. 

  

  

Fig. 9. Mode decision percentages for CIF video sequences 

 16x16, 16x8 and 8x16 inter prediction block sizes are 
generally used for backgrounds and stationary blocks 
whereas P8x8 block sizes are used in detailed and fast 
motion areas as illustrated by “Fig. 10”. 
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Fig. 10. MB regions for inter prediction modes 

 Intra16x16 is generally used for backgrounds, stationary 
and homogenous blocks characterized by a tiny 
luminance change, whereas intra4x4 is used for high 
luminance texture areas as shown on “Fig. 11”. 
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Fig. 11. MB regions for intra prediction modes 

Considering these observations, we can affirm that there is 
a high correlation between intra and inter prediction modes. So, 
a fast intra mode decision based on inter prediction modes is 
proposed. This is depicted in the flowchart of “Fig. 12”: 

For I Frames, intra mode decision is not changed: the full 
intra prediction process is performed and all intra16x16 and 
intra4x4 modes are checked. 

For P Frames, the intra mode decision is linked to the best 
inter prediction mode as follows: 

 If the best inter mode is P8x8, which means that 8x8, 
8x4, 4x8 or 4x4 block size is selected, intra4x4 is 
performed and the whole intra16x16 is skipped 
because the MB is considered not homogenous and 
characterized by a detailed texture.  

 Otherwise, intra16x16 is performed and the whole 
intra4x4 is skipped because the MB is considered a 
homogenous smooth area. 
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Fig. 12. Flowchart of the proposed algorithm 

For performance comparison, our proposed approach will 
be evaluated according to three criteria:  

 ΔPSNR:  It is the PSNR difference between the 
proposed and the reference algorithms. 

 ΔBits (%):  It represents the percentage increase in bit-
rate for the implemented scheme compared to the 
reference software. 

 ΔTime (%): This criterion is defined as the percentage 
of time saving for intra prediction module when 
performing the proposed scheme. 

The above three criteria are detailed by the following 
equations: 

𝐵𝑖𝑡𝑠(%) =
Bitrate(proposed)−Bitrate(reference)

Bitrate(reference)
x100   (2) 

∆𝑃𝑆𝑁𝑅(𝑑𝑏) = 𝑃𝑆𝑁𝑅(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) − 𝑃𝑆𝑁𝑅(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)    (3) 

∆𝑇𝑖𝑚𝑒(%) =
𝑇𝑖𝑚𝑒(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) − 𝑇𝑖𝑚𝑒(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑇𝑖𝑚𝑒(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
𝑥100 (4) 

Table I shows the performance of our scheme realized on 5 
CIF sequences: Akiyo, Foreman, News, Paris, and Container. 

TABLE I.   PERFORMANCE EVALUATIONS OF THE PROPOSED ALGORITHM 

Sequence ΔPSNR (dB) ΔBits (%) ΔTime (%) 

Akiyo -0.00 +0.00 58.7 

Foreman -0,02 +0,14 57.2 

News -0.00 +0,17 59.0 

Paris -0.01 -0,003 55.6 

Container -0.00 +0,01 58.4 

As presented in this table, we can observe that our proposed 
algorithm does not affect the PSNR quality. It provides a slight 
increase in bit-rate by 0.07% in average. Finally, our approach 
can save up to 58% of intra prediction computation time. 

B. Data structure optimizations 

It consists of designing and optimizing data structures that 
enable the processing of input video into H264 encoder 

modules. This structure should efficiently exploit the DSP core 
architecture and especially the internal memory which is faster 
than external SDRAM memory. Each core of TMS320C6472 
DSP has a 608 KB internal memory LL2RAM shared between 
program and data. Preferably and to the extent possible, we 
should load both program and data within the LL2RAM. Two 
implementation variants are proposed. 

1) « MB level »  implementation 
This implementation represents the basic data structure 

processing in H264/AVC standard, based on encoding a MB 
followed by another until we finish the entire frame MBs. The 
principle of this first proposed architecture is detailed as 
follows: the program size is around 120 KB and is loaded into 
the internal memory LL2RAM (608 KB). As a result, 488 KB 
of memory space remains free. For YUV 4:2:0 baseline profile 
format (for each 4 pixels, we have 4 luminance Y, 1 
chrominance U, and 1 chrominance V components). 
Consequently, for a CIF resolution, each frame requires 
148.5KB (=352x288x1.5). If we consider the reference frame, 
we have to extend its 4 sides by a MB (16 pixels) needed for 
the window search in order to perform the motion estimation. 
In our implementation, only one reference frame is used, so a 
total of 180KB (= (352+32) x (288+32) x 1.5) are required. In 
addition, 64 KB are reserved for the compressed output bit-
stream. All these data are stored in the external memory given 
their large sizes. To avoid working directly with external 
memory, some data are copied into the internal memory such 
as current MB, window search and reconstructed MB for the 3 
YUV components. Quantization and transform matrixes, 
predicted MBs, SAD matrix, neighboring pixels buffers are 
also loaded into the LL2RAM in order to accelerate the data 
processing and minimize external memory access. The total 
size of data loaded into LL2RAM is 28.24 KB, so 459.76 KB 
of internal memory are not allocated so still free for future 
enhancements. The steps for encoding a luminance MB are 
detailed on “Fig. 13”. 
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Fig. 13. « MB level » implementation 

The DSP core loads the current MB (16x16) and the search 
window (48x48) respectively from the current and the 
reference frames from the external to internal memory. The 
data process is now totally performed by the DSP core without 



external memory accesses. The reconstructed MB (20x20), 
extended by 4 pixels at the left and the top needed in the MB 
filtering, is transferred from the local memory into the external 
memory at the reconstructed frame. This process is repeated 
until the completion of the entire current frame MBs. The 
advantages of this architecture are essentially its adaptability to 
any DSP even if it does not have a large internal memory and 
small internal memory requirement even for HD resolution 
(55.54 KB for 720p resolution). We notice that it is practically 
independent from the video resolution. The major drawbacks 
of this architecture are the multiple accesses to the external 
memory for each loading of a current MB, reading of the 
search window and saving of the reconstructed MB in the 
reconstructed frame. It also needs to save the left and top 
neighboring pixels used in the prediction and filtering of the 
next MBs after each MB processing. 

2) « One MBs row level» implementation  
To avoid the first architecture’s drawbacks, a second 

implementation is proposed. The principle of this 
implementation as shown on “Fig. 14” consists of loading one 
MBs row (16 x frame_width) from the current frame and 3 
MBs rows (48 x (16+ frame_width +16)) for the search 
window from the reference frame to the appropriate buffers 
created in the internal memory. The DSP core encodes the 
whole current MBs row without external memory access. Then, 
the reconstructed MBs row (20 x (16+ frame_width +16)) is 
transferred from the LL2RAM to the SDRAM memory in the 
reference frame. Thus, it is not necessary to create another 
memory buffer for the reconstructed frame. We can exploit the 
reference frame to store the reconstructed MBs row, since the 
overwritten data are not useful (they are already copied into the 
3 MBs rows of the search window). Passing to the second 
current MBs row, it is not necessary to load 3 MBs rows for the 
search window from the reference frame, just shift up the last 
two MBs rows of the search window in the internal memory 
and bring the third from the fourth line of the reference image 
as presented on “Fig. 15”. 
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Fig. 14. « one MBs row level » implementation 

The required data size in the internal memory for the CIF 
resolution for this second proposition is 68.56 KB instead of 28 

KB for the first architecture. However, it outstandingly reduces 
the access to external memory. Finally, instead of performing 
multiple accesses to the external memory for loading and 
storing data for the "MB level" architecture which are in a total 
of 22 (number of MBs per row for CIF resolution); we only 
perform one access for "one MBs row level" architecture. In 
addition, when proceeding at the MBs row level, all left 
boundaries required in the next MB prediction and filtering are 
already available in the memory, so the left neighboring pixels 
backup is removed. Moreover, this reduces the backup of TOP 
boundaries, since we require storing the top boundaries only 
one time after finishing the processing of the whole MBs row 
whereas, the "MB level" implementation needs to store the top 
neighboring pixels after processing each current MB. 

Row of MBs (Y-1)

Row of MBs (Y)

Row of MBs (Y+1)

Row of MBs (Y)

Row of MBs (Y+1)

Row of MBs (Y+2)It
er

at
io

n
 i+

1
It

er
at

io
n

 i

Insert new row

}

}

Shift already 2 

loaded rows

24 MBs    

 

Fig. 15. Reference search window load 

C. Hardware optimizations  

1) « ping pong MBs row level» implementation: EDMA 

based solution  
To reduce the H264/AVC encoding latency, we propose a 

bus interleaved architecture. A ping-pong buffer is configured 
to support the current and reconstructed MBs transfers, 
ensuring better parallelism efficiency between data transfers 
and CPU processing of the next MBs row. The C6472 DSP 
includes an Enhanced Direct Memory Access controller 
(EDMA) [35] which handles data transfers programmed 
between two memory-mapped slave endpoints without direct 
CPU involvement. The parallelism between CPU processing 
and EDMA data transfers can significantly accelerate the DSP 
processing. Ping-pong buffers are configured to support the 
current and reconstructed MBs transfers. 

Three execution phases are performed as follows:  
 Phase 1: While the CPU encodes the current MBs rows 

composed of one luminance (Y) and two chrominance 
(UV) components on the "ping" buffer, three DMA 
requests start loading the three components (YUV) 
respectively from the following MBs rows located at 
the current frame buffers in external memory into the 
correspondent "pong" buffers in internal memory. 
Consequently, with this technique, we can save the 
transfer time of the current MBs rows. 

 Phase 2: the filtering module is performed after the 
CPU terminates encoding all the MBs in the current 
row. Thereby, we can exploit this processing order to 
parallelize MBs row filtering with preparing the three 
MBs rows of the search windows for motion 
estimation of the next current MBs row (pong buffer). 
The CPU performs the filtering module of the whole 
"ping" reconstructed MBs rows (luma and chroma 



components), in parallel, the EDMA controller shifts 
up the last two rows of the search window in the 
internal memory and load the third from the 
correspondent row of the reference image located at 
the external memory. This phase permits to reduce the 
transfer time of the search window. 

 Phase 3: at the end of the "ping" reconstructed MBs 
rows, the CPU moves to process the content of the 
"pong" buffer that becomes the new current MBs rows. 
At the same time, three EDMA channels are triggered 
to save the "ping" reconstructed MBs rows for the 
three components, luma and two chromas, from the 
internal to the external memory. Then, three other 
EDMA channels start loading the next current MBs 
rows on the "ping" buffer, and so on. The advantage of 
these steps is to reduce the encoding latency: the CPU 
doesn't need to wait for storing the reconstructed MBs 
rows to move to processing the next current MBs rows 
as described on “Fig. 16”.  

The whole data amount in internal memory for this 
architecture is 88 KB only for CIF resolution. Therefore, 400 
KB are still not utilized; it will be interesting for higher 
resolution encoding. 
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Fig. 16. Phase 3 of the « ping pong MBs row level» implementation 

2) Cache activation 
Each local L2 memory of DSP cores can be configured as 

all SRAM or as part 4-way set-associative cache (32 KB, 64 
KB, 128 KB or 256 KB). As we still have 400 KB of free space 
in L2 memory, 256 KB are configured as cache memory in 
order to speed up the data processing, reduce CPU access time 
(read or write) to its data, and minimize the probability of 
cache misses. To activate the local L2 cache, the chip support 
library (CSL) API “CACHE_setL2Size” is used [36]. Also, we 
must enable caching external address ranges by setting the 
Memory Attribute Registers (MARs) using the CSL API 
command “CACHE_enableCaching”. 

3) Real time video encoding demo 
For real time experimentation, the video input for the 

H264/AVC encoder needs to capture frames from camera at 

the rate of 25 f/s. For 4:2:0 video format, we need a 
transmission channel bandwidth equal to 29 Mbps for CIF 
resolution ((352 x 288 x 1.5) x 8bits x 25 f/s ) and 263.67   
Mbps for HD 720p resolution ((1280 x 720 x 1.5) x 8bits x 25 
f/s). To perform a real time video encoding demo, we used a 
USB webcam connected to a Personal Computer (PC) which 
sends the raw YCrCb pixels to the DSP board using the Gigabit 
Ethernet link of the C6472 DSP. A TCP socket client (PC)-
server (DSP) communication is established [37]. Texas 
Instrument Network Developers Kit (NDK) is used on the DSP 
side [38]. It provides a TCP/IP stack, network applications, and 
EMAC device drivers that work with DSP/BIOS the real time 
OS from TI. The phase of sending and receiving data between 
the client (PC) and the server (DSP) is presented on “Fig. 17” 
and detailed as follows: on the DSP, two cores are exploited. 
One is devoted to establish TCP/IP connection with the client 
(PC). It is engaged at first to receive the current frame sent by 
the client after camera capture and save it into the external 
memory. The second core will encode this current frame and 
save the bit-stream in the external memory to be thereafter sent 
by the first core to client (PC) in order to be stored in a file or 
decoded. A ping pong buffers for the current frame and the bit-
stream are configured on the external memory in order to 
parallelize the current frame encoding by core 1 and reception 
of the next frame by core 0. 
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Fig. 17. Real time video encoding demo 

The strategy of our implementation is described on “Fig. 
18” and consists of the following steps: 

 Establish connection between client (PC) and server 
core (0): create sockets, assign address to sockets (IP 
address, TCP port number) and wait for incoming 
connection by the server. 

 On the client side, The PC captures frame from the 
camera or a file and converts it from RGB to YUV 
4:2:0 format using the API openCv library [39]. 

 The client sends the captured frame to the server core 
(0) which will receive the stream socket and save it 
into the external memory in the ping buffer SRC[0]. 
Core (1) is in a wait state. 

 Once the current frame reception is finished, core (0) 
sends an inter processor communication interruption 



(IPC) to core (1) to trigger the encoding of the current 
frame SRC[0]. The generated bit-stream is stored into 
the ping buffer Bitstream[0]. At the same time, the 
client sends the next frame to core (0) which will 
receive this frame and store it into the pong buffer 
SRC[1]. Then, core (0) remains in a wait state until the 
reception of an IPC interruption from core (1) to 
indicate that the bit-stream is ready in the external 
memory after achieving the encoding of the ping buffer 
SRC[0]. 

 When receives an IPC interruption from core (1), core 
(0) sends an IPC to core (1), which is in a wait state, in 
order to trigger the encoding of the pong buffer 
SRC[1] and to ensure that the core (1) will not starting 
the processing before core (0) finish receiving the next 
current frame. Then, core (0) sends the ping buffer 
Bitstream [0] from external memory to the client (PC) 
and receive the next frame and save it into SRC[0]. At 
the same time, core (1) processes the pong buffer 
SRC[1] and saves the bit-stream into the pong buffer 
Bitstream [1] in order to avoid the overlap with the 
core (0). 

 The work is then looped in a reverse order of current 
frame and bit-stream through ping pong buffers. 

Considering this method, we can save the time of data 
transfers between the client and the server. 
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Fig. 18. The steps of performing real time demo video encoder 

4) cache coherency 
Multicore processing often leads to a cache coherency 

problem. This is due to the simultaneous access of two or more 
CPUs with a separate cache memory for each core to the same 
location in a shared memory. In general purpose 
multiprocessor, programmers don’t have such problem because 

it is controlled automatically by complex hardware. But in our 
multicore DSP architecture, designers have to control it since 
there is no such automatic controller. In order to deal with 
cache coherency, the CSL library [36] from TI provides two 
API commands: 

 CACHE_wbL2((void *)XmtBuf, bytecount, 
CACHE_WAIT) to write back the cached data from 
the cache memory to its location in the shared memory. 

 CACHE_invL2((void *)RcvBuf, bytecount, 
CACHE_WAIT) to invalidate cache lines and oblige 
the CPU to read the data from its location in the shared 
memory. 

In our case, when core (0) receives the current frame from 
the client, it should write back the cached data to external 
memory. In the other side, core (1) should invalidate the 
current frame addresses in the cache before starting the frame 
encoding. Also, when core (1) terminates the encoding frame, 
it should write back the bit-stream from cache to external 
memory in order to overcome the cache coherence with core 
(0) which will send the bit-stream from the external memory to 
the client (PC). 

VI. EXPERIMENTAL RESULTS 

The proposed architectures with different optimizations are 
implemented on a single core of the TMS320C6472 DSP 
running at 700 MHz. Experimental simulations are performed 
using CIF (352x288) video sequences with different 
characteristics: Foreman, Akiyo, News and Container. 
Simulation results are presented in Table II that shows the 
encoding speed of the different implemented architectures. The 
MB level implementation that was firstly presented, correspond 
to the basic encoding design and is consequently the slowest. It 
achieves 14.71 f/s which is very far from real-time. When 
moving to the second implementation “one MBs row level”, 
the encoding speed is improved by 26.34% and reached 19.97 
f/s. Then, parallelizing data transfers and CPU processing by 
exploiting EDMA controller and cache activation lead to an 
increase in speed by up to 10.33% allowing to achieve 22.27 
f/s. Applying the proposed fast intra mode decision algorithm, 
the encoding speed is enhanced by 13.58%, surpassing the real-
time constraint which is 25f/s without inducing any PSNR 
degradation or bit-rate increase as detailed in section 5.A. 
Finally we can note that the applied optimizations enabled us to 
achieve a gain of 42.91% starting with a slow video encoder 
running at 14.71 f/s before optimization and get a real-time 
video encoder running at 25.77 f/s. Our platform DSP using 
only a single core allows a real time video encoding for low 
resolution CIF (352x288).  

Starting from these results, it is now possible to consider 
real-time for higher resolutions if we exploit the potential 
parallelism of the H264 standard and the merits of our 
multicore DSP. We have to explore the different partitioning 
methods ("GOP Level parallelism", "Frame Level parallelism" 
...) and apply the most suitable for a multicore implementation. 
Also, the textural and morphological characteristics of the 
high-definition videos could be exploited to propose new 
algorithmic optimizations for the most H264/AVC complex 
modules as intra prediction and inter prediction. 



TABLE II.  PERFORMANCE EVALUATIONS OF THE PROPOSED IMPLEMENTATIONS 

CIF sequence 

 

MB level 

implementation 

One MBs row 

level 

implementation 

Ping Pong MBs 

row level 

implementation: 

EDMA  

Ping Pong MBs row 

level 

implementation: 

EDMA solution + 

cache activated 

Ping Pong MBs row level 

architecture: EDMA 

solution + cache activated + 

Fast intra mode decision 

algorithm  

Foreman 14.73 19.96 21.48 22.41 25.07 

Akiyo 14.83 20.19 21.71 22.40 25.98 

News 14.73 20.02 21.49 22.29 26.47 

Container 14.56 19.73 21.12 22.01 25.56 

speed average 

(f/s) 
14.71 19.97 21.45 22.27 25.77 

 

VII. CONCLUSION 

In this paper, an optimized implementation of the 
H264/AVC encoder on a single core of the multicore DSP 
TMS320C6472 was detailed. Algorithmic, structural, and 
hardware optimizations were proposed to achieve real-time 
coding 25 f/s on a single DSP core for CIF resolution 
(352x288). Our optimizations could save up to 42% of the 
total computation time and allows reaching 25.77 f/s in 
average as encoding speed for CIF resolution without visual 
quality degradation or bit-rate increasing. To switch to 
higher resolutions like SD and HD 720p, a multicore 
implementation on the 6 DSP cores of TMS320C6472 
represents the next step that we should perform in order to 
attain real time encoding. Also we can benefit from the 
textural and morphological characteristics of HD resolutions 
to propose new algorithmic optimizations in order to 
accelerate the encoding speed. Finally, using the latest 
multicore DSP from Texas Instruments, the C66x DSP 
TMS320C6678 integrates eight cores each running at 1.25 
GHz, is expected to achieve real-time encoding for HD 
1080p resolution. 
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