
HAL Id: hal-01192779
https://hal.science/hal-01192779

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GOP level parallelism implementation for real-time
H264/AVC video encoder on multicore DSP

TMS320C6472
Nejmeddine Bahri, Thierry Grandpierre, Mohamed Ali Ben Ayed, Nouri

Masmoudi, Mohamed Akil

To cite this version:
Nejmeddine Bahri, Thierry Grandpierre, Mohamed Ali Ben Ayed, Nouri Masmoudi, Mohamed Akil.
GOP level parallelism implementation for real-time H264/AVC video encoder on multicore DSP
TMS320C6472. EDERC 2014, IEEE, EURASIP, Nov 2014, Milan, Italy. pp.152-156, �10.1109/ED-
ERC.2014.6924378�. �hal-01192779�

https://hal.science/hal-01192779
https://hal.archives-ouvertes.fr

GOP LEVEL PARALLELISM IMPLEMENTATION FOR REAL-TIME H264/AVC

VIDEO ENCODER ON MULTI-CORE DSP TMS320C6472

Nejmeddine Bahri(1), Thierry Grandpierre(1),Med Ali Ben Ayed(2), Nouri Masmoudi(2), Mohamed Akil(1)

(1) ESIEE Engineering / LIGM Laboratory, University Paris-EST-France

(2) National School of Engineers / LETI Laboratory, University of Sfax-Tunisia

nejmeddine.bahri@esiee.fr thierry.grandpierre@esiee.fr

ABSTRACT

In this paper, we exploit the parallelism offered by six-

cores Digital Signal Processor (DSP) TMS320C6472 to

implement the H264/AVC video encoder in order to meet

the real-time constraint for different video resolutions. To

enhance the encoding speed, GOP Level Parallelism

approach is implemented on 5 slave DSP cores. A master

core is reserved to manage data transfers among DSP

memory and personal computer in order to perform a real-

time video encoding demo taken into account video capture

and bit-stream storage. Multithreading algorithm and ping

pong buffers technique are used in order to optimize the

communication overhead. Experimental results show that

our enhanced implementation allows to overcome the real-

time constraint by reaching up to 120 f/s (frame/second) for

Common Intermediate Format resolution (CIF 352x288)

and 35f/s for Standard Definition (SD 720x480). Our

proposed approach can save about 80% of run-time for

High Definition resolution (HD 1280x720). The Enhanced

GOP Level parallelism approach on five DSP cores

achieves a good average speedup factor of 4.88 without

inducing any quality degradation or bit-rate increment.

1. INTRODUCTION

In our days, embedded systems occupy more and more our

daily life. They invade many applications such as

telecommunication, medical, defense and TV video coding

etc. Actually, new embedded systems technologies as

multi-core and multi-processor architectures allow

designers to develop more complex applications that

require high processing capability. H.264/AVC [1] video

encoder is one of those applications. It is characterized by a

better video coding efficiency compared to previous

standards. However, this efficiency is accompanied by a

high computational complexity that requires a high-

performance processing capability to satisfy real-time

constraint (25 to 30 f/s). The trend towards high definitions

makes it hard to achieve real-time encoding on embedded

mono-core processors due to processor frequency

limitation. As a result, using multi-core and parallel

architectures will be imposed to recompense this deficiency

and to reduce the run-time of H264/AVC encoder. Several

works have been published taken into account the potential

parallelism of H264/AVC encoder. Different partitioning

techniques are discussed based on applying functional

partitioning algorithms, data partitioning algorithms or

both. Multi-core, multi- processor and multi-threading

encoding systems have been suggested in many papers [2]

to [6]. In this paper an implementation of H.264/AVC

encoder on a multi-core DSP TMS320C6472 applying GOP

Level Parallelism (GLP) algorithm is detailed. A real time

video coding demo is presented taken into consideration

image capture from a digital camera linked to our DSP

platform using Ethernet connection, DSP encoding and bit-

stream saving. Hiding communication overhead is also

presented based on performing a multithreading algorithm

and exploiting the standard ping pong buffers technique.

 The remainder of this paper is structured as follows:

next section presents and discusses the different partitioning

methods and some related works on the parallel

implementations of H264/AVC encoder. The architecture

of our multi-core DSP TMS320C6472 is described in

section 3. Section 4 highlights our enhanced

implementation of GLP algorithm on five slave DSP cores

and details the experimental results. Finally, section 5

concludes this paper with some perspectives.

2. H264/AVC ENCODER : PARTITIONING

METHODS AND RELATED WORKS

H.264/AVC encoder baseline profile includes several

modules such as intra prediction, inter prediction, integer

cosine transform, quantification, entropy coding etc. This

standard splits a video sequence into a hierarchical

structure. The top level of this structure is the sequence that

includes one or more groups of pictures (GOP). Each GOP

consists of one or more frames and always starts with intra

frame (I). The other frames are predicted frames (P).

Finally, the frames are divided into one or more slices,

subdivided themselves into macroblocks (MB) and blocks.

According to functions organization and hierarchical

sequence structure in H.264/AVC encoder, there are mainly

two partitioning approaches:

 Task-level parallelization (TLP): it decomposes the

encoder into several steps, identify them into a different

group of tasks equal to the number of threads available on

the system and run these groups of tasks simultaneously as

a pipeline. Several works have applied this method as [2].

This approach ensure a low latency encoding but in the

other side we can say that it is not suitable for H.264/AVC

encoder because of the data dependencies between tasks

that require a large amount of data transfers among

processors; thus, consumption of the system bandwidth.

Also functions in H.264/AVC encoder have not the same

load balance which makes it hard to uniformly map

mailto:nejmeddine.bahri@esiee.fr
mailto:thierry.grandpierre@esiee.fr

functions among processors. As a result, the final

performance is always limited by the heaviest load

processor.

 Data-level parallelization (DLP): it exploits the

hierarchical data structure of H264/AVC encoder by

simultaneously processing several data levels on multiple

processing units. DLP is restricted by data dependencies

between different data units. We can note that no

dependencies existed among different GOPs because each

GOP starts with an intra frame. Hence, several GOPs could

be encoded in parallel. This approach is called “GOP Level

Parallelism”. It has been adopted by several researchers as

in [3].This method ensures the best encoding speedup but

requires a large memory amount. Thus, it is not adequate

for System on Chip platforms (SOC). Motion estimation in

the H264/AVC encoder imposes a partial dependency

between successive frames of the same GOP. Thus,

multiple frames can also be encoded in a pipeline structure

once the search window in the reference frame has been

encoded. Consequently, this method is called “Frame Level

Parallelism” [4]. It provides a compromise between

encoding latency and implementation efficiency. Other

works apply slice level parallelism such as in [5]. They split

the frame into independent slices and simultaneously

process them on different units. The major drawback of

slice level parallelism is that it induces a bit-rate increment

because some data dependencies are not respected. Finally,

in the same frame, several MBs could be encoded at the

same time once neighboring MBs of the current MB are

encoded in order to respect spatial data dependencies. This

scheme is called “MB level Parallelism” [6]. Large amount

of data transfers and synchronizations between processors

in addition to the non-equal load balance make the MB

level parallelism approach not efficient for parallel

H264/AVC video encoder. Despite all the different

techniques and platforms used in order to accelerate the

encoding speed, most of them have not succeeded to meet

the real-time constraint (30 f/s) even for low resolution. For

that, we try in this work to use a powerful platform and

apply an efficient partitioning method in order to meet the

real time video encoding constraint.

3. DSP PLATFORM DESCRIPTION

Software flexibility, low power consumption, time-to-

market reduction, and low cost make DSPs an attractive

solution for embedded systems implementations and high

performance applications. Motivated by these merits and

encouraged by the great evolution of DSP architectures, we

chose to implement the H264/AVC encoder on the multi-

core DSP TMS320C6472 [7] to profit from high processing

frequency and an optimized architecture in order to achieve

real-time embedded video encoder. Low power

consumption and a competitive price tag make the

TMS320C6472 DSP ideal for high-performance

applications and suitable for many embedded

implementations. Six C64x + DSP cores, very long

instruction word (VLIW) architecture, 4.8 M-Byte (MB) of

memory on chip, Single Instruction Multiple Data (SIMD)

set and a frequency of 700 MHz for each core are combined

to deliver 33600 MIPS performance. Each C64x+ core

integrates a large amount of on-chip memory organized as a

two-level memory system: 32 K-Bytes (KB) of L1P and

L1D cache memories and 608 KB of local L2 memory. L2

memory can be configured as mapped RAM, cache, or

some combination of the two. In addition to L1 and L2

memories dedicated to each core, the six cores share 768

KB of shared L2 memory. It is managed by a separate

controller and can be configured as either program or data

memory. This large quantity of on-chip memory can

eliminate access to external DDR2 memory (256 MB),

therefore reducing the power dissipation and accelerating

algorithms processing since internal memory is faster than

external memory. Performance is also enhanced by an

EDMA controller that is able to manage memory transfers

independently from the CPU. TMS320C6472 DSP supports

different communication peripherals as Gigabit Ethernet for

Internet Protocol (IP) networks, UTOPIA 2 for

telecommunications and Serial RapidIO for DSP-to-DSP

communications.

4. ENHANCED GOP LEVEL PARALLELISM

IMPLEMENTATION

In this paper, we choose to apply the GOP Level

parallelism approach in order to accelerate the encoding

speed. Our choice is based on several reasons: First, this

scheme ensures a good speedup factor without inducing any

rate distortion (Quality degradation or bit-rate increase).

Second, no dependencies between GOPs make this

approach easy for implementation. No data transfers or

synchronizations among processors are required. Finally,

no memory constraint is required unlike SOC platforms.

Our DSP includes enough memory space that is able to

handle all the GOPs frames.

4.1 Video encoder demo

To ensure real time video encoding demo, we have to

guarantee a real time frame reception by the DSP. For that,

332 MBits/s bandwidth (42 Mbytes/s) at least is required to

transfer 30 frames/s HD 720p resolution on YUV 4:2:0

format ((1280x720x1.5)x8bits x30f/s). Since our DSP

evaluation board has not yet any simple frame grabber

interface, we use as fist step a personal computer (PC)

linked to a Universal Serial Bus (USB) HD webcam to send

the raw images to the DSP. Our DSP board and the PC

support both a Gigabit Ethernet interface (1000 Mbits/s)

that allows us to ensure a real time data transfers among

them. The PC could be thereafter replaced by another

embedded platform including camera interface and a

Gigabit Ethernet communication peripheral.

 As our platform includes 6 DSP cores, we exploited the

first core “core0” as master. It is considered as a TCP

server (transmission Control Protocol). It is devoted to

establish TCP/IP (Internet Protocol) connection with the

client (PC) exploiting Network Developer’s Kit library [8].

It is used firstly to receive the GOPs sent by the camera

board side after frames capture and save them into the

external memory which is a shared memory between all the

DSP cores. Then, the 5 remaining DSP cores are considered

as slaves and they are used to encode the 5 received GOPs.

 Once the encoding is achieved, the core0 will send the

bit-stream of all encoded frames to the PC in order to be

stored in a file or decoded later. For each slave core (1 to 5)

as shown on Figure 1, a memory section is reserved. It

contains the GOP current frames, the reconstructed frame

(RECT) and finally the bit-stream buffers where the bit-

stream of each frame from the GOP will be saved.

4.2 Optimized GOP level implementation

 To enhance the classic GOP level parallelism approach,

we focused on hiding communication overhead. Our

optimization is based on two strategies as shown on Figure

1: the first is using the ping pong buffers technique on the

DSP side in order to overlap GOPs encoding process with

reading and writing GOPs processes. The second is

exploiting the multi-threading approach on the camera

board side. Thus, three threads are created to handle: 1)

Reading raw frames and sending them to DSP via Ethernet.

2) Receiving bit-streams from DSP. 3) Saving the received

bit-streams in a file.

 On the DSP side, for each slave core a ping pong GOP

buffer is allocated for the current frames and also a ping

pong bit-stream buffer is allocated for the generated bit-

streams for each frame from the GOP. We keep a single

buffer for the reconstructed frame because no transfers are

required for this data. As a result, for each core, one buffer

for the reconstructed frame, two GOP size buffers for the

current frames and two GOP size buffers also for the bit-

streams are allocated into the memory section for each

slave core in SDRAM memory. In our work, GOP size is

equal to 8. So, 16 buffers (8*2) for current frames, 16

buffers for bit-streams and one buffer for the reconstructed

frame are allocated for each DSP core.

 In the internal memory of core0, a TCP server program

is loaded to establish Ethernet connection between the DSP

and the PC. Our H264/AVC program is loaded into each

internal memory of the 5 remaining cores. Local variables

used during encoding such as predicted MB buffers,

transform and quantification matrixes, best predicted modes

etc are also allocated into the internal memory of each core

to avoid data overlap among different cores.

 A C/C++ project is implemented on the camera board

side in order to capture raw frames from camera using

OpenCv library [9] that allows also to convert captured

frames from RGB to YCrCb 4:2:0 format that is used in our

H264/AVC encoder. Finally, a TCP socket is created to

transfer data between core0 and the camera board via the

Gigabit Ethernet link.

 The strategy of our implementation is described in

Figure 2 and consists of the following steps:

 The first thread “thread1” captures the first frame

from a camera or a file and sends it to core0 which

will save it into the ping buffer SRC[0][0] of core1.

Core0 sends then an inter processor communication

interruption (IPC) to core1 to indicate that it can

start encoding its current frame.

 When receiving IPC from core0, core1 starts

encoding the first frame of the GOP and at the same

time, thread1 continues reading the next frames of

the first GOP and sending them to core0 which will

save them into the ping buffers of core1 SRC1[0][i]

(i=1 to GOP size-1).

Core 0

DSP/BIOS

project

TCP server. out

Network

developer's Kit

& CSL APIs

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM

Src[0][0]

RECT frame

core1

Bistream[0][0]

Core 1

DSP/BIOS

project

H264

encoder. Out

CSL APIs

EVMC6472 DSP

Send 5

GOPs

1

6

Recv

Bitstream

of 5 GOPs

.

.

.

5

.

.

.

Src[0][1]

Src[0][GOP_size]

...

Bistream[0][1]

Bistream[0][GOPsize]

Src[1][0]

Src[1][1]

Src[1][GOP_size]

Bistream[1][0]

Bistream[1][1]

Bistream[1][GOPsize]

2

4

3

Ping SRC

GOP

Ping

stream

GOP

Pong SRC

GOP

Visual C/C++ project

For(i=0;i<5*GOP_size;i++)

{

 Capture frame SRC[frame_size];

 Send (SRC[frame_size]) ;

}

Bitstream[1][0]

Bitstream[1][1]

Bitstream[1][i]

Bitstream[0][0]

Bitstream[0][1]

Bitstream[0][i]

For(k=0;k<FramesToBeEncoded/(5*GOP_size);k++)

{

 For(i=0;i<5*GOP_size;i++)

 {

 Rcv (bitstream [k&1] [i])

 }

}

SRC[frame_size]

For(k=0;k<FramesToBeEncoded/(5*GOP_size);k++)

{

 For(i=0;i<5*GOP_size;i++)

 {

 write (bitstream [k&1] [i])

 }

}

Thread1 (reading and sending)

Thread2 (bitstream receiving)

Thread3 (bitstream writing)

.

.

.

.

.

.

...

...

...
Pong

stream

GOP

Src[0][0]

RECT frame

core1

Bistream[0][0]

5

Src[0][1]

Src[0][GOP_size]

...

Bistream[0][1]

Bistream[0][GOPsize]

Src[1][0]

Src[1][1]

Src[1][GOP_size]

Bistream[1][0]

Bistream[1][1]

Bistream[1][GOPsize]

2

4

3

Ping SRC

GOP

Ping

stream

GOP

Pong SRC

GOP

...

...

... Pong

stream

GOP

Core 5

DSP/BIOS

project

H264

encoder. Out

CSL APIs

Figure 1 –Diagram Description of video encoding demo using enhanced GOP Level Parallelism approach

Capture Frame1 + send
Send IPC to core1

Core 0Thread1 Core1

send Bitstreams of

GOP 1

Time

Wait
T=0

Encode

frame1

Thread2Thread3

EVM C6472PC

Capture Frame2 + send

Capture Frame8 + send

...

Capture Frame9 + send
Capture Frame10 + send

Capture Frame16 + send

...

Capture Frame17 + send
Capture Frame18 + send

Capture Frame24 + send

...

Capture Frame25 + send
Capture Frame26 + send

Capture Frame32 + send

...

Capture Frame33 + send
Capture Frame34 + send

Rcv Frame1
Rcv Frame2

Rcv Frame8

...

Rcv Frame9
Rcv Frame10

Rcv Frame16

...

Rcv Frame17
Rcv Frame18

Rcv Frame24

...

Rcv Frame25
Rcv Frame26

Rcv Frame32

...

Rcv Frame33
Rcv Frame34

Send IPC to core2

Send IPC to core3

Send IPC to core4

Encode

frame2

Encode

frame3

Encode

frame4

Encode

frame5

Encode

frame6

Encode

frame7

Encode

frame8

Core2

Wait

Encode

frame9

Encode

frame10

Encode

frame11

Encode

frame12

Encode

frame13

Encode

frame14

Encode

frame15

Encode

frame16

Core3

Wait

Encode

frame17

Encode

frame18

Encode

frame19

Encode

frame20

Encode

frame21

Encode

frame22

Encode

frame23

Encode

frame24

Core4

Wait

Encode

frame25

Encode

frame26

Encode

frame27

Encode

frame28

Encode

frame29

Encode

frame30

Encode

frame31

Encode

frame32

Capture Frame40 + send

...
Rcv Frame40

...

Core5

Wait

Encode

frame33

Encode

frame34

Encode

frame35

Encode

frame36

Encode

frame37

Encode

frame38

Encode

frame39

Encode

frame40

Send IPC to core5

Capture Frame41 + send

Send IPC to core1

Capture Frame42 + send

Capture Frame48 + send

...

Capture Frame49 + send
Capture Frame50 + send

Capture Frame56 + send

...

Capture Frame57 + send
Capture Frame58 + send

Capture Frame64 + send

...

Capture Frame65 + send
Capture Frame66 + send

Capture Frame72 + send

...

Capture Frame73 + send
Capture Frame74 + send

Rcv Frame41
Rcv Frame42

Rcv Frame48

...

Rcv Frame49
Rcv Frame50

Rcv Frame56

...

Rcv Frame57
Rcv Frame8

Rcv Frame64

...

Rcv Frame65
Rcv Frame66

Rcv Frame72

...

Rcv Frame73
Rcv Frame74

Capture Frame80 + send

...
Rcv Frame80

...
Encode

frame41

Encode

frame42

Encode

frame43

Encode

frame44

Encode

frame45

Encode

frame46

Encode

frame47

Encode

frame48

Encode

frame49

Encode

frame50

Encode

frame51

Encode

frame52

Encode

frame53

Encode

frame54

Encode

frame55

Encode

frame56

Encode

frame57

Encode

frame58

Encode

frame59

Encode

frame60

Encode

frame61

Encode

frame62

Encode

frame63

Encode

frame64

Encode

frame65

Encode

frame66

Encode

frame67

Encode

fram68

Encode

frame69

Encode

frame70

Encode

frame71

Encode

frame72

Encode

frame73

Encode

frame74

Encode

frame75

Encode

frame76

Encode

frame77

Encode

frame78

Encode

frame79

Encode

frame80

send Bitstreams of

GOP 2

send Bitstreams of

GOP 3

send Bitstreams of

GOP 4

send Bitstreams of

GOP 5

write Bitstreams of

GOP 1

write Bitstreams of

GOP 2

write Bitstreams of

GOP 3

write Bitstreams of

GOP 4

write Bitstreams of

GOP 5

Capture Frame81 + send
Capture Frame82 + send

Capture Frame88 + send

...

Capture Frame89 + send
Capture Frame90 + send

Capture Frame96 + send

...

Capture Frame97 + send
Capture Frame98 + send

Capture Frame104 + send

...

Capture Frame105 + send
Capture Frame106 + send

Capture Frame112 + send

...

Capture Frame113 + send
Capture Frame114 + send

Rcv Frame81
Rcv Frame82

Rcv Frame88

...

Rcv Frame89
Rcv Frame90

Rcv Frame96

...

Rcv Frame97
Rcv Frame98

Rcv Frame104

...

Rcv Frame105
Rcv Frame106

Rcv Frame112

...

Rcv Frame113
Rcv Frame114

Capture Frame120 + send

...
Rcv Frame120

...

send Bitstreams of

GOP 6

send Bitstreams of

GOP 7

send Bitstreams of

GOP 8

send Bitstreams of

GOP 9

send Bitstreams of

GOP 10

write Bitstreams of

GOP 6

write Bitstreams of

GOP 7

write Bitstreams of

GOP 8

write Bitstreams of

GOP 9

write Bitstreams of

GOP 10

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

Wait

Wait

Wait

Rcv Bitstreams of

GOP 1

Rcv Bitstreams of

GOP 2

Rcv Bitstreams of

GOP 3

Rcv Bitstreams of

GOP 4

Rcv Bitstreams of

GOP 5

Wait

Wait

Wait

Capture Frame121 + send
Capture Frame122 + send

Capture Frame128 + send

...

Capture Frame129 + send
Capture Frame130 + send

Capture Frame136 + send

...

Capture Frame137 + send
Capture Frame138 + send

Capture Frame144 + send

...

Capture Frame145 + send
Capture Frame146 + send

Capture Frame152 + send

...

Capture Frame153 + send
Capture Frame154 + send

Rcv Frame121
Rcv Frame122

Rcv Frame128

...

Rcv Frame129
Rcv Frame130

Rcv Frame136

...

Rcv Frame137
Rcv Frame138

Rcv Frame144

...

Rcv Frame145
Rcv Frame46

Rcv Frame152

...

Rcv Frame153
Rcv Frame154

Capture Frame160 + send

...
Rcv Frame160

...

Wait

Wait

Wait

send Bitstreams of

GOP 6

send Bitstreams of

GOP 7

send Bitstreams of

GOP 8

send Bitstreams of

GOP 9

send Bitstreams of

GOP 10

Wait

Wait

Wait

Send IPC to core2

Encode

frame81

Encode

frame82

Encode

frame83

Encode

frame84

Encode

frame85

Encode

frame86

Encode

frame87

Encode

frame88

Encode

frame89

Encode

frame90

Encode

frame91

Encode

frame92

Encode

frame93

Encode

frame94

Encode

frame95

Encode

frame96

Encode

frame97

Encode

frame98

Encode

frame99

Encode

frame100

Encode

frame101

Encode

frame102

Encode

frame103

Encode

frame104

Encode

frame105

Encode

frame106

Encode

frame107

Encode

frame108

Encode

frame109

Encode

frame110

Encode

frame111

Encode

frame112

Encode

frame113

Encode

frame114

Encode

frame115

Encode

frame116

Encode

frame117

Encode

frame118

Encode

frame119

Encode

frame120

Encode

frame121

Encode

frame129

Encode

frame137

Encode

frame145

Encode

frame153

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

.

.

. .

.

. .

.

.
.

.

.
.

.

.

send Bitstreams of

GOP 11

send Bitstreams of

GOP 12

send Bitstreams of

GOP 13

send Bitstreams of

GOP 14

send Bitstreams of

GOP 15

Wait

Wait

Wait

Send IPC to core0

Send IPC to core1

Send IPC to core2

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core0

Send IPC to core5

Send IPC to core1

Rcv Bitstreams of

GOP 11

Rcv Bitstreams of

GOP 12

Rcv Bitstreams of

GOP 13

Rcv Bitstreams of

GOP 14

Rcv Bitstreams of

GOP 15

Wait

Wait

Wait

Ping GOP1

Ping GOP2

Ping GOP3

Ping GOP4

Ping GOP5

Pong GOP6

Pong GOP7

Pong GOP8

Pong GOP9

Pong GOP10

Ping GOP11

Ping GOP12

Ping GOP13

Ping GOP14

Ping GOP15

Pong GOP16

Pong GOP17

Pong GOP18

Pong GOP19

Pong GOP20

Figure 2 –The chronological steps of Enhanced GOP Level Parallelism on the multi-core DSP TMS320C6472

 When finishing reading and sending the first GOP,

thread1 starts reading the second GOP and sends it

to core0 which will save it into the ping buffers of

core2 SRC2[0][i]. The same thing as the first GOP,

when receiving the first frame of the second GOP,

core0 sends an IPC to core2 to notify it that it can

start encoding the first frame of its GOP. This step

is repeated until finishing the reception of 5 GOPs.

So each core starts encoding as soon as the first

frame of its corresponding GOP is received unlike

the classic GOP level implementation where

encoding is started after receiving all the frames of

5 GOPs.

 During encoding the first 5 GOPs by core1 to

core5, thread1 sends the next 5 GOPs to core0

which will save them into the pong buffers

SRC[1][i] for each core(i=0 to GOP size-1).

Because encoding process takes more time than

reading process, communication delays are hidden

and they will not be added to the parallel run-time.

 When a DSP core finishes encoding its ping GOP

and the bit-stream is saved into the ping buffers

Bistream[0][i], it sends an IPC to core0 to notify it

that it can send its bit-stream to PC. After that, this

core starts encoding its pong GOP already received

and saved into the pong buffers SRC[1][i] in its

memory section without any wait. Then, it will save

the bit-stream into the pong buffers Bistream[1][i]

to not overwrite data stored into the ping buffers

Bistream[0][i] which are being transferred by core0

to PC.

 Core0 sends the pings Bistream[0][i] to PC, starting

with the bit-streams of core1 and finishing with the

bit-streams of core5 in order to be saved in a

chronological order. The second thread “thread2”

receives the ping bit-steams and saves them into the

ping buffers Bistream[0][i]. After that, the third

thread “thread3” writes the bit-streams in a file and

at the same time thread1 sends the next 5 GOPs to

core0 which will save them into the ping buffers

SRC[0][i] of each core. With this technique, ping

bit-streams writing, pong SRC frames encoding and

capturing the next 5 ping GOPs are processed in

parallel.

 The work is then reprocessed in a reverse order for

SRC frames and bit-streams through ping pong

buffers.

4.3 Cache coherency

Multi-core processing often involves cache coherency

problem. This is returns to the simultaneous access of two

or more cores with a separate cache memory to the same

location in a shared memory. In general purpose

multiprocessor, programmers don’t have such problem

because it is controlled automatically by a complex

hardware. In our multi-core DSP architecture, designers

have to manage cache memory, since there is no such

automatic controller. In order to deal with cache coherency,

the Chip Support Library (CSL library) [10] from TI

provides two API commands:

 CACHE_wbL2((void *)XmtBuf, bytecount,

CACHE_WAIT) to write back the cached data

from the cache memory to its location in the shared

memory.

 CACHE_invL2((void *)RcvBuf, bytecount,

CACHE_WAIT) to invalidate the cache lines and

force the CPU to read data from its location in the

shared memory.

 In our implementation, after reading the captured frames

from PC, core0 should write back the cached data to their

locations in external memory in order to be used later by

the remaining cores for encoding. In the other side, cores 1

to core5 should invalidate the current frames addresses in

the cache memory before starting encoding in order to

encode the updated data written by core0 and not the old

data existed in their cache memories. Moreover, after

finishing encoding, cores 1 to core5 should write back the

bit-streams from cache memory to external memory and

similarly core0 should invalidate the bit-streams in its cache

memory in order to send the new values to PC.

4.4 Experimental results

Experiments are performed on several video sequences with

different characteristics and resolutions: CIF, SD and HD

on 5 DSP cores running each at 700MHz. The used GOP

size is 8 and the number of encoded frames is 300 for CIF

resolution and 1200 frames for SD and HD resolutions. For

performance evaluation, encoding speed is computed for

mono-core and multi-core implementation using GOP level

parallelism approach on 5 slave DSP cores.

In our tests, data transfer time which consists of frames

capturing, GOP structure transferring to DSP, receiving

them by core0, and loading them to DSP memory is

included in our calculation and added to the encoding time

in order to evaluate our enhancement techniques for hiding

communication overhead.

TABLE I

ENCODING SPEED FOR CIF (352X288) RESOLUTION FOR MONO-CORE AND

MULTI-CORE IMPLEMENTATIONS

CIF

sequence

Encoding speed on

a single core (f/s)

Encoding speed

on 5 DSP core (f/s)
Speedup

Foreman 24.90 121.74 4.89

Akiyo 25.56 123.32 4.82

News 26.03 127.76 4.91

Container 25.68 125.37 4.88

Tb420 23.37 114.12 4.88

Mobile 22.42 109.16 4.87

average 24.66 120.24 4.88

TABLE II

ENCODING SPEED FOR SD (720X480) RESOLUTION FOR MONO-CORE AND

MULTI-CORE IMPLEMENTATIONS

SD sequence

Encoding speed

on a single core

(f/s)

Encoding

speed on 5

DSP core (f/s)

Speedup

Planets 7.24 35.23 4.87

Power of natures 7.19 35.28 4.91

Tortue 7.29 35.51 4.87

Vague 7.13 34.65 4.86

Nature 7.36 36.29 4.93

Bird 7.93 38.34 4.83

average 7.36 35.88 4.88

TABLE III

ENCODING SPEED FOR HD (1280X720) RESOLUTION FOR MONO-CORE AND

MULTI-CORE IMPLEMENTATIONS

HD sequence

Encoding speed

on a single core

(f/s)

Encoding

speed on 5

DSP core (f/s)

Speedup

Planets 2.79 13.72 4.92

Power of natures 2.74 13.27 4.84

Tortue 2.78 13.63 4.90

Vague 2.79 13.52 4.85

Nature 2.81 13.79 4.91

Bird 3.03 14.76 4.87

average 2.82 13.78 4.88

 Table I, II and III show respectively the encoding

speeds and speedups for CIF, SD and HD resolutions for

the H264/AVC encoder on a single core and on a 5 DSP

cores. Experimental results show that mono-core

implementation does not meet the real-time constraint

(30f/s) even for low resolution. Applying our enhanced

multi-core implementation on 5 DSP cores allows us to

overcome the real-time encoding constraint by reaching up

to 120 f/s and 35 f/s in average for CIF and SD resolutions

respectively. For HD resolution, real-time is unfortunately

not achieved but encoding speed is efficiently improved.

Run-time’s gain might reach up to 80%. Regarding rate

distortion, our implementation does not induce any visual

quality degradation or bit-rate increase since data

dependencies are respected.

 Applying multi-core implementation on 5 DSP cores

allows getting an interesting encoding speedup by a factor

of 4.88 in average for the different resolutions. This

speedup factor is very close from the theoretical value

which is 5. This tiny decrease in speedup factor is first due

to inter-communications needed among the master (core0)

and the slaves (core1 to core5) such as write-backs and

cached data invalidations and second to the impossibility of

simultaneous access to SDRAM memory by all DSP cores

to read and write data.

Although the data transfer time is taken into account, this

time does not affect the encoding speed which affirms that

our proposed data transfer scheduling technique completely

hides the communication overhead. In fact, data transfer

times will be only noticed only for the first GOPs as shown

on figure 2 but after that, these transfers are overlapped

with the encoding process. So, when testing an importing

number of frames, the first transfer time will be

insignificant and does not induce a performance penalty

especially if we know that encoding process is more

important than reading or writing processes.

5. CONCLUSION

In this paper, an optimized implementation of H264/AVC

encoder on a multi-core DSP TMS320C6472 was

presented. GOP Level parallelism approach was applied to

accelerate encoding speed. Exploiting a multi-threading

algorithm combined with using a ping pong buffers

technique allows enhancing our GOP multi-core

implementation and efficiently hides communication

overhead. Experimental results for the enhanced GOP level

parallelism on 5 DSP cores running at 700 MHz showed

that real-time was achieved by attaining up to 120 f/s and

35 f/s in average as encoding speeds respectively for CIF

and SD resolutions. Our parallel implementation saved

about 80% of run-time for HD resolution and ensured a

good encoding speedup factor of 4.88 without resulting any

video quality degradation or bit-rate increase. As

perspectives, we will try to achieve a real-time encoding for

HD resolution by implementing our approach on the latest

generation of Texas Instruments DSP (TMS320C6678)

which includes 8 DSP cores each running at 1.25 GHz,

giving a large possibility to meet the real-time constraint.

Also, we will move to the implementation of the new video

standard HEVC-H265 on the same DSP exploiting our

knowledge on multi-core DSP implementation. Finally, it is

important also to notice that our demo architecture based on

a camera board connected to a multi-core DSP board can be

used in a lot of image and video processing applications.

ACKNOWLEDGEMENT

This work is sponsored by the French ministries of Foreign

Affairs and Tunisian ministry for Higher Education and

Scientific Research in the context of Hubert Curien

Partnership (PHC UTIQUE) under the CMCU project

number 12G1108.

REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, "Draft
ITU-T Recommendation and Final Draft international Standard of
Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10
AVC)", JVT-G050, 2003.

[2] Zhibin Xiao, Stephen Le and Bevan Baas,” A Fine-grained Parallel
Implementation of a H.264/AVC Encoder on a 167-processor
Computational Platform,” ACSSC 2011 – Pacific Grove, CA, 2011.

[3] S.Sankaraiah, H.S.Lam, C.Eswaran and Junaidi Abdullah, "GOP
Level Parallelism on H.264 Video Encoder for Multicore
Architecture,” International Conference on Circuits, System and
Simulation IPCSIT vol.7 IACSIT Press, Singapore 2011.

[4] Zhuo Zhao; Ping Liang, "A Highly Efficient Parallel Algorithm for
H.264 Video Encoder," Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on , vol.5, no., pp.V,V, 14-19 May 2006.

[5] António Rodrigues, Nuno Roma, and Leonel Sousa,” p264: Open
Platform for Designing Parallel H.264/AVC Video Encoders on
Multi-Core Systems,” NOSSDAV '10 Proceedings of the 20th
international workshop on Network and operating systems support
for digital audio and video Pages 81-86, Amsterdam, The
Netherlands, 2010.

[6] Shenggang Chen; Shuming Chen; Huitao Gu; Hu Chen; Yaming
Yin; Xiaowen Chen; Shuwei Sun; Sheng Liu; Yaohua Wang,
"Mapping of H.264/AVC Encoder on a Hierarchical Chip Multicore
DSP Platform," High Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference on , vol., no.,
pp.465,470, 1-3 Sept. 2010

[7] TMS320C6472 datasheet, online available:
http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf

[8] TI Network Developer's Kit (NDK) v2.21 User's Guide, online
available: http://www.ti.com/lit/ug/spru523h/spru523h.pdf

[9] Open source computer vision library: http://opencv.org/

TMS320C6472 Chip Support Library API reference Guide, online
available: http://software-
dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.ht
ml

http://www.ti.com/lit/ds/sprs612g/sprs612g.pdf
http://www.ti.com/lit/ug/spru523h/spru523h.pdf
http://opencv.org/
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/csl/CSL_C6472/latest/index_FDS.html

