N
N

N

HAL

open science

Gradient discretization of hybrid-dimensional Darcy flow
in fractured porous media with discontinuous pressures

at matrix-fracture interfaces

Konstantin Brenner, Julian Hennicker, Roland Masson, Pierre Samier

» To cite this version:

Konstantin Brenner, Julian Hennicker, Roland Masson, Pierre Samier.
hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-

fracture interfaces. IMA Journal of Numerical Analysis, 2016, 10.1093/imanum/drw044 .

01192740v2

HAL Id: hal-01192740
https://hal.science/hal-01192740v2
Submitted on 9 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Gradient discretization of


https://hal.science/hal-01192740v2
https://hal.archives-ouvertes.fr

Gradient discretization of hybrid dimensional Darcy flows
in fractured porous media with discontinuous pressures at
the matrix fracture interfaces

K. Brenner*, J. Hennicker*!, R. Masson*, P. Samier'

August 8, 2016

Abstract

We investigate the discretization of Darcy flow through fractured porous media on
general polyhedral meshes. We consider a hybrid dimensional model, invoking a complex
network of planar fractures. The model accounts for matrix-fracture interactions and
fractures acting either as drains or as barriers, i.e. we have to deal with pressure discon-
tinuities at matrix-fracture interfaces. The numerical analysis is performed in the general
framework of gradient discretizations which is extended to the model under consideration.
Two families of schemes namely the Vertex Approximate Gradient scheme (VAG) and the
Hybrid Finite Volume scheme (HFV) are detailed and shown to fit in the gradient scheme
framework, which yields, in particular, convergence. Numerical tests confirm the theo-
retical results. Gradient Discretization; Darcy Flow, Discrete Fracture Networks, Finite
Volume

1 Introduction

This work deals with the discretization of Darcy flows in fractured porous media for which
the fractures are modelized as interfaces of codimension one. In this framework, the d — 1
dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading
to the so called, hybrid dimensional Darcy flow model. We consider the case for which the
pressure can be discontinuous at the matrix fracture interfaces in order to account for fractures
acting either as drains or as barriers as described in [18], [21] and [4]. In this paper, we will
study the family of models described in [21] and [4].

It is also assumed in the following that the pressure is continuous at the fracture intersec-
tions. This corresponds to a ratio between the permeability at the fracture intersection and
the width of the fracture assumed to be large compared with the ratio between the tangential
permeability of each fracture and its length. We refer to [19] for a more general reduced model
taking into account discontinuous pressures at fracture intersections in dimension d = 2.

The discretization of such hybrid dimensional Darcy flow models has been the object of
several works. In [18], [20], [4] a cell-centered Finite Volume scheme using a Two Point Flux
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Approximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic per-
meability fields. Cell-centered Finite Volume schemes using MultiPoint Flux Approximations
(MPFA) have been studied in [28], [26], and [2]. In [21], a Mixed Finite Element (MFE) method
is proposed and a MFE discretization adapted to non-matching fracture and matrix meshes is
studied

in [10]. More recently the Hybrid Finite Volume (HFV) scheme, introduced in [15], has been ex-
tended in [17] for the non matching discretization of two reduced fault models. Also a Mimetic
Finite Difference (MFD) scheme is used in [5] in the matrix domain coupled with a TPFA
scheme in the fracture network. Discretizations of the related reduced model [3] assuming a
continuous pressure at the matrix fracture interfaces have been proposed in [3] using a MFE
method, in [23] using a Control Volume Finite Element method (CVFE), in [7] using the HFV
scheme, and in [7, 6] using an extension of the Vertex Approximate Gradient (VAG) scheme
introduced in [14].

In terms of convergence analysis, the model assuming continuous pressure at the matrix
fracture interfaces [3] is studied in [7] for a general fracture network but the current state of
the art for the discontinuous pressure models is still limited to rather simple geometries. Let us
recall that the family of models introduced in [21] and [4] depends on a quadrature parameter
denoted by & € [%, 1] for the approximate integration in the width of the fractures.

For such models, convergence of MFE discretizations in [21] and non matching MFE dis-
cretizations in [10] for the range £ € (3, 1] has been established in the case of a single fracture
separating the matrix domain into two subdomains. In [4], the case of one fully immersed frac-
ture in dimension d = 2 using a TPFA discretization is analysed for the full range of parameters
£ ez 1]

The main goal of this paper is to study the discretization of such models and provide the first
proof of convergence for a general fracture network in a 3D surrounding matrix domain including
fully, partially and non immersed fractures as well as fracture intersections. Each individual
fracture will be assumed to be planar and our analysis will cover the range of parameters
¢ € (3,1]. The value £ = 1 is excluded in order to allow for a primal variational formulation.
This objective will be achieved by extension to the hybrid dimensional Darcy flow model of
the gradient scheme framework introduced in [14], [12]. The gradient scheme framework allows
to analyze the convergence of both conforming and non conforming discretizations for linear
and nonlinear second order diffusion and parabolic problems. As shown in [12], it accounts
for various schemes such as Finite Element methods, Mixed and Mixed Hybrid Finite Element
methods, some Finite Volume schemes like symmetric MPFA, the VAG schemes [14], and the
HFV schemes [15]. The main advantage of this framework is to provide the convergence proof
for all schemes satisfying some abstract conditions, namely coercivity, consistency and limit
conformity, at the price of a single convergence analysis for a given model.

The second objective of this paper is to prove the coercivity, consistency and limit conformity
properties for two examples of gradient discretizations, namely the extension of the VAG and
HFV schemes defined in [14] and [15] to the family of hybrid dimensional Darcy flow models.
The proof of these properties is as usual based on a key result proved in the appendix and
stating the density of smooth functions subspaces in both the variational space and in the flux
space of the model. The mesh is assumed to be polyhedral with possibly non planar faces for
the VAG scheme and planar faces for the HFV scheme. It is assumed that the fracture network
is conforming to the mesh in the sense that it is defined as a collection of faces of the mesh. Two
versions of the VAG scheme will be studied, the first corresponding to the conforming P; finite
element on a tetrahedral submesh, and the second to a finite volume scheme using lumping
for the source terms as well as for the matrix fracture fluxes. Note that the HFV scheme of
[15] has been generalized in [13] as the family of Hybrid Mimetic Mixed methods which which



encompasses the family of MFD schemes [9]. In this article, we will focus without restriction
on the particular case presented in [15] for the sake of simplicity.

Our third objective is to compare numerically the VAG and HFV discretizations in terms
of accuracy and CPU time on Cartesian, hexahedral and tetrahedral families of meshes. For
that, an original family of analytical solutions is built in the case of four intersecting fractures,
which takes into account heterogeneity and anisotropy of the medium. The HFV scheme uses
cell, face and fracture edge unknowns, while the VAG scheme uses cell, node, and fracture face
unknowns. In both cases, the cell unknowns can be eliminated without any fill-in before solving
the linear system. As a remainder, MPFA schemes use cell and fracture face unknowns as well
as edge unknowns at fracture intersections (see [28], [26], and [2]). Also, except on tetrahedral
and parallepipedic meshes, MPFA schemes are non symmetric and their coercivity is condi-
tioned to the mesh and to the anisotropy of the permeability fields. The VAG scheme has the
advantage, compared with the HF'V or MPFA schemes, to lead to a much sparser discretization
on tetrahedral or triangular prismatic meshes, since the number of nodes is much smaller than
the number of faces or cells for such meshes. Another advantage of the VAG scheme compared
with the HFV scheme is to allow for non planar faces. The numerical experiments show that
the VAG scheme provides a better compromise between accuracy and CPU time as well as a
better robustness with respect to the anisotropy of the medium.

In section 2 we introduce the geometry of the matrix and fracture domains and present
the strong and weak formulations of the model. Section 3 is devoted to the introduction of
the of gradient discretization framework and the derivation of the error estimate. In section 4
we introduce and investigate the families of VAG and HFV discretizations. In section 5, the
VAG and HFV schemes are compared in terms of accuracy and CPU efficiency for Cartesian,
hexahedral and tetrahedral meshes on heterogeneous isotropic and anisotropic media using
a family of analytical solutions with 4 intersecting fractures. Accounting for applications to
multi-phase flow, we present in the appendix a Finite Volume formulation involving conservative
fluxes, which applies for both schemes.

2 Hybrid dimensional Darcy Flow Model in Fractured
Porous Media

2.1 Geometry and Function Spaces

Let € denote an open bounded domain of R%, d = 2,3 assumed to be polyhedral for d = 3 and
polygonal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be
specified, for instance in the naming of the geometrical objects or for the space discretization
in the next section. The adaptations to the case d = 2 are straightforward. Let I = Uier T;
and its interior I' = T\ d' denote the network of fractures I'; C €2, i € I, such that each
I'; is a planar polygonal simply connected open domain included in a plane P; of R%. It is
assumed that the angles of I'; are strictly smaller than 27, and that I'; N fj = for all i # j
. The assumption of planar fractures allows us to deal with conforming discretizations w.r.t.
the fracture network. The other two assumptions are convenient, but not restrictive in practice.

For all ¢ € I, let us set ¥; = OI';, with ny, as unit vector in P;, normal to ¥; and outward
to Fz Further Ei,j = Ez N Zj, j el \ {Z}, Ei,O = 22 N 89, Ei,N = Ez \ (Ujel\{i} Ei,j U Ei,O);

Y= U(i,j)e[x[,i;ﬁj(zi’j \ Ei,O) and EO = Uie] Ei,O' It is assumed that Ei,O = Fz N o0f2.
We will denote by d7(x) the d — 1 dimensional Lebesgue measure on I'. On the fracture
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Figure 1: Example of a 2D domain €2 and 3 intersecting fractures I';,7 = 1,2,3. We define the
fracture plane orientations by a*(i) € x for I';, i € I.

network ', we define the function space L*(T') = {v = (v;)ier,v; € L*(T;),i € I}, endowed
with the norm |[v]|2qy = (3., ”UiH%?(F@-))% and its subspace H'(T') consisting of functions
v = (v;)ier such that v; € HY(T;), i € I with continuous traces at the fracture intersections
¥ij, J € I'\ {i}. The space H'(I') is endowed with the norm [[v||z 1) = (3 ,c; ||vi||§{1(n_))%.
We also define it’s subspace with vanishing traces on Yo, which we denote by Hy, (T').

On O\T, the gradient operator from H*(Q\T') to L?(Q)? is denoted by V. On the fracture
network I', the tangential gradient, acting from H(T") to L*(I")?71, is denoted by V., and such
that

Vv = (Vyvi)ier,

where, for each i € I, the tangential gradient V., is defined from H'(T;) to L?(I;)4~! by fixing
a reference Cartesian coordinate system of the plane P; containing I';. We also denote by div,
the divergence operator from H j; (I';) to L*(T;).

We define the two unit normal vectors n,=(; at each planar fracture I';, such that ng,+ @) +
n,- = 0 (cf. figure 1). We define the set of indices x = {a™(i),a (i) | ¢ € I}, such that
#x = 2#1. For ease of notation, we use the convention I'q+ ) = [q+5) = I'y.

Then, for a = a®(i) € x, we can define the trace operator on I':

Yo : HY(Q\T) — L*(T,),
and the normal trace operator on I', outward to the side a:
Yt Hyjy (Q\T) = D'(Ty),

that satisfy 7.(h) = Ya(hl,,) and Yna(P) = Ma(Pl.,), where w, = {x € Q| (x —y) - n, <
0, Vy € T';}. Subsequently, the (one sided) jump operator on I,

[1*: H'(Q\T) x H'(T') — L*(Ty)
is defined by [(Am, hf)]* = Yahm — hy.

We now define the hybrid dimensional function spaces that will be used as variational spaces
for the Darcy flow model in the next subsection, namely

V= H'(Q\T) x H(T)

and its subspace B
V= Hjo(Q\T) x Hy, (),



where (with va0: HY(Q\T') — L%(92) denoting the trace operator on 952)
H}o(Q\T) = {ve HY(OQ\T) | vaqu = 0 on 90},

as well as

W =Wy, x Wy,
where

Wi = {am € Hyjy(Q\T) | 1maQm € L*(Ty) for all o € x} and
Wy ={ay = (qy:)ier | i € Hyjy (Ts) for all i € 1

and ) / (VTv i VA divan,z) dr(x) =0 for all v € Hy, (T')}.
Ty

icl

On V', we define the positive semidefinite, symmetric bilinear form

(g, 45 )s (Vs 0f) )y = / Vit - VUdx + / Vg - Vovpdr(x) + Z/ [u]®[v]*dr(x),
Q r aex /Ta

for u = (um,ur),v = (v, vy) € V. Note that (-,-)y is a scalar product on V? with induced
norm denoted by | - [|yo in the following. We define for all (p,,, Pf), (dm,dys) € W the scalar
product

(Pos 1) (s ) )y = / PrGmdX + / divpy, - divgmdx
Q [9]
+/pqudT(X)+/diVTpf‘diVqudT(X)
T T

+) / (Tn.aPm * Ynalm)d7(x),
acx «
which induces the norm ||(gm, qs)||w, and where we have used the notation div,p; = div,,py;

on T; for all ¢ € I and py = (py.i)ier € Wy.

Using similar arguments as in the proof of [22], example 11.3.4, one can prove the following
Poincaré type inequality.

Proposition 2.1 The norm || - ||yo satisfies the following inequality

[vmll g + logllaey < Cell(ms vy)l[vo,
for all (vy,,v;) € VO.

The convergence analysis presented in section 4 requires some results on the density of
smooth subspaces of V' and W, which we state below.

Definition 2.1 1. CF is defined as the subspace of functions in C°(Q\ T) vanishing on a
neighbourhood of the boundary 02, where C°(Q\T) C C®(Q\T) is the set of functions
@, such that for all x € Q) there exists r > 0, such that for all connected components w of
{x+yeR| |yl <r}N(Q\T) one has ¢ € C®(W).

2. O = 4r(C5e(Q)) is defined as the image of C3°(Q) of the trace operator yr: HJ () —
LA(T).



3. C = CR(\T)".

— -1
4- Oy, = H{ay = (pa)ier | ara € C=(I%)

0onX;n, i€l}.

) Zie[qf:i c Dy, = 0 on Z? qr: - Ny, =

The proofs of the two following propositions can be found in the appendix.

Proposition 2.2 CF x O is dense in V.

Proposition 2.3 Cy;  x Cyy is dense in W.

2.2 Darcy Flow Model

In the matrix domain Q\T, let us denote by A,, € L(€2)*** the permeability tensor such that
there exist \,, > A, > 0 with

A€ < (Am(X)¢,€) < XulC[? for all ¢ €RY, x € 9,

(d—1)x(d—1

Analogously, in the fracture network I', we denote by Ay € L>(T") ) the tangential

permeability tensor, and assume that there exist Xf > A¢ > 0, such that holds
AP < (Ap(x)¢,€) < Agl¢)? for all ¢ € R x T

At the  fracture  network T, we  introduce  the  orthonormal  system
(T1(x), T2(x),n(x)), defined a.e. on I'. Inside the fractures, the normal direction is assumed
to be a permeability principal direction. The normal permeability As,, € L>(T') is such that
Apn < Apn(x) < App for ae. x € T with 0 < A, < Ay, We also denote by dy € L(T) the
width of the fractures assumed to be such that there exist Ef > d; > 0 with, for a.e. x €T,

Let us define the weighted Lebesgue d — 1 dimensional measure on I' by d7¢(x) = ds(x)d7(x).

We consider the source terms h,, € L*(Q) (resp. hy € L*(T')) in the matrix domain Q\ T (resp.
in the fracture network I'). The half normal transmissibility in the fracture network is denoted

2X fn
by Tf = dj;’ .

2.2.1 Strong formulation

Given ¢ € (3,1], the PDEs model writes: find u = (up,, us) € V°, q = (qm, qy) € W such that:

div(qm) = B on O\ T,
An = _Amvum on ) \ F,
Tn,at(@)Am = %(5[[@6]]06:&(1) + (1 — §)ﬂu]]‘ﬁ(z)) on Fi; 1€ ], (21)
diV‘f‘i<qf) — Tn,at(i)Am — Tn,a—(1)Am = dfhf onl;,iel
qs = —ds AfVi uy on .

The boundary conditions of the model are contained in the definitions of the function spaces
VO W, which are stated in Subsection 2.1.



2.2.2 Weak formulation

The hybrid dimensional weak formulation amounts to find u = (uy,, ur) € V° satisfying the
following variational equality for all v = (v,,,v;) € V'

/ A, Vu,, - Vv, dx + /AfVTuf - Vyvpdrs(x)
Q r

+ZEZI /Fl 2§Ti 1 Z (f[[u]]a +(1- 5)[[U]]6> [o]*dr(x) (2.2)

(a,B8)€{(a*(i),aT (i)}
—/hmvmdx—/hfvdef(x) = 0.
Q r

The following proposition states the well posedness of the variational formulation (2.2).

Proposition 2.4 For all¢ € (3, 1], the variational problem (2.2) has a unique solution (um,,us) €
VO which satisfies the a priori estimate

It ug)llvo < C (2@ + Igllzzr) ).

with C' depending only on &, Cp, A, Ay, d;, dys, and A Inaddition (qm, dy) = — (A Vi, dgAfViuyg)
belongs to W.

Proof Using that for all £ € (1,1] and for all (a,b) € R? one has

@+ < (Cat (L= Eb)a+ (€ + (1 - a)b < s—(a® + 1),

~ 261

the Lax-Milgram Theorem applies, which ensures the statement of the proposition.

3 Gradient Discretization of the Hybrid Dimensional Model

3.1 Gradient Scheme Framework

A gradient discretization D of hybrid dimensional Darcy flow models is defined by a vector space
of degrees of freedom Xp = Xp,, x Xp,, its subspace satisfying ad hoc homogeneous boundary
conditions X3 = X3, x X3 , and the following gradient and reconstruction operators:

e Gradient operator on the matrix domain: Vp : Xp, — L*(Q)*

e Gradient operator on the fracture network: Vp : Xp, — L*(I)*

e A function reconstruction operator on the matrix domain:
Iy Xp,, — L3(92)

A function reconstruction operator on the fracture network:
Iy, : Xp, — L*(T)

Reconstruction operators of the jump on I', for o € x:
[-1% : Xp — L3(Ty,).



The space Xp is endowed with the seminorm

1

P 2
|@o,sv0)ll> = (¥, 00, 32y + V0,00, 3aqeyas + D Monld M3y )

acx

which is assumed to define a norm on X3

Discretizing (2.2) in the sense of gradient discretizations yields: find up = (up,,,up,) € X3,
such that

T
/QAmv'Dmqu . vaUDde+ /FAvaquf . VDfU’Ddef(X) + ;/Fl 25 i 1

> (€lul + (1 = ©)Lusl ) [oolpdr(x) (3.1

(a,B)E{(a*(i),aT (i)}
— [ hypllp vp,dx — / hsllp vp,d7p(x) = 0,
Q r !

for all vp = (vp,,,vp,) € X3P,

Of course the above definition of a gradient discretization is at this stage very general.
Some stability and consistency conditions must be imposed in order to expect a well posed and
convergent discretization. Since the gradient scheme framework accounts for non conforming
discretizations (in the sense that Vp, # VIlp oror Vi # V. 1, or [[]p # [l 115 ]9), a
third condition must be assumed, which roughly speaking states that integration by part w.r.t.
the discrete operators provides a residual “close” to zero.

Coercivity: Let

Hp,, v, [ 22(0) + [IHp, vp, [l 22(r)

Cp = max

A sequence (D');en of gradient discretizations is said to be coercive, if there exists Cp > 0 such
that Cpt < Cp for all [ € N.

Consistency: For u = (um,us) € V? and vp = (vp,,,vp,) € X3 let us define
S(UD,U) = ||vaUDm — VumHLQ(Q)d + HvaUDf — VTUfHLQ(F)d—l
+ [y, v, = umllz2@) + [p,vp, — ugllr2m) + 2aey lvnlp — [ul®llzzra)

and Sp(u) = min,,cxo s(vp,u). A sequence (DY)en of gradient discretizations is said to be
consistent, if for all u = (u,,uy) € V? holds

lim Spi(u) = 0.

l—0o0

Limit Conformity: For all q = (q,qy) € W, vp = (vp,,, vp,) we define

w(vp, q) = / <mevz>m “Qm + (HDmUDm)ddim) dx
9)

+ /(vava “qy + (HDfUDf)diVqu> dT(X)

r
_ Yot ([0p]5 + g, v, ) dr ()
acx Ta



and Wp(q) = maxXg,y,exo HvDIID lw(vp,q)]. A sequence (D')en of gradient discretizations is

said to be limit conforming, if for all q = (q,,,qf) € W holds

lim Wpi(q) = 0.
l—o0
As will be seen in the two examples of gradient schemes in the next section, the practical
definition of the operators Il and HDf satisfying the above assumptions is very flexible. This
flexibility can be exploited in order to adapt the discretization to heterogeneities when coupling
the Darcy flow model with a transport equation (see [16] for details). On the other hand, the
choice of the operators [-]$ is more constrained by the limit conformity property.
The limit conformity property is enhanced by the following proposition which roughly speak-
ing states that, the limit(s) of bounded sequences in XD,, [ € N, belong to V9.
Proposition 3.1 (Regularity at the Limit) Let (D')ien be a coercive and limit conforming
sequence of gradient discretizations and let vy = (vpgn, UD}>l€N be a uniformly bounded sequence

in X2,. Then, there exist v = (v, v5) € VO and a subsequence still denoted by (vpi)ien such

that
(1l vpy, — v in L*(Q),

Vo vpt = Vu,, in L*(Q)4,
HD§Ule — vy in LA(T),
Vo Upl, = V.up in LA(T)41,
s
\ [[vpz]]pl — [v]®  in LA(Ty), for all a € .

Proof By definition of the norm of X%l and by coercivity, I, vpe , 1L, Upt,, Vop, Upt VDf Upt
m m f TVL

and ([up]%.), a € x, are uniformly bounded in L? (for | — o0). Therefore there exist
v € L2(Q), vy € L*T), G € L*(Q)¢, H € L*T)*! and J, € L*(I',), a € X, and a
subsequence still denoted by (vp: , U, )ien such that

Oy vpy, = v in L*(Q),

VDm,U'DLl -G in LQ(Q)d,

HD#)D; —wv; in L*(D),

Vp,vp, = H in LA(I)41L,

[op]s — Jo  in L*(T,), for a € x.

Using limit conformity we obtain (by letting [ — o)

/(G'qm +Umdivqm)dx—i—/(H qs + vpdiv,qy)dr(x Z/ Yn,alm(Ja +vp)dT(x) =
Q

aEx

for all (g, qy) € O, % C’{,’Vof. The statement of the proposition follows now from Lemma A.1.

Corollary 3.1 Let (D')ien be a sequence of gradient discretizations, assumed to be limit con-

forming against regular test functions (qm,qs) € Cjp, X Chy, and let (vpt Upi )ien be a uni-
formly bounded sequence in X%l,

(for | — o0 ). Then holds the conclusion of Proposition 3.1.

such that HDZ Upl and I, Ule are umformly bounded in L?



3.2 Application to (2.2)

We now want to exploit the previous results for the non conforming discrete variational formu-
lation of the model problem, (3.1).

Proposition 3.2 Let £ € (3,1] and D be a gradient discretization, then (3.1) has a unique

solution (up,,,up,) € X} satisfying the a priori estimate

|, up )l < € (Wl 2y + sl )
with C depending only on &, Cp, A, A, dy, Ef, and A,
Proof The Lax-Milgram Theorem applies, which ensures this result.
The main theoretical result for gradient schemes is stated by the following proposition:

Proposition 3.3 (Error Estimate) Let u = (uy,,ur) € V°, q = (qm,qy) € W be the solution

of (21). Let & € (3,1], D be a gradient discretization and up = (up,,,up,) € X be the

solution of (3.1). Then, there exists Cy > 0 depending only on &, Cp, A, Af,xm, Xf, dy, Ef,
Afps and Xfyn such that one has the following error estimate:

Ty, up,, = tmll 2@ + ITp,up, — usllzay + Y Iun]d — [u]*] 2.
acx
+\|Vum — VDmquHL2(Q)d + ||VTUf — vaquHLz(p)dfl S C’O(Sp(um,uf) + Wp(qm, qf)).

Proof From the definition of Wp, and using the definitions (2.1) of the solution u, q and (3.1)
of the discrete solution up, it holds for all (vp,,,vp,) € X9

H(UDm, UDf)HD : W’D(qma Qf)

/(VD vp,. - qm+(npmvpm)hm)dx+/(vpfvpf as + (I, va)dfhf)dT( )
-3 J %t p> (5([[;4]& O]’ [enlipdr (x)
— ‘/ ANy, vp,, - (Vp up,, — Vum)>dx—|— /F<AfVvaDf . (VDquf - VTuf)>de(x)

- Z / Tf Z (5 [ul® + (1 = &)[u]” — €[un]p — (1 - f)[[uza]]%) [op]$dr(x)

(o, )e{(aE(3),aTF (i)}

(3.2)

For the following calculations, to shorten the notation, we introduce the continuous and coercive
bilinear form

CLD7,E(UD,’LUD) = /QAmVDvam . VDm’LUDde -+ /I_‘Avavaf . VmeDf)de(X)
> (€luels + (1 =)ol [eoldr(x)

(a.B)e{(a®(i),aF (i)}

10



for all vp,wp € X3. Let us choose wp = (wp,,, wp,) € X3, s.t. s(wp,u) = Sp(u). Using
inequality (3.2), we derive

lap,e(vp, up — wp)| < ||[(vp,,, vp,) D - Wp(Qm, qy) + cst - Sp(tm, uy)).

Let us choose now (vp,,,vp f) = up — wp. Then follows, from the coercivity of ap, and by
applying the definition of Sp(u,,, us) on the left hand side of the inequality, that holds

IVtum = Vo, up, [l 2(@ye + IVrty = Vi up, l2@yer + Y unld — [u] [l z2ra)

acx

S C- (SD(umuuf) + WD(Qm7Qf))7

with a constant C' > 0 depending only on &, A, Af,xm, Xf, dy, Zlf, Afp, and van. Taking into
account the definition of the coercivity constant Cp leads to the statement of the proposition.

4 Two Examples of Gradient Schemes

Following [14], we consider generalised polyhedral meshes of Q. Let M be the set of cells
that are disjoint open subsets of ) such that UKeMF = Q. For all K € M, xg denotes the
so-called “center” of the cell K under the assumption that K is star-shaped with respect to
xr. Let F denote the set of faces of the mesh. The faces are not assumed to be planar for the
VAG discretization, hence the term “generalised polyhedral cells”, but they need to be planar
for the HFV discretization. We denote by V the set of vertices of the mesh. Let Vg, Fgk, V,
respectively denote the set of the vertices of K € M, faces of K, and vertices of 0 € F. For
any face o € Fy, we have V, C V. Let M, (resp. Fs) denote the set of the cells (resp. faces)
sharing the vertex s € V. The set of edges of the mesh is denoted by £ and &, denotes the set
of edges of the face o € F. Let F. denote the set of faces sharing the edge e € £, and M,
denote the set of cells sharing the face ¢ € F. We denote by F.,; the subset of faces 0 € F
such that M, has only one element, and we set oot = U ez, &6y and Vewr = U,z Voo The
mesh is assumed to be conforming in the sense that for all o € F \ F.u, the set M, contains
exactly two cells. It is assumed that for each face o € F, there exists a so-called “center” of

the face x, such that
Xs = Z Ba,s Xs, with Z 50,5 = 17

SEVs SEVo

where 3,5 > 0 for all s € V,. The face o is assumed to match with the union of the triangles
T, . defined by the face center x, and each of its edge e € &,.

The mesh is assumed to be conforming w.r.t. the fracture network I' in the sense that there
exist subsets Jr,, ¢ € I of F such that

We will denote by Fr the set of fracture faces |J;.; Fr,. Similarly, we will denote by &r the set
of fracture edges (J, ¢z €, and by Vr the set of fracture vertices | J, ¢z, Vo-

We also define a submesh 7 of tetrahedra, where each tetrahedron D, . is the convex hull
of the cell center xx of K, the face center x, of 0 € Fi and the edge e € &£,. Similarly we
define a triangulation A of I'; such that we have:

T = U {DK,U,e} and A= U {Ta,e}'

KeF,0eFk,e€€s oc€Fr,e€Es
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We introduce for D € T the diameter hp of D and set h = maxpe7 hp. The regularity of our

polyhedral mesh will be measured by the shape regularity of the tetrahedral submesh defined

by 07 = maxper Z—g where pp is the insphere diameter of D € T.

The set of matrix x fracture degrees of freedom is denoted by dofp, % dofp . The real
vector spaces Xp,  and Xp ; of discrete unknowns in the matrix and in the fracture network
respectively are then defined by

Xp,, =span{e, | v € dofp_}
XDf = Span{ey | Ve dOfo},

where

o — (Ovp) pedofp,. for v € dofp,,
v (5yu)uedaf1)f for v € dofp,.

For up,, € Xp,, and v € dofp_ we denote by u, the vth component of up, and likewise for
up, € Xp, and v € dof p ;- We also introduce the product of these vector spaces

XD = XDm X X’Df,

for which we have dim Xp = #dofp + #dofp ;- To account for zero boundary conditions
on 9§ and ¥y we introduce the subsets dof ;. C dofp, , and dof p;.. C dofp,, and we set

dOfDir = dOfDirm X dOfDirfv and

X3 ={u€ Xp|u, =0 for all v € dof p;, }.

4.1 Vertex Approximate Gradient Discretization

In this subsection, the VAG discretization introduced in [14] for diffusive problems on hetero-
geneous anisotropic media is extended to the hybrid dimensional model. We consider the P,
finite element construction as well as a finite volume version using lumping both for the source
terms and the matrix fracture fluxes.

We first establish an equivalence relation on each M,, s € V, by

K=pm,L <= thereexists n € N and a sequence (0;);=1,_, in Fs\Fr,
such that K € M,,,L € M, and M,,,, N M,, #0

fori=1,....,n—1.

Let_us then denote by M, the set of a&classes of equivalence of M, and by K, the element
of M, containing K € M. Obviously M, might have more than one element only if s € Vr.
Then we define (cf. Figure 2)
dof p, = MU{K, |0 € Fr K € M, } U{R, | s € VK, € M.},
dOfo = fr U Vr,
dOfDirm = {?s } ERS Vemty?s < ms},
dOfDi’/‘f = VF N Vext-



We thus have
Xp,, = {urc | K e My U {ux, |0 € Fr, K € M, |
U{ug, | s€ VK, e M.}, (4.1)
pr:{ua‘aefp}u{us|sevp}.
Now we can introduce the piecewise affin reconstruction operators
IIr: Xp,, — H'(Q\T) and Ia: Xp, — HY(T),

which act linearly on Xp_  and Xp . and are such that II7up,, is affine on each Dk ,. € 7 and
satisfies on each cell K € M

rup,, (XK) = Uk,

Hrup,, (xs) = ug, Vs € Vk,

Mrup,, (X,) = ug, Vo € Fx N Fr,

HTqu (XJ) = Z BU,SU?S Yo € ]:K\]:F,
SEV,

while ITaup, is affine on each 7T, . € A and satisfies for all v € dofp ;
HAqu (XI/) = ul/’

where x, € Q is the grid point associated with the degree of freedom v € dofp U dofo.
The discrete gradients on Xp, and Xp, are subsequently defined by

va = VHT and va = VTHA. (42)

The so defined reconstruction operators and discrete gradients correspond to the V° conforming
P, Finite Element reconstructions on a tetrahedral submesh using barycentric interpolation to
eliminate the d.o.f. at faces o € Fi\Fr.

Figure 2: Left: Illustration of d.o.f. in 2D for four cells intersected by three fractures (thick
lines).

Right: 3D cell K touching a fracture face o. Illustration of the simplices on which Vp is
constant (red) and Vp_is constant (grey).

We define VAG-FE scheme’s reconstruction operators by
o Il =Ilr,
. HDf = Ila, (4.3)
o [[|5="ully —TIn forall o € yx.
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For the family of VAG-CV schemes, reconstruction operators are piecewise constant. For
K € Mletdofx = {K,,s € Vg }U{K,,0 € FxNFr}. Analogously, in the fracture domain, for
o € Fr let dof, = V,. We introduce, for any given K € M, a partition {w }ve{x}udofi\dofmin
of K. Similarly, we define for any given o € Fr a partition {w}},c(o1udof, \dofp, ©f 0. For

each v € dofp , we define the open set w, = int (UKGM wg), with the convention w = (),

if v € dofy. For each v € dofo, we define the open set w, = int (Ugefw;>, where w?” = (),
if v & dof,. We thus obtain the partitions {wV}VEdOfDm\dOfDirm of 0 and {wy}yedofpf\dofmw
of I'. We also introduce for each T' = T, ; o+ € A a partition {7;};—1 3 of T, which we need
for the definition of the VAG-CV matrix-fracture interaction operators. We assume that holds
IT1| = |Tz| = |Ts| = 5|T| in order to preserve the first order accuracy of the scheme. The
VAG-CV discretization is particularly adapted for the treatment of multiphase flow processes
through heterogeneous media (cf. [16]). Provided the mesh is comforming w.r.t. the heteroge-
neous layers, we can assume that key geological quantities are constant per cell and per fracture
face. Therefore, in the numerical scheme, we do not need to reconstruct the just introduced
partitions explicitly, but only have to define their corresponding volumes. Finally, we need a
mapping between the degrees of freedom of the matrix domain, which are situated on one side
of the fracture network, and the set of indices x. For K, € dofp  we have the one-element set
X(K,) ={a € x| (xk —X,) -n, < 0} and therefore the notation a(K,) = a € x(K,).

The VAG-CV scheme’s reconstruction operators are

[ ] HDmqu == Z uulwya
vedof p,, \dof pir,,
[} HDfUDf = Z U,Vlwy, (44)
VEdOf‘Df\dofDirf

L] IIUD]]% = Z Z ((uKU - ug)lTl + (um - us)1T2 + (Ufsl - us/)lTS)(sa(KU)alpa.
T, €A KeMs

0,5,

Remark 4.1 The VAG-CV scheme leads us to recover fluxes for the matriz-fracture inter-
actions involving degrees of freedom located at the same physical point (see appendiz section

B).

Proposition 4.1 Let us consider a sequence of meshes (M%) en and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape regular, i.e. O is uniformly bounded. We
also assume that lim;_,o, hn = 0. Then, the corresponding sequence of gradient discretizations
(DY)ien, defined by (4.1), (4.2), (4.3), is coercive, consistent and limit conforming.

Proof The VAG-FE scheme’s reconstruction operators are conforming in the sense that Vi, =
Vlp, , Vp, = V- Ilp [-1% # [Mp, HDf]]O‘. Therefore we deduce coercivity from Proposition
2.1. Furthermore, we have by partial integration Wp(q,,qs) = 0 for all (q.,,qr) € W. Hence
(DY)jen is limit conforming.

To prove consistency, we need the following prerequisites. We define the linear mapping
Pp,,: C& — X3 such that for all ¢, € C and any v € dofp,, holds (Pp, ¥m)y = Um(Xy).
Likewise, we define the linear mapping Pp,: Cf° — X%f such that for all ¢y € CF° holds
(Pp,¥5)y = ¥5(x,) for allv € dofp,. It follows from the classical Finite Element approximation
theory and from the fact that the interpolation ) B, (Pp,,¥m)%, at the point x,, o € Fx \ Fr

SEV,
is exact on cellwise affine functions, that for all (¢,,¢) € CF x C holds
|17 Pp,, 0w — Yl grom) + HaPp,bp — Ul may < Cbm, ¥y, 07) by (4.5)

14



The trace inequality implies that for all v € H}o(Q\T') holds
ey < COD) ol sy Tor € x
We can then calculate for (u,,,us) € CF x C2:

Sp(tm,uy) < ﬁ"HTPDmUm - umHHl(Q\f) + Z Ve (17 Pp,, i — )| 2(r.)

acyx

+ Z \/§”HAPDfo — uf”Hl(l"i) S C(Q\F, (um, Uf), 97*) hT'

i€l

Since C& x Cf° is dense in VO, the sequence of VAG-FE discretisations (D!, );en is consistent
it h+ — 0 and 671 is bounded for [ — oo.

Proposition 4.2 Let us consider a sequence of meshes (M%) en and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape regular, i.e. O is uniformly bounded. We
also assume that lim;_,o hon = 0. Then, any corresponding sequence of gradient discretizations
(DY) ien, defined by (4.1), (4.2), (4.4), is coercive, consistent and limit conforming.

Proof For this proof, let us denote by (D');en the sequence of VAG-CV gradient discretisations
and by (5l)leN = (Xpr, Hﬁ ,Hﬁl , [H]%z, Vi s Vi ien the corresponding sequence of VAG-FE
m f m f

gradient discretisations. It can be verified that [8], Lemma 3.4 applies to our case, both, in the
matrix domain, where face unknowns might occur, as well as in the fracture network, a domain
of codimension 1. This means that we can state that there exist constants C,,,(67), C¢(67) > 0,
such that

T, up, —Tlp, up, |2y < CrhalVp, up, || 2yt (4.7
Coercivity: It is easy to check that

I[unlSl c2wa) < V3ILunlPl 2.,

and therefore ||up|lz < Cllupl|p, for a C > 0. Coercivity for (7_31)16N can then be deduced from
coercivity for (D!);en via the inequality

Mp, up,, || 2(@) + [Hp up, |20y < U up,[l220) + U5, up [l 22y

+ (HvaquHLQ(Q)d + HvaquHLZ(r)d—l) - O(ht),
where we have used (4.6) and (4.7).
Consistency: Classically, for all (¢, ) € C&° x Cp°, we have the estimate

Hp,, Pp,m — Pmllrz@) + p, Ppyor — @1l 2w
+ ) I(Pp,.om: Po, oD — [(oms )12 < cst(m, 1) - b,

acx

while (4.5) grants that holds
IV, Ppnem — Vel + Vo, Poyor — Vollry < cstlom, ¢r, 01)hr.

15



Taking into account that C§ x C7° is dense in V, we see that the treated discretisation is
consistent with Sp(¢m, @) = O(hy) for (pm,¢r) € CF x C.

Limit Conformity: For all T'€ A and for all up = (up,,, up,) € Xp,, we have

[ (ol - sl )ar) o

Introducing the linear operator P : L*(T,) — L*(T,) such that P(p) = ﬁ Jpedr(x) on T for
all T'€ A, we first calculate for any q,, € Cyy

’|7n,aqm - P(’Vn,aqm)||2L2(Fa) = Z ( Z ||’Vn,aqm - P(/yn,aqm)H%?(T)) < C(Qmu 97) ’ h%‘
0€Fa TeAst. TCo

For the discrete part, we are able to derive (taking into account [8], Lemma 3.4)

1Tunl — I3 3y < Cha (19, up, 22 g0 + V0, um, 2apyet )

with a constant C' depending only on 6. We can thus proceed

| / Yo on ([]S — [up])dr (x)] = | / (o — P(ma)) ([l — [up]3)dr ()

< |‘7n,aqm - P(7n,aqm)|’L2(Fa)|H[uD]]% - IIUD]]%”LQ(FQ)

1
2

3
< C(qrm9T>h72’<||vaqu||i2(Q)d + HVDfU'DinQ(F)d—l) .

for all q,, € Cf . Taking into account (4.5), (4.7) and the conformity of D, we can now
conclude by calculating for all g = (qm, qy) € Cp X Cw,

lwp(up, q)| = |(wp — wp)(up, q)| = ‘ /QdiVQm(HDm — 5 Jup,dx+ /FdiVTQf(HDf — I, Jup,dr(x)

30 [ et (Dol — [ul3) + (g, ~ 1, Y, )7 (o)

acyx

< |, up,, = p, up,,[lz20) - |divam|l 2 (@) + [T, up; — T up, [y - 1diveay] 2y

+ 30 (I, um, = T, a2 ol + | [ maton(Tuols = Lol
aex @

< C(0r,q) - hr - ||upl|p.

Taking into account the density of Cfp X C’a/of in W, the proof is complete.

Remark 4.2 The proofs of Propositions 4.1 and 4.2 show that for solutions (um,,us) € V° and
(am,ay) € W of (2.1) such that u,, € C*K), uy € C*7), qm € (CHK))?, q; € (C}(7))¢?
for all K € M and all 0 € I'y, the VAG schemes are consistent and limit conforming of order
1, and therefore convergent of order 1.

4.2 Hybrid Finite Volume Discretization

In this subsection, the HFV scheme introduced in [15] is extended to the hybrid dimensional
Darcy flow model. We assume here that the faces are planar and that x, is the barycenter of
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o for all o € F.

The set of degrees of freedom dofp, X dofp, (cf. Figure 3) is defined by

dof p,, = MU (|J M)

oeF
dOfo = JT"F U (91“,

dOfDirm = Jexts
dOfDirf = gF N gexta

where for o0 € F and K € M,

FUZ{U ifo e F\ Fr

K, if o € Fr

and M, = {K, | K € M,}. We thus have
Xpm:{’LLK|K€M}U{U?U‘OGF,FJGMU},

Xp, :{ug ‘ O’E.FF}U{ue | eec‘fp}. (48)

The discrete gradients in the matrix (respectively in the fracture domain) are piecewise
constant in each 3D (respectively 2D) half diamond as shown at Figure 3. Following [15] we
first define a cellwise constant discrete gradient

1
Vikup,, = — |U|(UK, — UK DK g,
| K|

c€FK

which is exact on affine functions, but does not lead to a definite bilinear form (see [15], p. 8)
and therefore has to be stabilized. Let

Vkoup, = Viup, + Ris(up, )Nk, 0 € Fk,

where ng , is the unit normal vector of the face o € Fi outward to the cell K and

Vid
RK,a (UDm) = dr

<UK, —ug — Viup,, - (Xg — XK)),
with dg» = Nk, - (X, — Xx ). This leads to the definition of the matrix discrete gradient

Vp, up,, (X) = Vi,up,, on Dk, for all K € M,o € F, (4.9)

where Dg , = Ueesg Dk ,. is the cone joining the face o to the cell center xx.
The fracture discrete gradient is defined analogously by

Vp,up,(x) = Vgeup, on Ty, for all o € Fr, e € &, (4.10)
with
Va,equ - VUqu + Ra,e(qu)nU,ea
and
1 d—1
Vaqu = H Z ‘ey(ue - ua>no',ea RG,e(uD> = da‘e (ue — Us — vo'u : (Xe - Xo‘))a
ecés f
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Figure 3: Left: Illustration of d.o.f. in 2D for four cells intersected by a vertical fracture (thick
line).

Right: 3D cell K touching a fracture face ¢. Ilustration of the polyhedron and polygone on
which Vp, is constant (red) and Vp_ is constant (grey).

where n, , is the unit normal vector to the edge e in the tangent plane of the face ¢ and outward
to the face 0, dy,e = 0y - (Xc — X,), and T, is the triangle of base e and vertex x,.

The function reconstruction operators are piecewise constant on a partition of the cells and of
the fracture faces. For K € M let dofx = {K,, o € Fi}. Analogously, in the fracture domain,
for o € Frlet dof, = &,. We introduce, for any given K € M, a partition {w¥ }oexyudofic\dofoin
of K. Similarly, we define for any given o € Fr a partition {w}},co}udof, \dofns,. Of 0. For each

v € dofp , we define the open set w, = int (UKGM GZ’K>, with the convention w% = 0, if

v & dofx. For each v € dofo, we define the open set w, = int (UJGFEZ>, where w? = (), if
v & dof,. We thus obtain the partitions {wy},jedofpm\dofDiTm of Q and {Wu}uedofpf\dofmrf of T.
Like the VAG-CV discretization, the HFV discretization is particularly adapted for the treat-
ment of multiphase flow processes through heterogeneous media (cf. [16]). Provided the mesh
is comform w.r.t. the heterogeneous layers, we can assume that key geological quantities are
constant per cell and per fracture face. Therefore, in the numerical scheme, we do not need to
reconstruct the just introduced partitions explicitly, but only have to define their corresponding
volumes. Finally, we need a mapping between the degrees of freedom of the matrix domain,
which are situated on one side of the fracture network, and the set of indices y. For ¢ € Fr
and K, € M, holds by definition K, = {K} for a K € M, and hence ng = ng, is well

defined. We obtain the one-element set x(K,) = {a € x | ng, = n, on o} and therefore the
notation a(K,) = a € x(K,).

We define the HF'V scheme’s reconstruction operators by

d H’Dmqu = Z uulw,ﬂ
vedofp,. \dof pir,.
[ ] HDquf == Z uVle7 (4'11>
VEdofo\dowaf
o [up]p = Z Z (uge, — ug)éa(ga)alo for all a € .
oeFr fgeﬂg

Proposition 4.3 Let us consider a sequence of meshes (M')en and let us assume that the
sequence (T')en of tetrahedral submeshes is shape reqular, i.e. 011 is uniformly bounded. We
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also assume that lim;_, hw = 0. Then, any corresponding sequence of gradient discretizations
(DY)ien, defined by (4.8), (4.9), (4.10) and definition (4.11), is coercive, consistent and limit
conforming.

Proof Let us first give the proof of the proposition in the special case wgi = w. = (0 for all
K, € er}' M, and e € &. We denoting in that case by Il and IIr the HFV matrix and
fracture function reconstruction operators.

Coercivity: ~ We first prove that limit conformity against regular test functions, as proved
below, implies coercivity.

Assume that the sequence of discretizations (D');cy is not coercive. Then we can find a
sequence ((up; , uD?))leN with (UD%,UD9> € X7, such that

1
HHDgnUDgnHLZ(Q) + HHD?UD?”LQ(F) =1 and H(uDﬁnauDi,)HDl < T

Then, it follows from a compactness result of [11] that there exists a u = (uy,,uy) € L*(Q2) X
L?(T), s.t. up to a subsequence

(Ilpr upy HD;UDQ — (U, uy) in L*(Q) x L*(I") ( for I — o0)

and therefore ||u, | r2() + ||uf|/ 22y = 1. On the other hand it follows from the discretization’s
limit conformity against regular test functions stated in Corollary 3.1 that (u,,us) € V? and
that up to a subsequence

Vop, upt — Vi, in L*(Q)7,
vauD; — VTU’f ln LQ(F)d—I’
[up]® — [v]® in L*(T,), for a € x.
Since by construction ||(UD5,“UD;)||DZ — 0 holds, we obtain ||(wm,us)|lyo = 0. But || - ||yo is a

norm on V?, which contradicts the fact that w2 + |Jug| 2@y = 1.

Consistency:  For (om,pr) € CF x C° let us define the projection Pp, ¢, € X3 such
that (Pp,,¢m)y = ¢m(x,) for all v € dofp,, and the projection Pp,py € X%f such that
(Pp,wy)y = ¢s(x,) for all v € dofp,. It is easily seen that for up = (Pp,, ©m, Pp,¢y) holds
HHMU’Dm - @mHm(Q) + HHFUDf - 80f||L2(r)
1 1
+ > Ilunlp — [ulllzara) < est -y - (0] +|92),

acx

with a constant depending only on ¢. Furthermore, it follows from Lemma 4.3 of [15] that
there exists C' > 0 depending only on 67 and ¢ such that

vamqu - VSOHLQ(Q) + ||VDfUDf - VSDHLQ(F) < Chr

Taking into account that Cg° x O is dense in VO, we see that the treated discretisation is
consistent.

Limit Conformity: In [7], proof of Proposition 10, the limit conformity of HFV scheme is
shown in the case of continuous pressure at the matrix-fracture interfaces. This proof adapts
straightforward to our case, so that we obtain

wp(up,q) < C - hy - |up|p for all q € Cyy | x Oy,
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This result is shown above to imply coercivity. From the coercivity and the density of Cy; X W,
in W, we derive limit conformity on the whole space of test functions.

Generalization to arbitrary HFV discretizations: — Let us notice, that from [15] Lemma 4.1
follows that there are positive constants (), and C; only depending on 67, such that for all
up € Xp holds

ITmup,, — HDmqu||2L2(Q) = Z Z wi” | (uke — “K,)2 < Cpp - - HVDmUDmHiz(Q)d

KeMoeFk
I pun, =T, up, |Fawy = 3 3 w5l = ue)* < Cy - h3 - 1V, o gyoer
ocEFr e€€s

It follows that coercivity, consistency and limit conformity can immediately be shown.

Remark 4.3 The precedent proof shows that for solutions (um,us) € VO and (qm,qs) € W of
(2.1) such that u,, € C*(K), uy € C*(7), am € (CYK))?, q; € (C}(@))* ! for all K € M
and all o € 'y, the HF'V schemes are consistent and limit conforming of order 1, and therefore
convergent of order 1.

5 Numerical Results

The objective of this section is to compare the VAG-FE, VAG-CV, and the HFV schemes in
terms of accuracy and CPU efficiency for both hexahedral and tetrahedral meshes on hetero-
geneous isotropic and anisotropic media. For that purpose an original family of analytical
solutions is built for the fixed value of the parameter £ = 1. We refer to [21], [4], [2] for a
comparison of the solutions obtained with different values of the parameter £ € [3, 1] with the
solution obtained with a 3D representation of the fractures.

Table 1 exhibits for the hexahedral and tetrahedral meshes, as well as for both the VAG
and HFV schemes, the number of degrees of freedom (Nb dof), the number of d.o.f. after
elimination of the cell and Dirichlet unknowns (nb dof el.), and the number of nonzero element
in the linear system after elimination without any fill-in of the cell unknowns (Nb Jac).

The hexahedral meshes used here are divided into two families. The first family consists of
Cartesian meshes and hence satisfies the well known ortogonality property. The second family
of meshes is obtained from the previous one by a perturbation of its nodes. The perturbation is
chosen randomly inside the ball around each node of radius one third the distance to it’s closest
neighbour, of course in respect of the domain’s boundaries. The perturbation of a fracture node
is done in the fracture plane. Note that this leads to hexahedral cells with non planar faces
and therefore the HF'V scheme is no longer consistent on this family of meshes.

In all test cases, the linear system obtained after elimination of the cell unknowns is solved
using GMRes iterative solver with the stopping criteria 1071, The GMRes solver is precondi-
tioned by ILUT [24], [25] using the thresholding parameter 10~* chosen small enough in such a
way that all the linear systems can be solved for both schemes and for all meshes. In tables 2
and 3, we report the number of GMRes iterations Iter and the CPU time taking into account
the elimination of the cell unknowns, the ILUT factorization, the GMRes iterations, and the
computation of the cell values. Regarding the choice of the preconditioner, we also mention that
the resolution of the anisotropic problem with an AMG preconditioner revealed less efficiency
compared to ILUT on tetrahedral meshes (particularly for the HE'V scheme).

We ran the program on a 2,6 GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3

memory.
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5.1 A class of analytical solutions

We consider a 3-dimensional domain Q = (—0.5,0.5)® with four intersecting fractures I';y =
{(z,y,2) € Q| z =0,y >0}, I'yg = {(z,y,2) € Q| y =02 >0}, I'sy = {(z,9,2) € Q|
x =0,y <0} and T'yy = {(z,y,2) € Q| y = 0,z < 0}. We also introduce four disjoint
subsets of Q, Q; = {(z,y,2) € Q |y > 0,z < 0}, Qo = {(z,y,2) € Q | y > 0,z > 0},
Qs ={(z,y,2) € Q|y<0,2>0} and Q = {(z,y,2) € Q| y <0,z < 0}.

Derivation: For (u,,,us) € V, we denote u,(z,y,2) = w;(x,y,z) on Q;,i=1,...,4 and
us(z,y, z) = w;;(y, 2) on I'y;, ij € J, where we have introduced J = {12,23,34,14}. We assume
that a solution of the discontinuous pressure model writes in the fracture network as u;;(y, z) =
ar(z) + Bij(2)7ij(y), ij € J and in the matrix domain as

) Jura(z, 2)
uz(w,y, 2) = az(2)uia(y, 2)uss(w, 2)
ug(x Yy, 2) = as(2) Juzs(z, 2)
U4(l’ Y,z ) ) ) )

We assume ;;(0) = 0,45 € J so that the continuity of u at the fracture-fracture intersection is
satisfied and we set 7;;(0) = 1, to ease the following calculations. Fori = 1,...,4let K; = A, [q,
and for ij € J let T;; = Ty[p, . From the conditions yna@m = T [u]® on Fa, a € x, we then
get, after some effort in computatlon

o Kly )_1 . ( KlyKQxK3yK4a: )_1
a1(z) = (Ozf(Z) %4 im(;) . ) 1 as(z) = (as(z) }I((lw]}((%}(@ng 512(?) ;
- 1y 3yfrdx L 12 N _ lyfhdx 12 N
043(2) B (_[O;f([g' KleK4yT23T34 512<Z>) 7 a4<2) (a;é )K jlgleMT?A ﬁlQ( )> ’

1y A3y fhde 12 lyfrdzL12
Bas(2) = Ry, R Ol), %(2 “ R R )
514(2) _ _ 1yt12 ,812(2), 1y 22 A 3yHde -1
K11T14 leKQyK3xK4y

(5.1)

Obviously, we have taken a; and 512 as degrees of freedom, here. However, these functions

must be chosen in such a way that —— 7& 0fore=1,...,4.

Remark 5.1 We would like to explzcztly calculate the jump at the matriz-fracture interfaces
for this class of solutions. At 1';; we have
ui(07y7 Z) - Uj((),y, Z) = (OéZ(Z) - Oéj(Z)) ’ af(z) ’ uij<ya Z),
0,0, 2) — (2,0, 2) = (04(2) — 0;(2)) - ay(2) - g, 2),

From (5.1), we observe, that the pressure becomes continuous at the matriz-fracture interfaces,
as the T;; tend to oo uniformly.

forij € {12,34}
forij € {23, 14},

Remark 5.2 In order to obtain solutions with discontinuities at the matrix-fracture interfaces,
we had to omit the constraint of flux conservation at fracture-fracture intersections. Numerically
this is treated by adding an additional source term for the corresponding fracture unknowns.

5.2 Test Case

We define a solution by setting a;(z) = 5™ By(z)

Yas(x) = 2, Yau(y) = =™ 4y te, yy(x) = —Si”fr“x)
test cases are

= _17 ’712(y) = COS(QWy) + Yy — 17
. The parameters we used for the different

21



e [sotropic Heterogeneous Permeability:

K, = Ky = Ky, =1, Ky = Ky, = Ky, = 100,
K3, = K3y = K3, = 3, Ky = Ky = Ky, = 40,
T =1, Ths =0.2, T3, = 100, T4 = 10,
Kio=1, Ky3=2, K3y =3, K14 = 10.

e Anisotropic Heterogeneous Permeability:

Ky, =K, =1, Ky, =50, Ky, = Ky, =2, Ky, =100,
Ksy = K3, =3, K3, =30, Ky, =4, Ky = Ky = 40,
Tip =Ty =13 =Tia = 1,

Ky = Kog = K3s = K1y = 1.

In Figures 5.2 we represent the normalized L? norms of the errors, which are calculated as
follows:

HHDm UDy, —Uml 12 (Q) +||H'Df UD,—Uf [l 2 ()

e normalized error of the solution: errg, = TSP s
mllL2(q) L2(T)

HVDT” UDy, —Vum H
(IVum|]

L2<Q>d+HVDquf7v7'ufHL2(F)d71

a+lIVrugll

e normalized error of the gradient: errgy..q =

L2(Q) 2=t

In the following tables is additionally found the normalized error of the jump:

S ex Nunl—Tul* [ 20

T gump = =5 Ml 20
VAG HFV

Key ‘ Nb Cells | Nb dof ‘ Nb dof el. ‘ Nb Jac | Nb dof ‘ Nb dof el. ‘ Nb Jac

Hezahedral Meshes
1 512 1949 1437 31253 2776 2264 20696
2 4096 11701 7605 178845 19248 15152 150320
3 32768 79205 46437 1154861 | 142432 109664 1141856
4 262144 578245 316101 8152653 | 1093824 831680 8892608
5 2097152 | 4408709 2311557 | 60910733 | 8569216 6472064 | 70173056

Tetrahedral Meshes
6 1337 2514 1177 18729 4943 3606 22642
7 10706 15765 5059 81741 35520 24814 164246
8 100782 131204 30422 492158 | 317367 216585 1474817
9 220106 279281 59175 956659 | 685718 465612 3190244
10 428538 533442 104904 1694008 | 1324614 896076 6167300
11 2027449 | 2452416 424967 6818299 | 6193783 | 4166334 | 28862986

Table 1: Key defines the mesh reference; Nb Cells is the number of cells of the mesh; Nb
dof is the number of discrete unknowns; Nb dof el. is the number of discrete unknowns after
elimination of cell unknowns; Nb Jac refers to the number of non-zero Jacobian entries after
elimination of the cell unknowns and equations.
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Figure 4: Comparison of VAG-FE and HFV on Cartesian (upper line), perturbated Cartesian
(mid line) and tetrahedral (lower line) meshes. Left column: heterogeneous permeability. Right
column: heterogeneous and anisotropic permeability.
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Heterogeneous Permeability:

VAG

Key | Iter ‘ CPU | ervgol | erTgrad ‘ ErT jump ‘ gl | Qgrad | jump
Hezahedral Meshes (Cartesian)
1 8 | 1.34E-2 | 5.78E-3 | 1.74E-2 | 8.99E-3 - - -
2 12 0.11 | 1.53E-3 | 4.44E-3 | 2.53E-3 | 1.92 | 1.97 | 1.83
3 22 098 | 3.92E-4 | 1.14E-3 | 6.72E-4 | 1.97 | 1.96 | 1.91
4 41 8.86 | 9.89E-5 | 291E-4 | 1.73E-4 | 1.99 | 1.97 | 1.96
5 79 8791 | 2.48E-5 | 7.40E-5 | 4.40E-5 | 1.99 | 1.98 | 1.98
Hezahedral Meshes (perturbated Cartesian)
1 8 | 1.54E-2 | T.96E-3 | 4.36E-2 | 1.14E-2 - - -
2 12 0.11 | 2.46E-3 | 2.34E-2 | 3.62E-3 | 1.69 | 0.89 | 1.65
3 21 1.09 | 5.99E-4 | 1.12E-2 | 8.92E-4 | 2.04 | 1.05 | 2.02
4 41 10.84 | 1.55E-4 | 5.58E-3 | 2.32E4 | 1.95| 1.01 | 1.94
5 77 | 110.13 | 3.89E-5 | 2.85E-3 | 5.872E-5 | 1.99 | 0.96 | 1.98
Tetrahedral Meshes
6 7 | 5.82E-3 | 2.01E-2 | 0.14 2.25E-2 - - -
7 10 | 3.73E-2 | 5.78E-3 | 7.09E-2 | 7.03E-3 | 1.80 | 0.94 | 1.68
8 20 0.41 | 1.44E-3 | 3.52E-2 | 1.81E-3 | 1.86 | 0.94 | 1.82
9 26 1.00 |8.11E-4 | 2.71E-2 | 1.06E-3 | 2.20 | 1.01 | 2.06
10 32 211 | 5.60E-4 | 2.19E-2 | 7.36E-4 | 1.67 | 0.95 | 1.62
11 53 12.92 | 1.92E4 | 1.31E-2 | 2.58E-4 | 2.07 | 1.00 | 2.03
Heterogeneous Permeability: HFV
Key | Iter | CPU ‘ errsol | erTgrad | erT jump | Qo) | Qgrad ‘ Qjump
Hezahedral Meshes (Cartesian)
1 11 | 1.18E-2 | 1.34E-2 | 4.3E-2 | 2.15E-2 | - - -
2 19 0.13 | 3.49E-3 | 1.24E-2 | 5.44E-3 | 1.94 | 1.80 | 1.98
3 35 1.45 | 8.91E-4 | 341E-3 | 1.38E-3 | 1.97 | 1.86 | 1.98
4 73 20.36 | 2.25E-4 | 9.15E-4 | 3.47E-4 | 1.99 | 1.90 | 1.99
5 141 | 315.38 | 5.65E-5 | 2.42E-4 | 8.69E-5 | 1.99 | 1.92 | 2.00
Hezahedral Meshes (perturbated Cartesian)
1 10 | 1.74E-2 | 1.23E-2 | 7.17E-2 | 2.19E-2 | - - -
2 18 0.15 | 3.40E-3 | 2.97E-2 | 5.74E-3 | 1.86 | 1.27 | 1.93
3 33 1.85 | 8.73E-4 | 1.64E-2 | 1.67TE-3 | 1.96 | 0.85 | 1.77
4 69 22.83 | 2.32E-4 | 9.94E-3 | 5.44E-4 | 1.90 | 0.72 | 1.62
5 128 | 330.77 | 7.48E-5 | 7.12E-3 | 2.36E-4 | 1.63 | 0.48 | 1.19
Tetrahedral Meshes
6 12 | 1.56E-2 | 1.01E-2 | 0.11 1.74E-2 | - - -
7 21 0.22 | 2.74E-3 | 5.87E-2 | 5.24E-3 | 1.88 | 0.96 | 1.73
8 43 3.75 | 6.07TE-4 | 2.75E-2 | 1.17E-3 | 2.02 | 1.02 | 2.00
9 60 10.51 | 3.38E-4 | 2.07E-2 | 6.62E-4 | 2.25 | 1.08 | 2.20
10 73 23.52 | 2.22E-4 | 1.68E-2 | 4.37E-4 | 1.90 | 0.94 | 1.87
11 | 119 | 166.46 | 7.73E-5 | 9.87E-3 | 1.58E-4 | 2.03 | 1.02 | 1.96

Table 2: Isotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errgo, €r7grad, €17 jump are
the respective L2-errors as defined above; oy, Qlgrad, Qjump are the orders of convergence of the
solution, of the gradient and of the jump, respectively.
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Anisotropic Permeability: VAG

Key | Iter | CPU ‘ errsol | erTgrad | erTjump | (go] | grad ‘ jump

Hezxahedral Meshes (Cartesian)
1 7 | 6.32E-3 | 8.78E-3 | 1.98E-2 | 8.69E-3 | - - -
2 9 5.56E-2 | 2.37E-3 | 497E-3 | 2.34E-3 | 1.89 | 1.99 | 1.89
3 14 0.67 | 6.15E-4 | 1.24E-3 | 6.06E-4 | 1.95 | 2.00 | 1.95
4 26 6.35 2.28E-4 | 1.57E-4 | 3.11E-4 | 1.97 | 2.00 | 1.97
5 47 62.65 | 3.95E-5 | 7.78E-5 | 3.89E-5 | 1.99 | 2.00 | 1.99

Hezahedral Meshes (perturbated Cartesian)
1 7 4.92E-3 | 1.40E-2 | 5.45E-2 | 1.39E-2 - - -
2 8 | 7.28E-2 | 4.04E-3 | 3.13E-2 | 4.01E-3 | 1.80 | 0.80 | 1.79
3 14 0.89 1.18E-3 | 1.50E-2 | 1.17E-3 | 1.77 | 1.05 | 1.77
4 25 9.75 | 2.82E-4 | 7.37E-3 | 2.80E-4 | 2.06 | 1.03 | 2.06
5 45 98.75 | 7.20E-5 | 3.64E-3 | 7.14E-5 | 1.97 | 1.01 | 1.97

Tetrahedral Meshes
6 7 | 1.95E-3 | 2.73E-2 | 0.13 | 2.70E-2 | - - -
7 8 | 2.14E-2 | 7.05E-3 | 6.76E-2 | 6.98E-3 | 1.95 | 0.99 | 1.95
8 15 0.38 | 2.56E-3 | 3.92E-2 | 2.53E-3 | 1.35 | 0.73 | 1.36
9 21 1.02 | 1.34E-3 | 2.84E-2 | 1.32E-3 | 2.49 | 1.24 | 2.49
10 25 2.24 9.26E-4 | 2.22E-2 | 9.14E-4 | 1.66 | 1.10 | 1.67
11 41 13.78 | 3.10E-4 | 1.36E-2 | 3.07E-4 | 2.11 | 0.95 | 2.11

Anisotropic Permeability: HFV

Key | Iter | CPU ‘ ervsol | €TTgrad | €77 jump | Qgol | Ograd ‘ O jump

Hezahedral Meshes (Cartesian)
1 9 6.02E-3 | 2.64E-2 | 4.89E-2 | 3.35E-2 - - -
2 16 | 8.48E-2 | 7.02E-3 | 1.43E-2 | 8.30E-3 | 1.91 | 1.78 | 2.01
3 29 1.13 1.81E-3 | 3.96E-3 | 2.07E-3 | 1.95 | 1.85 | 2.00
4 55 16.55 | 4.60E-4 | 1.07E-3 | 5.19E-4 | 1.98 | 1.89 | 2.00
) 108 | 248.20 | 1.16E-4 | 2.86E-4 | 1.30E-4 | 1.99 | 1.91 | 2.00

Hezahedral Meshes (perturbated Cartesian)
1 8 1.20E-2 | 2.99E-2 | 8.77E-2 | 3.94E-2 - - -
2 15 0.15 6.92E-3 | 4.22E-2 | 8.30E-3 | 2.11 | 1.05 | 2.24
3 28 1.87 1.56E-3 | 1.96E-2 | 1.74E-3 | 2.14 | 1.10 | 2.24
4 55 23.34 | 4.20E-4 | 9.57E-3 | 4.58E-4 | 1.89 | 1.03 | 1.92
) 102 | 37145 | 1.12E-4 | 5.13E-3 | 1.20E-4 | 1.89 | 0.89 | 1.93

Tetrahedral Meshes
6 10 | 1.41E-2 | 1.7T7E-2 0.14 1.79E-2 - - -
7 19 0.26 4.86E-3 | 7.13E-2 | 4.75E-3 | 1.86 | 0.98 | 1.91
8 37 4.56 1.28E-3 | 3.63E-2 | 1.21E-3 | 1.79 | 0.90 | 1.83
9 47 12.16 | 6.92E-4 | 2.62E-2 | 6.66E-4 | 2.35 | 1.25 | 2.28
10 63 2796 | 4.75E-4 | 2.16E-2 | 4.68E-4 | 1.69 | 0.88 | 1.59
11 105 | 189.66 | 1.65E-4 | 1.28E-2 | 1.58E-4 | 2.04 | 1.00 | 2.09

Table 3: Anisotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errgo, €r7grad, €77 jump are
the respective L2-errors as defined above; g, Olgrad, Qjump are the orders of convergence w.r.t.

#/\/l_% of the solution, of the gradient and of the jump, respectively.
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The test case shows that, on Cartesian grids, we obtain, as expected, convergence of order
2 for both, the solution and it’s gradient. For tetrahedral grids, we obtain convergence of
order 2 for the solution and convergence of order 1 for it’s gradient. We observe that the VAG
scheme is more efficient than the HFV scheme and this observation gets more obvious with
increasing anisotropy. Comparing the precision of the discrete solution (and it’s gradient) for
VAG and HFV on a given mesh, we see that on hexahedral meshes, the advantage is on the
side of VAG, whereas on tetrahedral meshes HFV is more precise (but much more expensive).
On a given mesh, HFV is usually (see [7]) more accurate than VAG both for tetrahedral and
Cartesian meshes. This is not true in the test cases using Cartesian meshes maybe due to the
higher number for VAG than for HFV of d.o.f. at the interfaces I', on the matrix side. For
perturbated Cartesian grids, we obtain convergence of order 2 for the solution and convergence
of order 1 for it’s gradient for the VAG scheme, which is able to deal with non-planar faces.
However, the HF'V scheme reveals a slight deterioration of the convergence rate, for the solution
and in particular for it’s gradient, which is not surprising, since HF'V is not consistent on this
family of meshes.

It is also worth mentioning that we have conducted this test for VAG with lumped mf-fluxes,
and observed that that there is literally no difference compared to VAG-FE in the ordinary
version, concerning accuracy and convergence rate.

6 Conclusion

In this work, we extended the framework of gradient schemes (see [14]) to the model problem
(2.1) of stationary Darcy flow through fractured porous media and gave numerical analysis
results for this general framework.

The model problem (an extension to a network of fractures of a PDE model presented in
[18], [21] and [4]) takes heterogeneities and anisotropy of the porous medium into account and
involves a complex network of planar fractures, which might act either as barriers or as drains.

We also extended the VAG and HFV schemes to our model, where fractures acting as
barriers force us to allow for pressure jumps across the fracture network. We developed two
versions of VAG schemes, the conforming finite element version and the non-conforming control
volume version, the latter particularly adapted for the treatment of material interfaces (cf.
[16]). We showed, furthermore, that both versions of VAG schemes, as well as the proposed
non-conforming HFV schemes, are incorporated by the gradient scheme’s framework. Then,
we applied the results for gradient schemes on VAG and HFV to obtain convergence, and, in
particular, convergence of order 1 for ”piecewise regular” solutions.

For implementation purposes and in view of the application to multi-phase flow, we also
propose a uniform Finite Volume formulation for VAG and HFV schemes in the appendix. The
numerical experiments on a family of analytical solutions show that the VAG scheme offers
a better compromise between accuracy and CPU time than the HFV scheme especially for
anisotropic problems.
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A Density Results for V' and W

Let us first state the following Lemma that will be used to prove the density of Cyy = x Cyp, in
w.

Lemma A.1 Let v, € L*(Q), vy € L*(I'), G € L*(Q)?, H € L*(1)*" and J, € L*(T.), a €
X such that

/(G Qm + Updivg,)dx + /(H -qy + vpdiv,qp)dr(x) + Z/ Tn,aQmdT(X)(Jo —vf) =0
Q r Fa

acx

(A.1)

for all (am,ay) € Oy, x O3, Then holds (vy,vy) € VO, (G, H) = (Von, V,vr) and J, =
Vf — YaUn for o € X.

Proof Firstly, for all q,, € C°(Q\I')¢, we have
/(G Qm + Updivg,,)dx =0
Q

and therefore v,, € H'(Q\I') and Vv,, = G.
For a.e. x € 012, there exists an open planar domain w CC 9Q\JI' containing x such that
for all f € C§°(w) there exists q.,, € Cfy  with

| f on w,
Toem =0 on 00Q\w,

Yneldm =0 only,, acy,

where vy, denotes the normal trace operator on the boundary of 2. From (A.1), taking q; = 0,
we obtain

0= /(va Qm + vpdivg,)dx = / Y92 Um Yny AmdT(X) = / Yo Um fdT(X).
Q o0

w

where vsq denotes the trace operator on the boundary of 2. We deduce vsqv,, = 0 a.e. on
ON\OT. Hence v, € Hjo(Q\T).

Further, for a.e. x € T', there exists an open planar domain w, CC I', containing x such
that for all g € C§°(wa) there exists q,, € Cfp with

[ g onw,,
Tnalm = on I'y\wa,

Mmpdn =0 on ', for 8 # a,
Ynpolm = 0 on O

From (A.1) we obtain

0= /(V’Um “Qm + UmdiVQm)dX + Z/ ’}/n,aqm(']a - Uf)dT(X)
Q Fa

acx

= / YraQm(Jo — Vf + Yol )dT(X) = / 9(Jo — V5 + YoV )dT(%).

«a War
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We deduce J, = v5 — YoUm a.e. on I'y, o € x.
Next, for all q; € C5°(T;)4!, i € I, we have from (A.1)

/ (H - q; + vydiva,)dr(x) = 0
r;

and therefore vyl € HY(I;) for i € I and V,vslp = Hp..

Let i,j € I, i # j. For a.e. x € ¥, \ X, there exists an open interval ¢;; CC 3;; \ X;p
containing x such that for all i € C§°(c;;) there exists s € Cjy, with

Vg, § = h = —Tng, 5 ON Cij,

Tny, S = 0 on Ek\cij, kel

From (A.1) we obtain

0= /(Vva s+ vpdiv,s)dr(x) = / (ys,vF — ygjvf)ynzisda(x),
r o

)

do(x) denoting the d — 2 dimensional Lebesgue measure on X. We deduce 5,05 = 75,0y a.e.
on X;; \ Xio, 4,7 € I,i # j. The proof of y5,uy = 0 a.e. on X, goes analogously. Hence
vy € Héo (F)

Proof of Proposition 2.2 Firstly from Proposition 2.1, note that on V°, the norm || - [|y0
is equivalent to the standart norm [ - || g1q) + || - [[gir)- The density of C§ in Hjo(Q\ T)
being a classical result, we are concerned to prove the density of C° in Hy, (T) in the following.
Since Hi (T) C y(H(R)), we can define VO = 7 (Hg (T)) € HY(R). In Proposition 2 of
7] it is shown that Cg°(Q) is dense in (VO || - |mi@ + v - lary). Hence CF° is dense in
(Hyy (@), [+ 1 ry)-

Proof of Proposition 2.3 Since W is a closed subspace of the Hilbert space [],.; Hgiy (i),
any linear form [ € W7 is the restriction to Wy of a linear form still denoted by [ in [ [, Hgj, (T's)"

Then, for some f € L2(T') and g € L*T)* " holds
<l,qy >= Z/ (g cqp+ f diVqu)dT(x),
ier VT

for all qy € Wy. Let us assume now that < I, >= 0 for all ¢ € Cﬁf. Corresponding to
Lemma A.1 holds f € Hy, (I') and g = V,f. From the definition of W; we conclude that
<l,q; >=0 for all qy € Wy.
Let now [ € W/. Then there exist f € L%(Q), g € L2(Q)" and h, € L3(T) (a € ), such
that
<l,qm >= / (g “Qm + f - divqm) dx + Z/ hoVn,aQmdT(X),
Q ey Ta

for all q,, € W,,. Furthermore, let us assume that < [,¢ >= 0 for all ¢ € Cj7 . From Lemma
A.1 we deduce that f € H),(Q\T), that g = Vf and that h, = 7,f (o € x). Using this, we
conclude, again by the rule of partial integration, that <[, q,, >= 0 for all q,, € W,,.
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B Finite Volume Formulation for VAG and HF'V Schemes

The VAG and HFV schemes can be written in a flux conservative formulation, both with
matrix-matrix fluxes local to each cell, fracture-fracture fluxes local to each fracture face and
two point matrix-fracture fluxes (for HFV and VAG-CV). These fluxes are particularly useful
for the discetization of the monophasic model coupled with a transport equation. Such systems
typicaly arise in models for diphasic flow through porous media. In this section, we present a
unified Finite Volume Formulation for both schemes.

For K € M let

dof — | {Ess €V} U{K,, 0 € Fie N Fr} for VAG,
K=\ {K,.0 € Fx} for HFV.

Analogously, in the fracture domain, for o € Fr let

dof, — V, for VAG,
%le =9 & for HFV.

Then, for any v € dofk the discrete matriz-matriz-fluxes are defined as

Fg,(up,,) = Z </K ApVop, e,,VDmeV/dx> (ug — uyr).

v'edofy

such that [, AV up, Vp vp,dX = D\ > cdor FEv(Up,,)(vx —v,). For all v € dof,
the discrete fracture-fracture-fluxes are defined as

Folup) = > ([ AfVp,e,Vp,endr(x ))( — ),

v Edof g

such that [, AfVp up, Vp vp,d7s(X) = 3, e Dvedos, Fov(un,) (Vs —v,). To take interactions
of the matrix and the fracture domain into account we introduce the set of matriz-fracture (mf)
connectivities

C = {(tm, V) | Um € dofp, vy € dof p, s.b. Xy,, =Xy, }

with dof, = {v € dofp, |x, € T'}. The mf-fluxes are built such that

ap,, s ((quv qu)? (UD7n7 va)) = Z FVme(uDrm qu)(UVm - UVf)

(val’f)ec
-¥ = p> (6lul + (1~ ) [unl) [oolidr(x).
BIE{(a*(i),a7 (i)}
for all (vp,,,vp,) € Xp. Forall o € Fr and K € M,, let us denote by a( K, o) the unique a € x
such that o € F, and n, = ng,. Let us also set for all 0 € Fr, (x X x)o = {(a(K,0), (L, 0)),
(a(L,0),a(K,0))} with M, = {K, L}. Then, holds

ap,,; <(qu7qu)7 (vp,,, vp;) > Z Z / 2 — f[[UD]]% +(1— S)HUD]]%> [vp]pd7(x).

o€FT (a,B)E(XXX)o

For all o ]-"p, K € M, and x € o, let us notice that, for the VAG scheme, one has
lex, + eg]]a(KU (x) = 0, and [eg, + ¢, OC(KU)( ) =0 for all s € V,, and for the HFV scheme,
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one has [ez, + eg]]%(K’o) (x) = 0. It result after some computations that the VAG matrix
fracture fluxes are defined by

Fioolup o) = 3 ( [ g el M Ie5)r(0) (s, + (1 = g, =)

SEVy

T
+ (/ 26 i 1 ([[eaﬂ%(K,U))sz(X)) (quU + (1 — §)UL(, _ u[r)’
for all 0 € Fr, M, ={K, L} , and by

Fg (up,,,up,) = > > {

ae(UQ@ FQ)NFsNFr KeM,NQ,, LEM\{K}

(f 5 n““‘" Pr(x >) (cure, + (1~ Eug, —u,)

+ Z KU))([[ ]]oc(KU ) ( )) <€ufsl + (1 — g)qu, — usl)
s'€Vs | ss' €€
Tf a(KO' a(K,o0)
([ e et Eed5 ™ are0) (gu, + (- Our, —ua) ),
for all s € Vr, Q, € M,. Similarly the HFV matrix fracture fluxes are defined by

2€1 </U Tf(x)df(x)> ({uKU +(1—&ug, — ug),
for all ¢ € Fr, M, ={K,L}.

We observe that for the VAG-CV scheme (since for all & € x: [ T¢([es]%)([es]3)dr(x) =0

for s # s and [ Tr([es]%)([es])dr(x) = 0) as well as for the HFV scheme, the fluxes F,,,,
are two point flux approximations.
The discrete source terms are defined by

Fg ,(up,,, up,) =

/ hpllp e, dx for v € dofp_,

H, =
/athDfe,,de(x) for v € dof p, .
r

The following Finite Volume formulation of (2.2) is equivalent to the discrete variational
formulation (3.1): find (up,,,up,) € X3 such that

forall K e M: > Fg,(up,)=Hg

vedofk
for all o € Fr: > Fou(up,) — > Fy,o(up,,, up;) = H,
vEdofs vm€dofp,,

s.t. (vm,0)€C

for all v, € dofp,, \ (M U dof py,., ) :

- Z FKV’m (qu) + Z FVme <qu’ qu) = HVm

KeM,,, vy Gdofpf
s.t. (Um,vy)eC

for all vy € dofp, \ (Fr U dof p;;,) :

- Z FO'Vf(qu) - Z Fle/f(ququf) = Hl/f-
JeFF,I/f l/mEdOfDm
s.t. (vm,vy)€eC
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Figure 5: mm-fluxes (red), mf-fluxes (dark red) and ff-fluxes (black) for VAG (left) and HFV
(right) on a 3D cell touching a fracture

Here, M,,, stands for the set of indices { K € M | v, € dofx} and Fr,, stands for the set
{o € Fr | vs € dof,}.

It is important to note that, using the equation in each cell, the cell unknowns ug, K € M,
can be eliminated without fill-in.
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