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Gradient discretization of Hybrid Dimensional Darcy
Flows in Fractured Porous Media with discontinuous
pressures at the matrix fracture interfaces

K. Brenner *, J. Hennicker *, R. Masson *, P. Samier T

September 4, 2015

Abstract

We investigate the discretization of Darcy flow through fractured porous media on
general meshes. We consider a hybrid dimensional model, invoking a complex network of
planar fractures. The model accounts for matrix-fracture interactions and fractures acting
either as drains or as barriers, i.e. we have to deal with pressure discontinuities at matrix-
fracture interfaces. The numerical analysis is performed in the general framework of
gradient discretizations which is extended to the model under consideration. Two families
of schemes namely the Vertex Approximate Gradient scheme (VAG) and the Hybrid Finite
Volume scheme (HFV) are detailed and shown to satisfy the gradient scheme framework,
which yields, in particular, convergence. Numerical tests confirm the theoretical results.
Gradient Discretization; Darcy Flow, Discrete Fracture Networks, Finite Volume

1 Introduction

This work deals with the discretization of Darcy flows in fractured porous media for which
the fractures are modelized as interfaces of codimension one. In this framework, the d — 1
dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading
to the so called, hybrid dimensional Darcy flow model. We consider the case for which the
pressure can be discontinuous at the matrix fracture interfaces in order to account for fractures
acting either as drains or as barriers as described in [10], [12] and [3]. In this paper, we will
study the family of models described in [12] and [3].

It is also assumed in the following that the pressure is continuous at the fracture intersec-
tions. This corresponds to a ratio between the permeability at the fracture intersection and
the width of the fracture assumed to be high compared with the ratio between the tangential
permeability of each fracture and its length. We refer to [14] for a more general reduced model
taking into account discontinuous pressures at fracture intersections in dimension d = 2.

The discretization of such hybrid dimensional Darcy flow model has been the object of
several works. In [10], [11], [3] a cell-centered Finite Volume scheme using a Two Point Flux
Approximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic per-
meability fields. Cell-centered Finite Volume schemes have been extended to general meshes

*Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, University Nice Sophia Antipolis,
and team COFFEE, INRIA Sophia Antipolis Méditerranée, Parc Valrose 06108 Nice Cedex 02, France,
{konstantin.brenner, julian.hennicker, roland.masson}@unice.fr

tCSTJF, TOTAL S.A. - Avenue Larribau, 64018 Pau, France



and anisotropic permeability fields using MultiPoint Flux Approximations (MPFA) in [13], [16],
and [2]. In [12], a Mixed Finite Element (MFE) method is proposed and a MFE discretiza-
tion adapted to non-matching fracture and matrix meshes is studied in [6]. More recently the
Hybrid Finite Volume (HFV) scheme, introduced in [8], has been extended in [27] for the non
matching discretization of two reduced fault models. Also a Mimetic Finite Difference (MFD)
scheme is used in [1] in the matrix domain coupled with a TPFA scheme in the fracture network.
Discretizations of the related reduced model [28] assuming a continuous pressure at the matrix
fracture interfaces have been proposed in [28] using a MFE method, in [20] using a Control
Volume Finite Element method (CVFE), in [19] using the HFV scheme, and in [19, 5] using an
extension of the Vertex Approximate Gradient (VAG) scheme introduced in [7].

In terms of convergence analysis, the case of continuous pressure models at the matrix frac-
ture interfaces [28] is studied in [19] for a general fracture network but the current state of
the art for the discontinuous pressure models at the matrix fracture interfaces is still limited
to rather simple geometries. Let us recall that the family of models introduced in [12] and [3]
depends on a quadrature parameter denoted by & € [%, 1] for the approximate integration in
the width of the fractures. Existing convergence analysis for such models cover the case of one
non immersed fracture separating the domain into two subdomains using a MFE discretization
in [12] or a non matching MFE discretization in [6] for the range ¢ € (3,1]. In [3], the case of
one fully immersed fracture in dimension d = 2 using a TPFA discretization is analysed for the
full range of parameters £ € [%, 1].

The main goal of this paper is to study the discretizations of such models and their con-
vergence properties by extension of the gradient scheme framework. The gradient scheme
framework has been introduced in [7], [22], [21] to analyse the convergence of numerical meth-
ods for linear and nonlinear second order diffusion problems. As shown in [22], this framework
accounts for various conforming and non conforming discretizations such as Finite Element
methods, Mixed and Mixed Hybrid Finite Element methods, and some Finite Volume schemes
like symmetric MPFA, the VAG schemes [7], and the HFV schemes [8].

Our extension of the gradient scheme framework to the hybrid dimensional Darcy flow model
will account for general fracture networks including fully, partially and non immersed fractures
as well as fracture intersections in a 3D surrounding matrix domain. Each individual fracture
will be assumed to be planar. The framework will cover the range of parameters £ € (3, 1]
excluding the value £ = % in order to allow for a primal variational formulation.

Two examples of gradient discretizations will be provided, namely the extension of the VAG
and HFV schemes defined in [7] and [8] to the family of hybrid dimensional Darcy flow models.
In both cases, it is assumed that the fracture network is conforming to the mesh in the sense
that it is defined as a collection of faces of the mesh. The mesh is assumed to be polyhedral
with possibly non planar faces for the VAG scheme and planar faces for the HF'V scheme. Two
versions of the VAG scheme will be studied, the first corresponding to the conforming P, finite
element on a tetrahedral submesh, and the second to a finite volume scheme using lumping for
the source terms as well as for the matrix fracture fluxes. The VAG scheme has the advan-
tage to lead to a sparse discretization on tetrahedral or mainly tetrahedral meshes. It will be
compared to the HFV discretization using face and fracture edge unknowns in addition to the
cell unknowns. Note that the HFV scheme of [8] has been generalized in [23] as the family of
Hybrid Mimetic Mixed methods which which encompasses the family of MFD schemes [24]. In
this article, we will focus without restriction on the particular case presented in [8] for the sake
of simplicity.

In section 2 we introduce the geometry of the matrix and fracture domains and present



the strong and weak formulation of the model. Section 3 is devoted to the introduction of the
general framework of gradient discretizations and the derivation of the error estimate 3.3. In
section 4 we define and investigate the families of VAG and HFV discretizations. Having in
mind applications to multi-phase flow, we also present a Finite Volume formulation involving
conservative fluxes, which applies for both schemes. In section 5, the VAG and HFV schemes
are compared in terms of accuracy and CPU efficiency for both Cartesian and tetrahedral
meshes on hererogeneous isotropic and anisotropic media using a family of analytical solutions.

2 Hybrid dimensional Darcy Flow Model in Fractured
Porous Media

2.1 Geometry and Function Spaces

Let © denote a bounded domain of RY, d = 2, 3 assumed to be polyhedral for d = 3 and polyg-
onal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified,
for instance in the naming of the geometrical objects or for the space discretization in the next
section. The adaptations to the case d = 2 are straightforward.

Let T' = J;.,; I and its interior I' = T\ 9T denote the network of fractures I'; C 2, i € I,
such that each I'; is a planar polygonal simply connected open domain included in a plane P;
of R% Tt is assumed that the angles of T'; are strictly smaller than 27, and that I'; N T; = ) for
all i # 7 .

For all i € I, let us set 3; = OI';, with ny, as unit vector in P;, normal to ¥; and outward
to Fz Further E@j = Ez N Zj, j el \ {Z}, 2@0 = Ez N 89, Ei,N = Ez \ (Ujel\{i} Ei,j U 2@0),

XY= U(i,j)e[x],i;éj(ziaj \ Ei,O) and Eo = Uie] Ei,O‘ It is assumed that Ei,() = Fz N o0f2.

g >
1 N 3N

)
~LT, {2

220 | 2 g

Figure 1: Example of a 2D domain §2 and 3 intersecting fractures I';,;7 = 1,2, 3. We might define
the fracture plane orientations by o™ (1) = aj,a™ (1) = az for T'y, at(2) = oy, (2) = ay for
[y, and at(3) = az,a™(3) = ay for T's.

We will denote by dr(x) the d — 1 dimensional Lebesgue measure on I'. On the fracture
network ', we define the function space L*(T') = {v = (v;)ier,v; € L*(T;),i € I}, endowed
with the norm |[v]|2y = (3., ”UiH%?(Fi))% and its subspace H'(T") consisting of functions
v = (v;)ier such that v; € HY(T;), ¢ € I with continuous traces at the fracture intersections
¥ij, J € I'\ {i}. The space H'(T') is endowed with the norm [[v|| 1) = (3 ,¢; ||vi||§{1(ri))%.
We also define it’s subspace with vanishing traces on Yo, which we denote by Hy, (T').

On O\T, the gradient operator from H*(Q\TI') to L?(Q)? is denoted by V. On the fracture
network T, the tangential gradient, acting from H'(T') to L*(T")?"!, is denoted by V., and such
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that
Vo= (vnvi)iela

where, for each i € I, the tangential gradient V., is defined from H'(T;) to L?(T';)*"! by fixing
a reference Cartesian coordinate system of the plane P; containing I';. We also denote by div,,
the divergence operator from H y; (I';) to L*(T;).

We assume that there exists a finite family (I'y)qe, such that for all & € x holds: I', C T’
and there exists a lipschitz domain w, C Q\T, such that I, = Ow, NT. For a € y and an apro-
priate choice of I, C I we assume that 'y, = Uic L. T;. Furthermore should hold T’ = Uaex T,.
We also assume that each I'; C I' is contained in I',, for exactly two o € y and that we can
define a unique mapping i — (a™* (i), (i)) from I to x x x, such that I'; C T'q+(;) NTy-(;) and
at (i) # a~ (i) (cf. figure 1). For all i € I, o (i) defines the two sides of the fracture T'; in Q\ T
and we can introduce the corresponding unit normal vectors nq+ ;) at I'; outward to wa+(;), such
that n,+@) + n,-) = 0. We therefore obtain for o € x and a.e. x € I', a unique unit normal
vector n,(x) outward to w,. A simple choice of (I'y)aey is given by both sides of each fracture
1 € I but more general choices are also possible such as for example the one exhibited in figure 1.

Then, for a € x, we can define the trace operator on I':

Yot HH(Q\T) = L*(T),

and the normal trace operator on I', outward to the side a:
Yt Hyjy (Q\T) = D'(T,).

We now define the hybrid dimensional function spaces that will be used as variational spaces
for the Darcy flow model in the next subsection:

V =H'(Q\T) x H(T),

and its subspace _
V= Hjo(Q\T) x Hy, (D),

where (with va0: H'(Q\I') — L?*(09) denoting the trace operator on O5)
H}o(Q\T) = {v e HY(OQ\T) | vaqu = 0 on 90},

as well as

W =W, x W,

where

W = {qm € Hdiv(Q\ﬂ | YaaQm € L*(Ty) for all a € X} and
Wy ={ay = (qyi)ier | 9y € Hyyy () for all i € 1

and Z/ <V7-U “qf; +U- divTiqfﬂ-) dr(x) =0 for all v € Hy, (T)}.
ier V1L
On V', we define the positive semidefinite, symmetric bilinear form
(i, wg), (U, vf))y = / Vi, - Vu,dx + / V. uyp - Vovpdr(x)
Q r

T Z /a(%éum —Ug)(YaUm — vy)d7(X)

acx



for (wm,us), (Um,vy) € V, which induces the seminorm |(v,, vs)|y. Note that (-,-)y is a scalar
product and | - |y is a norm on V°, denoted by || - [|yo in the following.

We define for all (p.,, pf), (dm,qs) € W the scalar product

((prm pf)7 (qma qf))W = / pmqmdx + / dlvpm : ledeX
Q Q
+ / prqsdr(x) + / div,py - div,qpd7(x)
I I

+ Z/ (/Vn,ozpm : ’Yn,aqm)d7—<x)7

aex

which induces the norm ||(qm,qy)|lw, and where we have used the notation div,p; = div,,py;
onT; for all e € I and py = (py.i)ier € Wy.

Using similar arguments as in the proof of [15], example 11.3.4, one can prove the following
Poincaré type inequality.

Proposition 2.1 The norm || - ||yo satisfies the following inequality
[oml| 1 @ry + gl @y < Coll(vm, vp)llvo, (1)
for all (vy,,v;) € VO.

Proof We apply the ideas of the proof of [15], example I1.3.4 and assume that the statement
of the proposition is not true. Then we can define a sequence (v;);en in V0, such that

1
lllgr =1 and Jlulye < 7, (2)

where, for this proof, || - [ = | - |1y + | - (). The imbedding

(V20 ) = (2@) < D), - oy + - )

is compact, provided that Q\I' has the cone property (see [18], theorem 6.2). Thus, there is a
subsequence (v,), of (v))ien and v € L?*(Q) x L*(T), such that

v, —> v in L?(Q) x L*(T).
On the other hand it follows from (2) that

Vg, — 0 in L*(Q)
V,up, — 0 in L*(T).

Since (VO || - ||z1) is complete, we have

vV, — v in V°,

with
Jollvo = tim oo = 0.
Since || - [lyo is a norm on V°, we have v =0 € V°, but ||v|]| = 1, which is a contradiction. [
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Remark 2.1 With the precedent proof it is readily seen that inequality (1) holds for all func-
tions v € V whose trace vanishes on a subset of O(Q\T') with positive surface measure. The
requirement is that v has to be in a closed subspace of (V|| - ||z) for which || - ||yo is a well
defined norm.

The convergence analysis presented in section 4 requires some results on the density of
smooth subspaces of V' and W, which we state below.

Definition 2.1 1. CF is defined as the subspace of functions in C°(Q\T) vanishing on a
neighbourhood of the boundary 92, where C°(Q\T) C C>®(Q\T) is the set of functions
@, such that for all x € Q there exists r > 0, such that for all connected components w of
{x+yeR ||yl <r}n(Q\T) one has p € C>®(w).

2. O = 4p(C5e(Q)) is defined as the image of C°() of the trace operator yr: H} () —
L*(T).

3. C = CR(Q\T)".

-1

4. C, = {dy = (agaier | api € C=(T)
0onX;n, i€}

) Zie[qfﬂ' c Iy, = 0 on 27 qr: - Ny, =

Let us first state the following Lemma that will be used to prove the density of Cyp % C%f in
w.

Lemma 2.1 Letv,, € L*(Q), vy € L*(T), G € L*(Q)¢, H € L*(T)* " and J, € L*(T,), a € x
such that

/(G g + Updivg,,)dx + /
Q

(H - qy +vpdiv,qy)dr(x) + Z/ T,aQmdT(X)(Jo —vf) =0
F «

o 3)

for all (am,ay) € Cy, x Cp,. Then holds (vm,vy) € VO (G,H) = (Vum, V,up) and J, =
Vf — YaUn for o € x.

Proof Firstly, for all q,, € C°(Q\I')¢, we have
/(G “Qm + vpdivg,)dx =0
Q

and therefore v,, € H'(Q\I') and Vv,, = G.
For a.e. x € 012, there exists an open planar domain w CC 9Q\JI' containing x such that
for all f € C§°(w) there exists q., € Cfy  with

f on w,

TnopoAm = { 0 on 8Q\w,
Tn,aQm = 0 on Fom a € X,

where 7y,,, denotes the normal trace operator on the boundary of Q2. From (3), taking q; = 0,
we obtain

0= /(va g + Vpdivg,,)dx = / Y99Um Ynyg Amd T (X) = / Yoo Um fdT(X).
Q a0 w
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where vy denotes the trace operator on the boundary of 2. We deduce vsqv,, = 0 a.e. on
ON\AT. Hence v, € Hjo(Q\D).

Further, for a.e. x € I', there exists an open planar domain w, CC I', containing x such
that for all g € C§°(w,) there exists q,, € Cf; with

g on Wy,
Tnalm =19 on I'y\wa,
Mmpdm =0 on ', for 8 # a,
Tnpadm = 0 on O€.

From (3) we obtain

0= /(va A+ U divgy, )dx + Z/ Yr,alm (Jo — vy)dT(x)
Q F(X

aEx
- / ’Yn,aqm(c]a — Uy + ’Vavm)dT(X) - / g(Ja — Uy + ’Vavm)dT(X)'

We deduce J, = vf — YoUm a.e. on I'y, o € x.
Next, for all q; € C5°(I;)%!, i € I, we have from (3)

/ (H - q; + vydivg,)dr(x) = 0
I

and therefore vy, € HY(I;) for i € I and V,vslp = Hp..

7

Let i,j € I, i # j. For a.e. x € 3;; \ ¥, there exists an open interval ¢;; CC 3, ; \ ¥
containing x such that for all i € C§°(c;;) there exists s € Cjy, with

Yng,§ = h = —Yng, S ON Cij,

Yoy, § =0 on Yi\cij, kel

From (3) we obtain

0= /(Vva - s 4+ vpdiv,s)dr(x) = / (v, 05 — ’}/Ej’l)f)'}/nziSdO'(X),
r

Cij

do(x) denoting the d — 2 dimensional Lebesgue measure on X. We deduce vs,vy = y5,v5 a.e.
on X;; \ X0, ¢,7 € 1,i # j. The proof of ys,uy = 0 a.e. on X, goes analogously. Hence
vy € Hy, (T). O

Proposition 2.2 CF x O is dense in V°.

Proof Firstly, note that we have

1
5 (Il 195l ey ) < )

< 1) (V|2 + 1Vl gaqeyer).

i.e. ||-|[vo is equivalent to the standard norm ||V | 2 gya + |V [ 2 (pya-1 on V0. The density of
Cg in Hjo(Q\T) being a classical result, we are concerned to prove the density of Cf° in Hy (T')
in the following. Since Hg () C yr(HE(2)), we can define VO = 4 (HE () € HH(Q). In
Proposition 2 of [19] it is shown that C§°(Q) is dense in (VY ||V - |2y + V-1 - |22y )-
Hence C° is dense in (Hy, (T),[|V7 - || r2(r)e-1). O
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Proposition 2.3 Cy;  x Cyy is dense in W.

Proof Since W} is a closed subspace of the Hilbert space [ [,.; Hgjy, (i), any linear form I € W5
is the restriction to Wy of a linear form still denoted by I in J],.; Hj;,(I':)". Then, for some

f € LXT) and g € L2(I)"" holds

<l,qf >= Z/F (g “qf+ f- diVTq]c)dT(X),
el i

for all g5 € Wy. Let us assume now that < [,¢o >= 0 for all ¢ € C%f. Corresponding to
Lemma 2.1 holds f € Hy, (T'). From the definition of W} we conclude that < I, q; >= 0 for all
qr € Wf.

Let now [ € W/. Then there exist f € L%(Q), g € L2(Q)" and h, € L3(T) (o € X), such
that

<l,qm >= / (g “Qm + - divqm) dx + Z/ haVn,aQmdT(X),
Q ey Ta

for all q,, € W,,. Furthermore, let us assume that <[, >= 0 for all ¢ € C}; . From Lemma
2.1 we deduce that f € Hi(Q\T), that g = Vf and that h, = vof (@ € ). Using this, we
conclude, again by the rule of partial integration, that < [, q,, >= 0 for all q,, € W,,. O

2.2 Single Phase Darcy Flow Model

2.2.1 Strong formulation

In the matrix domain Q \T, let us denote by A,, € L>=(2)?*? the permeability tensor such that
there exist \,, > A, > 0 with

AnlCl? < (An(%)¢,€) < Rul¢P? for all ¢ € R% x € 9,

(d—1)x (d—1

Analogously, in the fracture network I', we denote by Ay € L>(I) ) the tangential

permeability tensor, and assume that there exist Xf > Ap > 0, such that holds
AMJCP < (Ap(x)¢,€) < Ap[¢f* for all ( e R x €T

At  the  fracture network T, we  introduce  the  orthonormal  system
(11(x), T2(x),n(x)), defined a.e. on I'. Inside the fractures, the normal direction is assumed
to be a permeability principal direction. The normal permeability A;, € L>(T') is such that
Apn < Arn(x) < Apn for ae. x € T with 0 < Ay, < Agn. We also denote by dy € L*(T) the
width of the fractures assumed to be such that there exist Elf > dy > 0 with
dy < dg(x) < dy

for a.e. x € I'. Let us define the weighted Lebesgue d — 1 dimensional measure on I' by
dry(x) = ds(x)dr(x). We consider the source terms h,, € L*(Q) (resp. hy € L*(T")) in the
matrix domain  \ T' (resp. in the fracture network I'). The half normal transmissibility in the

2)f

fracture network is denoted by Ty = W’“.

Given € € (3,1], the PDEs model writes: find (um, ur) € V°, (qm,qy) € W such that:

div(gm) = hum on Q\ T,
an = AN, Vu,, on Q\T,
T .
Yot ()Am = 3657 (EYar@Un + (1 = )Var@um —uyp) only i €1,
div. (df) = Yn,at(@)UGm — Tna-@)Am = dfhy onTy,iel
qr = —df AfVTUf on F,

8



2.2.2 Weak formulation

The hybrid dimensional weak formulation amounts to find (u,, us) € VV satisfying the following
variational equality for all (v,,,vf) € VO

/ AV, - Vu,dx + / AVoug - Vovpdre(x)
Q r

T Y (et 0= ) () g

(a,B8)€{(a*(i),aF (i)}
—/hmvmdx—/hfvdef(x) = 0.
Q r

The following proposition states the well posedness of the variational formulation (5).

Proposition 2.4 Forall¢ € (1, 1], the variational problem (5) has a unique solution (u,, uy) €
VO which satisfies the a priori estimate

[t ug)llvo < C (2@ + Igllzzr) ).

with C' depending only on &, Cp, A,, A;, dj, ds, and Apn- In addition (qm,qf) =

Ams

— (A Vi, dyAfV uy) belongs to W.

Proof Using that for all £ € (1,1] and for all (a,b) € R? one has

a? +b* < (€a+ (1 —&E)b)a+ (Eb+ (1 —&a) <

2 2
< geoqlat ).

the Lax-Milgram Theorem applies, which ensures the statement of the proposition. O

3 Gradient Discretization of the Hybrid Dimensional Model

3.1 Gradient Scheme Framework

A gradient discretization D of hybrid dimensional Darcy flow models is defined by a vector space
of degrees of freedom Xp = Xp,, x Xp,, its subspace satisfying ad hoc homogeneous boundary
conditions X3 = X3, x X , and the following gradient and reconstruction operators:

e Gradient operator on the matrix domain: Vp,, : Xp,, — L*(Q)?

e Gradient operator on the fracture network: Vp, : Xp, — L*(T')*!

e A function reconstruction operator on the matrix domain:
Hpm : Xpm — LQ(Q)

e Two function reconstruction operators on the fracture network:
pr : X’Df — L2(F) and pr : pr — LQ(F)

e Reconstruction operators of the trace on I', for o € x:
g, Xp,, — L*(Iy).



The space Xp is endowed with the seminorm

-

o ~ 2
||(UDm7 UDf)HD = <||vaUDmH%2(Q)d + ”VDfUDf”%%F)d*l + Z “HD,,LUDm - HDfUDf||%2(Fa)> )

acx

which is assumed to define a norm on X3

The following properties of gradient discretizations are crucial for the convergence analysis
of the corresponding numerical schemes:

Coercivity: Let D be a gradient discretization and

p,,vp,, || 22(0) + [[Hp,vp, | £2(r)

Cp = max
0#(vpy, v, )EXD, | (vp,, UDf) D

A sequence (D');en of gradient discretizations is said to be coercive, if there exists Cp > 0 such
that Cpt < Cp for all [ € N.

Consistency: Let D be a gradient discretization. For u = (up,us) € V?and vp = (vp,,,vp,) €
X2 let us define

S(Up,u) = HvaUDm — VUmHLQ(Q)d + HVDfUDf — VTUfHLQ(F)d—I
+ [Up,,vp,, — umllz2(0) + [, vp, — upll2
+ HHDfUDf - ufHL2(F) + Zaex HH%mUDm - ”YaUmHL2(Pa)-

and Sp(u) = min, cxo s(vp,u). A sequence (DY)jen of gradient discretizations is said to be
consistent, if for all u = (u,,us) € V? holds

lim Spi(u) = 0.

l—00

Limit Conformity: Let D be a gradient discretization. For all q = (qm,qf) € W, vp =
(vp,,,vp,) we define

w(vp,q) = /(VDmUDm “Qm + (HDmUDm)ddim) dx
+ f(VDfUDf “qf + (pr’ljpf)diVTch)dT(X)
r

#3 [ natn (o, o, T, v, 185, v, )
acx @

and Wp(q) = maxys,,cx lw(vp,q)|. A sequence (D');en of gradient discretizations is

1
0 ———o
D [lvpllp

said to be limit conforming, if for all q = (q,,,qs) € W holds

=00

Lemma 3.1 Let (Dl)leN - (X%H HD!m’ H/D}’ ﬁDic’ (H%l )OCEX’ V'Dfn, V'le)leN CLTLd

(51)@\, = (X%l,ﬁpin,ﬁpir,ﬁpzf, (ﬁ%lm)aexyvmva})lm be two sequences of gradient discreti-

sations of (5) and let us assume that (D')en is coercive, consistent and limit conforming. Let

10



us furthermore assume that the sequence (CDl 51)1@1, defined by

1 — _
Cous = 0,15, (o (1Mot oot s+ 1Ty o, = Tl
+ |y vpt = Mprvpy |2y + Y [T, vpy, — Ty vpy, ||L2(ra)>>7
acx
satisfies
ML g =0 (6)

and that there is a constant C' € R independent of | such that

> Mg vpr, — Hpvpt |2,y < € > | vp, —Iprvp |2 (7)

aEx agyx

for all vy € X%l, Il € N. Then (5l)leN s coercive, consistent and limit conforming.

Proof Coercivity: (D )en is coercive, since for all [ € N we have (with D = D!, D = 2_31)

Iy, vp,, || L2 + Tp,vp, |l 2(ry < (o5 + Co)|lvpllp < max(1,C)((p 5 + Cp)llvpllp
and since max(1,C) - (¢, 5 + Cpt) is uniformly bounded. In the last inequality we have used

that ||vp||p < max(1,C)||vpl|lp, which follows from (7).

Consistency: Let [ € N be fixed and D = D', D = D We first choose, for a given u =
(tm,up) € VO a vy € X3P, such that sp(vp, u) = Sp(u). Using the inequality

sp(vp,u) < sp(vp,u) + |Tp,,vp,, —p,,vp, [l L20) + T, vp, — Tp,vp, || L2(1r)

+|[TIp,vp, — p,vp, 2y + Y _ 1% vp,, — p, vp,, [l22(r.),
aEex

which holds for all vp € Xp, we obtain

Sp(u) < Sp(u) + Cpp

|vp |-

Moreover

lopllp < Sp(w) + V| L20ye + | Vrtgll2myes + Y 11 (Vattm = up) 22, ),
acx

which implies that [|vp:||pr is uniformly bouded and therefore Sxi(u) — 0 as [ — oo.

Limit Conformity: Let again [ € N be fixed and D = D!, D = D'. For given q = (g, qf) € W
and vp € X we calculate

wp(vp, q) < wp(vp,q) + |Ip,,vp,, — Up, vp,. |2 - |divam | 22

+ |Ip,vp, — p,vp, |12 - [|diveay|| 2o + Z<||HDfUDf —Tp,vp, | r2(ra)

aex

+ |Ip,vp, — p,vp, |12 + 11D, vp,, — ﬁaDmUDmHL?(ra)) N n,alm || 2(r.)

< wo(vp, @) + o [opllp - (Jldivamllizoy + diveayllzzw) + D Imatnllzzr.)).

aex

11



Taking (7) into account, we derive

Wﬁ(qﬂw Qf) < InaX(l7 C) . sup M

< max(1,C) - Wo(qm,qs) + (p5llallw).
0#£vpeXp HU'DHD

Therefore Wi (qm, qy) tends to zero as [ goes to infinity. O

Proposition 3.1 (Regularity at the Limit) Let (D')ien be a coercive and limit conforming
sequence of gradient discretizations and let (vpin,vpéc)leN be a uniformly bounded sequence in

Xlo)l. Then, there exist (v, vs) € VO and a subsequence still denoted by (vpr UD;)leN such that

( lp vpr — v, in L*(Q),
Vo, vpt. = Vu,, in L*(Q)7,
Hpropy — vy in LA(T),
fovpgc — VTUf m LQ(F)d_l,

prvpgc — 11 vpr — vf — Yo in L*(Ty), forall a € .

\
Proof By definition of the norm of X%l and by coercivity, p: vpr Hpé Upt,, Vo, vp. , Vo, Upt
and (113, up — Ilp fupir), a € Y, are uniformly bounded in L? (for [ — o0o). Therefore there
exist v, € L*(Q), vy € LA(T), G € L*(Q)¢, H € L*("% " and J, € L*(T,), a € X, and a
subsequence still denoted by (vp: , U, )ien such that

p vpr — vy, in L2(Q),

Vp,vpr — G in L*(Q),

HszvD; —wv; in LA(D),

VDfUD; — H in Lz(F)CH,

ﬁpfvpzf — 11 vpr — J, in L*(Ty), for a € x.

Using limit conformity we obtain (by letting [ — o)
/(G “Qm + v divag,,)dx + /(H g+ vpdiveqp)dr(x) + Z/ TnaQm(Jo — vf)dT(x) =0
Q r o

acx
(8)
for all (qm,qy) € Cfp. X C%f. The statement of the proposition follows now from Lemma 2.1.
0

Corollary 3.1 Let (D')ien be a sequence of gradient discretizations, assumed to be limit con-
forming against reqular test functions (qm,dy) € Cyy

m

X Cﬁf and let (UD’lm,/Ungc)leN be a uni-
formly bounded sequence in X%l, such that Tlp: vpr  and Hpscvpzf are uniformly bounded in L?
(for | — o0 ). Then holds the conclusion of Proposition 3.1.

3.2 Application to (5)

The non conforming discrete variational formulation of the model problem is defined by: find
(up,,, up,) € X3 such that

T
/ AN, up,, - Vp, vp, dx + / AyNVp,up, - Vp,vp,drs(x) + Z/ !
“ r ier YT 26 -1
Z <§Hamqu + (1 — f)H%mqu — HDquf) <H%mvpm — HDfUDf)dT(X) (9)
(a,B)e{(a®(i),aF (1)}

— hmHDvamdx — thDfUDdef(X) = O,
Q r

12



for all (vp,,,vp,) € X3.

Proposition 3.2 Let £ € (3,1] and D be a gradient discretization, then (9) has a unique

solution (up,,,up,) € X9 satisfying the a priori estimate

|, up)llp < C (Il + glaqr) )
with C depending only on &, Cp, A, A, dy, Ef, and Ay,
Proof The Lax-Milgram Theorem applies, which ensures this result. 0
The main theoretical result for gradient schemes is stated by the following proposition:

Proposition 3.3 (Error Estimate) Let u = (up,uy) € V°, q = (qm,qs) € W be the solution
of (4). Let & € (3,1], D be a gradient discretization and up = (up,,,up,) € X§ be the solution
of (9). Then, there exists Cy > 0 depending only on &, Cp, A, Ap,Am, Ag, dy, dy, As,,, and
At such that one has the following error estimate:

m’

ITp, up,, — tnllz2@) + |Mp,up, — usllze@) + 1p,up, — gl z2r)

+ Z 11T, up,, = YoUmllz2(ra) + [|Vtim — Vp, up,, [ 12y + [| Vg — Voo, up, || 2rya—
aEx

< Co(Sp (U, 1) + W (m, ay))-

Proof From the definition of Wp, and using the definitions (4) of the solution u,q and (9) of
the discrete solution up, it holds for all (vp,,,vp,) € Vo

[(vp,., vo,)llD - Wo(am, ay)
/ <VDmUDm “Qm + (HDmU’Dm)hm>dX + / (VDfUDf gy + (HDfUDf)dfhf> dr(x)
Q r
Tf T a
+ Z /r 56— 1 Z (fjaum + (1 = &)ypum — uf> <prvpf - HDvam>dT(x)
el © o (a,8)e{(a®(i),a7T (i)}

/(AmVDmUDm . (vaqu — Vum)>dx + /(AfVDfUDf . (VDquf — Vﬂ,bf))de(X)
Q r
T ~
+ Z/ 2 i 1 Z (HD.fUDf - H%nva)
ier 7 (@B)e{(at (i),aT (i)}
X (é*yaum + (1 = &)vpty — up — My up,, — (1 — £)H%mupm + ﬁpquf)dT(x)
(10)

>

Let us choose wp = (wp,,, wp,) € X3P, s.t. s(wp,u) = Sp(u) and set (vp,,,vp,) = up — wp in
(10). Then holds

||Vum — vaUDm||L2(Q)d + ||V7-Uf — V’DfU/DfHLQ(F)dfl

+ Z ||H%mUDm - ﬁDfUDf — Yalm + Uf||L2(ra) <C- (SD(Um, Uf) + W’D(qnu Qf))7
aEex

with a constant C' > 0 depending only on &, A, Af,xm, Xf, dy, Ef, Asn, and Xﬁn. Taking
coercivity into account leads to the statement of the proposition. 0
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4 Two Examples of Gradient Schemes

Following [7], we consider generalised polyhedral meshes of 2. Let M be the set of cells that
are disjoint open subsets of € such that UKeMK = Q. For all K € M, xx denotes the
so-called “center” of the cell K under the assumption that K is star-shaped with respect to
xr. Let F denote the set of faces of the mesh. The faces are not assumed to be planar for the
VAG discretization, hence the term “generalised polyhedral cells”, but they need to be planar
for the HFV discretization. We denote by V the set of vertices of the mesh. Let Vg, Fg, V,
respectively denote the set of the vertices of K € M, faces of K, and vertices of ¢ € F. For
any face 0 € Fg, we have V, C Vk. Let M (resp. Fs) denote the set of the cells (resp. faces)
sharing the vertex s € V. The set of edges of the mesh is denoted by £ and &, denotes the set
of edges of the face o € F. Let F. denote the set of faces sharing the edge e € £, and M,
denote the set of cells sharing the face o € F. We denote by F..; the subset of faces o € F
such that M, has only one element, and we set &..; = UU6 Fons Esyand V. = er 7., Voo The
mesh is assumed to be conforming in the sense that for all o € F \ F.u, the set M, contains
exactly two cells. It is assumed that for each face o € F, there exists a so-called “center” of

the face x, such that
X = Z Ba,s Xs, with Z 50,5 = 17

S€EVo SEVo
where 8,5 > 0 for all s € V,. The face o is assumed to match with the union of the triangles
T, . defined by the face center x, and each of its edge e € &,.

The mesh is assumed to be conforming w.r.t. the fracture network I' in the sense that there
exist subsets Jr,, ¢ € I of F such that

ri=J o (11)

We will denote by JFr the set of fracture faces J;c; Fr,. Similarly, we will denote by &r the set
of fracture edges UUE 7 &, and by Vr the set of fracture vertices UUe 7 V,.

We also define a submesh 7 of tetrahedra, where each tetrahedron Dk , . is the convex hull
of the cell center xx of K, the face center x, of ¢ € Fi and the edge e € &,. Similarly we
define a triangulation A of I', such that we have:

T = U Dkose and A= U The.
KeF,0ceFKk,e€EEs oc€Fr,e€Es

We introduce for D € T the diameter hp of D and set h = maxpes hp. The regularity of our
polyhedral mesh will be measured by the shape regularity of the tetrahedral submesh defined
by 07 = maxper Z—g where pp is the insphere diameter of D € T.

The set of matrix x fracture degrees of freedom is denoted by dofp X dofp ;- The real
vector spaces Xp, and Xp ; of discrete unknowns in the matrix and in the fracture network
respectively are then defined by

Xp,, =span{e, | v € dofp,_}
XDf = Span{el/ | ve dOfo}7

where

¢ — (5Vu)u6dofpm for v € dofp
s (5Vu)u€dofbf for v € dofp,.
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For up,, € Xp,, and v € dofp_ we denote by u, the vth component of up, and likewise for
up, € Xp, and v € dofo. We also introduce the product of these vector spaces

XD = Xpm X pr,
for which we have dim Xp = #dof p,, + #dofp, .

To account for our homogeneous boundary conditions on 0€2 and ¥, we introduce the subsets
dof p;,,. C dof p_, and dowaf C dofo, and we set dof p;, = dof p;,. X dofDirf, and

X2 ={u€ Xp|u, =0 for all v € dof p,, }.

4.1 Vertex Approximate Gradient Discretization

In this subsection, the VAG discretization introduced in [7] for diffusive problems on hetero-
geneous anisotropic media is extended to the hybrid dimensional model. We consider the Py
finite element construction as well as a finite volume version using lumping both for the source
terms and the matrix fracture fluxes.

We first establish an equivalence relation on each Mg, s € V, by

K=pm,L <= thereexists n € N and a sequence (0;);=1,_, in Fs\Fr,
such that K € M,,,L € M,, and M,,,, N M,, #0

fori=1,...,n—1.

Let us then denote by M, the set of all classes of equivalence of M, and by K, the element
of M, containing K € M. Obviously My might have more than one element only if s € Vr.
Then we define (cf. figure 2)

dofp,, = MU{K, | o€ Fr,K € M.} U{R, | s € VK, e M, },
dofo =Frur,
Aof pir,, = { K. | s € Vorr, K € M.},
dof pir; = Vo N Vear-
We thus have
Xp, = {ux | K e M}u{ur, | o€ Fr, K € M, }
u{uE | sev,Keﬂs}, (12)
Xp, = {ug ‘ o€ ]-"p} U {us | s E VF}.
Now we can introduce the piecewise affine interpolators (or reconstruction operators)
r: Xp, — HY(Q\I) and Ia: Xp, — HY(T),

which act linearly on Xp, and Xp,, such that IIrup,, is affine on each Dk, . € T and satisfies
on each cell K € M

Hrup,, (XK) = uk,

Hrup,,(xs) = uz, Vs € Vg,

HTUDW(XJ) = UK, Yo € Fxg N Fr,

HTqu(XO') = z}; BU,SUKS Yo € FK\FF,
s€Vo



Figure 2: Cell K touching a
fracture face o. Illustration
of the simplices on which:
Red: Vp,, is constant.
Grey: Vp, is constant.

while ITaup ;18 affine on each 7T, . € A and satisfies for all v € dofp ;

Maup, (x,) = u,,

where x, € ) is the grid point associated with the degree of freedom v € dofp U dof p R The

discrete gradients on Xp,, and Xp, are subsequently defined by
va = VHT and fo = VTHA.
We define the VAG-FE scheme’s reconstruction operators by

o HDm = HT?
o llp, = ﬁDf = la,

o II;, =1.lIly foralla€ x.

(13)

(14)

For the family of VAG-CV schemes, reconstruction operators are piecewise constant. We

introduce, for any given K € M, a partition

F:EKU( U wKK)u< U wK[,>.

SEVEK \Vext oceFgNFr

Similarly, we define for any given ¢ € Jr a partition

E:wgu< U ww).

SGVU\Vext

With each s € V \ V., and K, € M, we associate an open set Wg,, satisfying

(,UFS = U w K,?s.
KeKs

Similarly, for all s € Vp \ Ve, we define wy by
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We obtain the partitions

ﬁ:( U wy>, F:( U wy)

vedofp, \dof piry, VedOfo\dOfDirf

We also introduce for each 7" = T, ; ¢+ € A a partition T = Ulei-, which we need for
the definition of the VAG-CV matrix-fracture interaction operators. We assume that holds
|T1| = |To| = |T5| = 3|T'| in order to preserve the first order convergence of the scheme.

Finally, we need a mapping between the degrees of freedom of the matrix domain, which
are situated on one side of the fracture network, and the set of indices x. For K, € dofp
we have the one-element set x(K,) = {a € x | ng, = n, on o} and therefore the notation
a(K,) =a € x(K,).

The VAG-CV scheme’s reconstruction operators are

[ ] HDmqu = g uyle7
vedof p,, \dof pir,
[ H’Dfu’Df = E uylwya

vedofp \dof pir

° ﬁDquf = Z (Uo—lTl + uslTQ + U5/1T3),
T 1EA

0,5,5

° H%mqu = Z Z (UK(, 1T1 + UF, 1T2 + Ufs, 1T3)6Q(K0)041Fa’
T, . €A KEM,

0,8,8

Remark 4.1 The VAG-CV scheme leads us to recover fluxes for the matriz-fracture interac-
tions involving degrees of freedom located at the same physical point (see subsection 4.3).

Proposition 4.1 Let us consider a sequence of meshes (M')en and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape reqular, i.e. 011 is uniformly bounded. We
also assume that lim;_,o, hn = 0. Then, the corresponding sequence of gradient discretizations
(DY)ien, defined by (12), (13), (14), is coercive, consistent and limit conforming.

Proof The VAG-FE scheme’s reconstruction operators are conforming, i.e. Vp C V% There-
fore we deduce coercivity from Proposition 2.1. Furthermore we have by partial integration
Who(am,qy) = 0 for all (qm,qr) € W. Hence (D')en is limit conforming.

To prove consistency, we need the following prerequisites. We define the linear mapping
Pp,,: C& — X}, such that for all ¢, € C& and any cell K € M one has

(Pmem)K = wm(xK)a
(P'mem)fs = 7an"L(Xs) Vs € VK,
(PDm¢m>Kg = wm<xo) Vo € Fx N Fr.

Likewise, we define the linear mapping Pp,: C° — X%f such that for all ¢y € C}° holds
(Pp,Yy), = ¥5(x,) forall v € dofp,. It follows from the classical Finite Element approximation
theory and from the fact that the interpolation » B, (Pp,,¥m)%, at the point x,, 0 € Fx \ Fr

SEVO'
is exact on cellwise affine functions, that for all (¢,,, 1) € Cg° x C¥° holds
|17 Pp,, v — Yl gror) + [HaPp,br — Vpllmay < C(m, ¥y, 07)hr (16)
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The trace inequality implies that for all v € H}o(Q\T') holds

atllzzen) < CEOD) [0l ey for a € x.

We can then calculate for (u,,,us) € Cg° x Cp*:

Sp(ttmy17) < V2|7 P, — | nry + D Va7 Pp, tin — )| 22(r,)
aEx
+ ) VBITaPp,us — ugllmr,
el

< C(Q\Fa #Xa #[7 (uma Uf), 97) hT'

Since CF x Cf° is dense in VO, the sequence of VAG-FE discretisations (D!, );en is consistent
it hw — 0 and 071 is bounded for [ — oo. 0

Proposition 4.2 Let us consider a sequence of meshes (M')ien and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape regular, i.e. O is uniformly bounded. We
also assume that lim;_,, h.n = 0. Then, any corresponding sequence of gradient discretizations
(DY)ien, defined by (12), (13), (15), is coercive, consistent and limit conforming.

Proof We combine Lemma 3.1 and Proposition 4.1. Thus, we have to show that the assump-
tions of Lemma 3.1 are satisfied, where (51) 1en corresponds to the sequence of VAG-CV gradient
discretisations and (D');en to the corresponding sequence of VAG-FE gradient discretisations.

For the following, we define 7 = |, Jr, and V* = |J,c . Vs To ease the notation in the
proof, we will use, for a € x, the uniquely identified mapping p®: V* U F* C dof p ; dofp, ,

defined by u®(c) = K, (such that x(K,) = {a}) and p®(s) = K, (for a cell K such that
K € M, with ¢ € F*N F, and x(K,) = {a}). Let now « € x be fixed. Since the mesh is
conforming with respect to the fracture network, there is for every o € F* e = ss’ € &, a

v(o,e) € {o,s,s'}, such that

P |(Ip,, vp,, — p,vp, ) (x)| = [(Up, vp,, — p,vp, ) (Xu(0,e))| = [Vuo (o)) = Vu(oe)l-

Then we have

T 2 2
113, vp,, — Tp,vp, 72wy < D D 1 Toelltpewioe) = Voo
cEF® e€y
< 3|1y, vp,, — p,vp, |72,
We have to check (6) now. It can be verified that [4], Lemma 3.4 applies to our case, both, in the
matrix domain, where face unknowns might occur, as well as in the fracture network, a domain

of codimension 1. This means that we can state that there exist constants C,,(67), Cr(67) > 0,
such that

Mp,, up,, —p,vp,,[[120) < Com - hr - VD, 00, [l 2ye  and (17)
ITip,vp, — Tp,vp, | r2r) = Tlp,vp, — p,vp, |l r2ry < Cy - ha - | Vo, v, [l pagryas (18)

For the following calculation we take into account [4], Lemmata 3.2 and 3.4. We also use that
the mesh is conforming with respect to the fracture network and that for o € F and K € M,
(or equivalently for K € M, o € Fk) holds: hi is asymptotically equivalent to h, and |K]| is
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asymptotically equivalent to h,|o|, where hx := maxrspcx hp and h, := maxasrc, hr. Let
a€y, o€ F*and K € M,, such that x(K,) = {a}. Then we have

HH%vam - ﬁ’DmUDm“%Q(o‘) = || Z Uua(u)(HDfeu - ﬁDfev)“%?(a)
ve{a}u(Vs)
<C ol Y (Vuags) = vuo(e))?
SEVU
|K| 2 2 2
<C- ’hK| <Z(UK5_UK) + Z (UKO'_UK> ) SC'hU'HvaUDmHLz(K)d‘
SEVK oc€EFNFr
Therefore
113, vp,, = Op, vp,. 72y < Y 1115, vp,, =y vp,, |20 < C - ha - V5,00, 117> -
oceF™
(19)
Altogether we obtain
Ip,,vp,, — p,,vp,, |l22(0) + ITp,vp, — Ip,vp, || 21y + HﬁDfUDf —IIp,vp, || 2(r)
. 1
+ Z ||Havam - HDva77L L2(Fa) S C ' (hT + hA + hZ) : ||(UD’"L’ UDf)||D’
aex
with a constant C' depending only on #x and #7. This proves that (6) is satisfied. O

1
Corollary 4.1 The precedent proof shows that Sp(um,ur) = O(h%) for (uy,,us) € CF x CF°
1
and that Wp(Qm, q5) = O(h3) for (am,qy) € Cy xCyy, . However, we can prove a higher order

of convergence, i.e. Wp(Qm, dy) = O(ht) for (am, qay) € O, x Oy, and Sp(up, uy) = O(ht)
for (p,,ur) € CF x CF°.

Proof Consistency: Classically, for all (¢, ¢f) € Cg° x CF°, we have the estimate

[T, Pp,,om — emllz2@) + I1p,, Pp,,#m — Ya¥mll z2(ra)
+ |[1p, Pp, oy — oyl 2y + [[p, Pp,wy — 0flln2ry < cst(om, @y) - hr,
while (16) grants that holds

IV, Pp,,om — V2@ + Vo, Pp,or — Vollrewy < est(om, o5, 07)hr

Taking into account that Cg° x CF° is dense in V, we see that the treated discretisation is
consistent with Sp(¢m, ¢r) = O(hy) for (pm,¢r) € CF x C.

Limit Conformity: For all T € A and for all up,, € Xp  we have that
/(H%mupm - ﬁ%mqu)dT(X) = 0.
T

Introducing the linear operator P : L?(T',) — L?*(T',) such that P(p) = % Jpedr(x) on T for
all T € A, we first calculate for any q,, € Cj

[m.09m = P(n,09m HL2 (Ta) Z Z [Vn,a@m — (f)/n,an)H?ﬁ(T) < C(qm, b7) - h%"

gEFq AT Co
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We proceed:
| Vn,aqm(H%mqu - ﬁ%mqu)dT(X)|
o

= | ('7n,aqm - P(’Vn,aqfn))(n%mu@m - ﬁ%mqu)dT(X>|
Ta

< H’Vn,an - P(Vn,aqm)HLQ(FQ)HH%mqu - ﬁ%mqu HLQ(FQ)
3
< C(am, 07)h7 |V, up,, |20

for all g, € Cfy, , where we have used (19) in the last inequality. We can now conclude by
calculating for all for q = (q,,,qy) € Cfp X C’“}V‘)f

wg(up,q) = (wg — wp)(up,q)

= / divqm(ﬁpm — Hpm)qudX + / diVqu(ﬁDf — HDf)U,Dde(X)
Q r

+ Z/ ”}/naqm((ﬁpf — ﬁDf)qu — (ﬁpf — pr)qu — (ﬁ%m — H%m)UDm>dT(X>
acyx Pa

< |[lp,,up,, — p,,up, |2 - [divam||z2@)

+ ||HDfUDf - ﬁDfUDfHL‘Z(F) : ||diVqu||L2(F) + Z((HﬁDfUDf - ﬁDfUDfHL?(Fa)

acx

+ [[Tp,up, — Mp,up, [l 2(r0)) - Vaalmll 2200

+/ Ya,a¥m (I, up,, — ﬁ%mubm)dT(X)> < C(0r,q) - hr - ||lup|lp,

where we have taken into account the conformity of D in the first equation and (17), (18) in
the last inequality. O

Remark 4.2 The proofs of Propositions 4.1 and 4.2 show that for solutions (u,,us) € V° and
(am, ay) € W of (4) such that u,, € C*(K), uy € C*(7), am € (CY(K))?, a5 € (C(7))*! for
al K € M and all 0 € I'y, the VAG schemes are consistent and limit conforming of order 1,
and therefore convergent of order 1.

4.2 Hybrid Finite Volume Discretization

In this subsection, the HFV scheme introduced in [8] is extended to the hybrid dimensional
Darcy flow model. We assume here that the faces are planar and that x, is the barycenter of
o for all o € F.

The set of indices dofp,, x dofp, for the unknowns is defined by (cf. figure 3)

dofp = MU (U MU>

oeF

dOfo = ./T"F U gp,

dOfDirm = —Femh
dOfDirf = SF N gexta
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Figure 3: Cell K touching a
fracture face o. Ilustration
of the polyhedron and poly-
gone on which:

Red: Vp,, is constant.
Grey: Vp, is constant.

where for 0 € F and K € M,

= _[ M, ifoeF\F
*TVU{K}  ifoe R

and M, = {K, | K € M,}. We thus have
XDm:{UK‘KEM}U{UFG|O'€J—"F,KUEMU},

pr:{ug‘aE}"p}U{ue ‘666}}. (20)

The discrete gradients in the matrix (respectively in the fracture domain) are defined in
each cell (respectively in each face) by the 3D (respectively 2D) discrete gradients

Vp,, (resp. Vp,) as proposed in [8], pp. 8-9. (21)

The function reconstruction operators are piecewise constant on a partition of the cells and
of the fracture faces.
These partitions are respectively denoted, for all K € M, by

F = wK U ( U wK7FU>,
UE./—'K\]'—EM

and, for all o € Fr, by

Ezw(,u< U wa,e)

eega\geact

With each o € F \ Four and K, € M, we associate an open set wg,, St

Similarly, for all e € & \ &,y we define w, by

o= |J e

oEFNFr
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We obtain the partitions Q = <Ul’ed0f’l)m\d0fDirm w,,) I'= (UVEdOfo\dOfDirf wz/)'

We also need a mapping between the degrees of freedom of the matrix domain, which

are situated on one side of the fracture network, and the set of indices x. For o € Fr and
K, € M, holds by definition K, = {K} for a K € M, and hence ngz = ng, is well defined.

We obtain the one-element set x(K,) = {a € x | ng, = n, on o} and therefore the notation

a(K,) = a € x(K,).
We define the HF'V scheme’s reconstruction operators by

o l_IDmu'Dm == Z uulwya
vedof p,, \dof pirp,
) HDquf = Z U,Vlwy,
R VEdofo\dofDin (22>
o llp,up, = Z Usls,
o€Fr
o I3 up, = Y Y. Oumatr, 1o forallacy.

O’Efr‘ ?aeﬂa

Proposition 4.3 Let us consider a sequence of meshes (M%)en and let us assume that the
sequence (T')en of tetrahedral submeshes is shape reqular, i.e. 011 is uniformly bounded. We
also assume that lim;_,o hon = 0. Then, any corresponding sequence of gradient discretizations
(DY) 1en, defined by (20), (21) and definition (22), is coercive, consistent and limit conforming.

Proof Let us denote in the following by Iy, and I = ﬁ; the HFV matrix and fracture
reconstruction operators for the special case that wg = ) = w, for all K, € UU6 F M, and
e € &r. We start our numerical analysis for HF'V by proving the proposition for these special
choices and then use Lemma 3.1 for generalizing the results.

Coercivity: ~ We first prove that limit conformity against regular test functions, as proved
below, implies coercivity.

Assume that the sequence of discretizations (D!);en is not coercive. Then we can find a
sequence ((up; , UD?))ZGN with (U’D’lm,u'D;) € X7, such that

1
”HDinuDinHL?(Q) + ||HD;UD;||L2(F) =1 and ||(UD£naule)||Dl < T (23)

Then follows from a compactness result of [21] that there exists a u = (uy,, ur) € L*(Q) x L*(T),
s.t. up to a subsequence

(p upt HDiqu?) — (U, uy) in L*(Q) x L*(I") ( for I — o0)

and therefore ||up, | r2) + [|uf|lr2ry = 1. On the other hand follows from the discretizations’
limit conformity against regular test functions (see below) by Proposition 3.1 and Corollary 3.1
that (u,,us) € V? and that up to a subsequence

mevpgn — Vv, in LZ(Q)d,
VDfUD? — VT’Uf in LQ(F)dfl,

Hp,vp, = vpy, — vf = Yot in L*(T,), for a € x.
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Since by construction holds H(umn,up;)HDz — 0, we obtain ||(um, us)|lyo = 0. But || - ||yo is a

norm on V?, which contradicts the fact that w2 + |Jug| 2@y = 1.

Consistency: For (¢m, ) € CF x CF° let us define the projection Pp, ¢, € X§ such that
for all cell K € M one has

(PD7YL(pm)K = (pm(XK)7
(PDmSOm)FU = Pm(X,) Vo € Fk,

and the projection Pp oy € X%f such that (Pp,¢f), = ¢s(x,) for all v € dofp,. Let us set
vp = (Pp,,¢m, Pp,py). Then holds

vk — emllz2) < Cop - hy - |K|2 for K € M,
where C,,, = maxq ||Vg,,||. Summing over K € M yields
1
[Tlrmvp,, — omllz2@) < Co,, - b - Q2.
We also have

l [— JE—
v, = YamllL2r,) < . - hr- lo|2 foroc e F¢, K, € /\/l:

Q

e = maxr, ||V 7a@nl, from which we obtain

where ¢

1
1115, 0D, = YaPmll2@ra) < g, - by - [Lal?.
Analogously we can derive
1
Mrvp, = @sllrzw) < cpp - hr - |12,

where c,, := maxr ||V ¢;||. Furthermore, it follows from Lemma 4.3 of [8] that there exists
C > 0 depending only on #+ and ¢ such that

IVp,.vp,, = Vo2 + [[Vo,vp, = Vol L2y < Chr

Taking into account that C& x C2 is dense in V| we see that the treated discretisation is
consistent.

Limit Conformity: Let ¢, € Cjy and for all K € M, o € Fg let g = ﬁ [ mdx and

PKo = Fll |, Tk, Pmdr(x). In exactly the same manner as [19], (29)-(31) are proved, we can
show that holds

AR up,, < Chrl|Vo,,up,, || 12(q) and (24)
A, u, + A up, Y [ oo (1T, um, Jdr(x)
aEx Ta

- Z Z of(ux — ug, ) (YKo — PK) DKo, (25)

KeMoeFg
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where

Aumqu = Z Z lo|(uz, —uk)Px DKo,

KeMoeFk
A2 = R d
Dy WDy, *= K,U(qu)nK,U' PmdX,
KeM oeFx Dk .o
2 .
AL up,, = E g lo|uk @Ko - NK.» and
KeMoeFg

Ap, up,, + Ap, up,, + Ap up,, = / (VDmqu Pm + (HMUDm)diV(SOm))dX»
Q

with the definition of the gradient stabilization term Ry ,(up,,) as in [8], pp. 8-9. Therefore,
applying Cauchy-Schwarz inequality to (25), using the regularity of ¢,,, and the estimate (24),
we deduce that there exists C' depending only on ¢,,, 67, such that

/(meupm “Pm + (HMqu)diV(cpm))dx - Z/ Tna@m(lp, up,,)d7(x) < Chr|[Vo, up, || 120y
0 o

acx

Taking into account the result [19] (33), i.e. for all ¢ € Cy, exists a constant C' > 0 depending
only on 67, such that

| [ (V00,5 + (Mzun, iv(ees) ) ar(x)
< Chal|Vp,up, || 21,
we obtain all together
wp(up,q) < C - hr - ||up|p for all q € Cyy | x Oy,

This result is shown above to imply coercivity, which is needed to conclude now.
Finally, using that Cyy < Cpp, is dense in W and the coercivity of the scheme, we derive
limit conformity on the whole space of test functions.

Generalization to arbitrary HFV discretizations: ~ We want to apply Lemma 3.1. From [§]
Lemma 4.1 and [21], it follows that there are positive constants C,, and C; only depending on
07+ and d, such that for all up € Xp holds

Ty = D Y lwkr, l(uk —ug )* < Co - by - IVp,,up,, |72y

[Mrup,, — p,,up,,

KeMoeFk
||H-7:UDf - HDquf”%Q(F) = Z Z |w0,e|<u0 - u6)2 < Cf : h2A ’ HvaquHiz(p)d*l'
O’E]:F ecy

The remaining conditions of Lemma 3.1 are trivially satisfied, from what follows the statement
of the proposition. O

Remark 4.3 The precedent proof shows that for solutions (um,uys) € VO and (qm,qy) € W
of (4) such that u,, € C*(K), uy € C*7), qm € (C*(K))¢, q; € (CY(7))?! for all K € M
and all 0 € T'y, the HF'V schemes are consistent and limit conforming of order 1, and therefore
convergent of order 1.
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4.3 Finite Volume Formulation for VAG and HFV Schemes

For K € M let
dofr — {K..s € Vk} U{K,,0 € Fix N Fr} for VAG,
K {K,,0 € Fg} for HFV.

Analogously, in the fracture domain, for o € Fr let

dof, — V, for VAG,
%le =9 & for HFV.

Then, for any v € dofk the discrete matriz-matriz-fluxes are defined as

FKV<qu) = Z </I‘( Ammee,,meeV/dx> (UK — ul,/).

v edofr

such that [, A, Vo, up, Vo, vp,dx = 3 > vedofy Frv(up,)(vg —v,). For all v € dof,
the discrete fracture-fracture-fluxes are defined as

Fo(up) = Y ( / Afvpfeuvpfey,de(x)>(ug — ),
V' Edofs g

such that fr AVpup,Vp,vp,drs(x) = deﬁ Zyedofa F,(up,)(vs—v,). To take interactions
of the matrix and the fracture domain into account we introduce the set of matriz-fracture (mf)
connectivities

C = {(Vm,vy) | Vm € dofp, ,vs € dof p, s.b. Xy,, =Xy, }
with dof, = {v € dofp, |x, € T'}. The mf-fluxes are built such that
ap,, s ((qua qu)? (UDm7 va)) = Z FVme<qu’ U’Df)(vl/m - UVf)
(val’f)ec
= Z/ f — 1 <£Hamqu + (1 - f)Hlﬁ)mqu - ﬁpquf) (H%mUDm - ﬁDfUDf)dT(X),
(a (l) Oé:F(l))}

for all (vp,,, vpf) € Xp. Forall o € Fr and K € M,, let us denote by a(K, o) the unique o €
such that o € F, and n, = ng,. Let us also set for all 0 € Fr, (x X x)o = {(a(K,0), (L, 0)),
(a(L,0),a(K,0))} with M, = {K,L}. Then, holds

ap,., ((up,,,up,). (v, vpf>) =

Z Z / 2% — 1 up,, + (1 — f)H’%mqu — ﬁDquf) (H%mvpm — ﬁDf'UDf>dT(X)_

o€FT (a,B)E(XXX) o

For all 0 € Fr, K € M, and x € o, let us notice that, for the VAG scheme, one has

"7 ee (%) = Tlp,eq(x), and M5 7e KS( x) = Ip,e,(x) for all s € V,, and for the HFV

scheme, one has H%(f’a) ez, (x) = HD seo(x) = 1],. It result after some computations that the

VAG matrix fracture fluxes are defined by

Fi,o(up,,, up;) = Z </J 2§Ti 1(ﬁDer)(ﬁDfes)dT(x)> <§UK + (1 =&ug, — u8>

SEVs

+ ([ e ingen)ar()) (u, + (1= us, = ur).
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for all 0 € Fr, M, = {K, L} , and by

Fg (i, un) = 3 > A

o€(Ugeg, FQ)NFsNFT KeM,nQ,, LEM,\{K}
([ 3¢ 5 finge0ar(0) (€ur, + (1= Oz, —u.)
+ Y ( /G %(ﬁpfesf)(ﬁpfes)dr(x)) <§ugs, +(1— &g, —us,)

s'€Vy | 88’ €€

([ g Ty fln,)dr (o) (S, + (1= e —r) -}

for all s € Vr, Q, € M. Similarly the HFV matrix fracture fluxes are defined by

Froo u,n) = 5 ([ Tx)ar(x)) (€un, + (1= u, =),

for all 0 € Fp, M, ={K,L}. N N
We observe that for the VAG-CV scheme (since [ T(Ilp,eq)(Ilp,e,)dr(x) = 0 for s # o'

and fa Tf(ﬁpfeo-)<ﬁpf€8>d7'(x> = 0) as well as for the HFV scheme, the fluxes F,
involves the d.o.f. located at the point x,, = >
The discrete source terms are defined by

only

mVf

/ hyIlp, e,dx for v € dofp_,
H, =

fhfﬂpfe,,drf(x) for v € dofp, .
r

Figure 4: mm-fluxes (red), mf-fluxes (dark red) and ff-fluxes (black) for VAG (left) and HFV
(right) on a 3D cell touching a fracture

The following Finite Volume formulation of (5) is equivalent to the discrete variational
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formulation (9): find (up,,,up,) € X3P such that

foral K e M: > Fg,(up, )= Hg

vedofk
for all o € Fr: > Fgu(UDf) - > Fumo(UDmaqu) =H,
vEdofs vm€Edofp,,

s.t. (vm,0)€C

for all v, € dofp,, \ (MU dof ;. ) :

- Z FKV’m (qu) + Z FVmV (U’Dm7 Up ) = HVm
f f
KeM,y,, VfEdOffo
s.t. (vm,vy)eC

for all vy € dofp, \ (Fr U dof p;;,) :

_ Z Fon(UDf> - Z Fl/ml/f(qu’qu> = Hl/f_
oe]-‘p,,,f vm€dofp,,
s.t. (vm,vy)€eC

\

Here, M,,, stands for the set of indices { K € M | v, € dofx} and Fr,, stands for the set
{o € Fr | vy € dof,}.

It is important to note that, using the equation in each cell, the cell unknowns ug, K € M,
can be eliminated without fill-in.

5 Numerical Results

The objective of this numerical section is to compare the VAG-FE, VAG-CV, and the HFV
schemes in terms of accuracy and CPU efficiency for both Cartesian and tetrahedral meshes on
heterogeneous isotropic and anisotropic media. For that purpose a family of analytical solutions
is built for the fixed value of the parameter £ = 1. We refer to [12], [3], [2] for a comparison
of the solutions obtained with different values of the parameter { € [%, 1] with the solution
obtained with a 3D representation of the fractures.

Table 1 exhibits for the Cartesian and tetrahedral meshes, as well as for both the VAG
and HFV schemes, the number of degrees of freedom (Nb dof), the number of d.o.f. after
elimination of the cell and Dirichlet unknowns (nb dof el.), and the number of nonzero element
in the linear system after elimination without any fill-in of the cell unknowns (Nb Jac).

In all test cases, the linear system obtained after elimination of the cell unknowns is solved
using the GMRes iterative solver with the stopping criteria 1071°. The GMRes solver is pre-
conditioned by ILUT [25], [26] using the thresholding parameter 10~* chosen small enough in
such a way that all the linear systems can be solved for both schemes and for all meshes. In
tables 2 and 3, we report the number of GMRes iterations I/ter and the CPU time taking into
account the elimination of the cell unknowns, the ILUT factorization, the GMRes iterations,
and the computation of the cell values.

We ran the program on a 2,6 GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3
memory.

5.1 A class of analytical solutions

We consider a 3-dimensional open, bounded, simply connected domain 2 = (—0.5,0.5)% with
four intersecting fractures 'y = {(z,y,2) € Q| 2 =0,y > 0}, Tos3 = {(z,9,2) € Q |y =0,2 >
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0}, I'sy = {(z,y,2) € Q| 2 =0,y <0} and 'y = {(z,y,2) € Q |y = 0,z < 0}. We also
introduce the piecewise disjoint, connex subspaces of Q, @y = {(z,y,2) € Q | y > 0,2 < 0},
Qo ={(z,y,2) € Q|y >0,z >0}, Q3 ={(z,y,2) € Q| y <0,z >0} and Q = {(x,y,2) €
Q|ly <0,z <0}.

Derivation: For (u,,,uf) € V, we denote wu,,(z,y,2) = u;(z,y,2) on Q;,i=1,...,4 and
up(x,y,z) = u;;(y, z) on I'y;, ij € J, where we have introduced J = {12,23, 34, 14}. We assume
that a solution of the discontinuous pressure model writes in the fracture network w;;(y, z) =
ap(z) + Bij(2)vij(y), ij € J and in the matrix domain

ur(z,y, 2) = ar(2)uia(y, 2)uis(z, 2)
us(z,y, 2) = ag(2)uia(y, 2)uss(x, 2)
us(x,y, 2) = az(z)usa(y, 2)ugs(zx, 2)
ug(z,y, 2) = ag(2)usa(y, 2)uis(z, 2)

On v,j,1j € J we assume 7;;(0) = 0, such that the continuity of uy is well established at the
fracture-fracture intersection, as well as 7;;(0) = 1, to ease the following calculations. For
i=1,...,4let K; = Ay, and for ij € J let Tj; = Ty [Fij. From the conditions vy oQm =
Tr(Vatm —ug) on I'y, o € x, we then get, after some effort in computation,

o -1 o KlyKZxKSyK4a: )_1
an(2) = (as(2) %4 ;6’;2( K))T | as(2) = (as(2) T T Blz(? ,
o _ 1lyfA 3y 4z L 12 - _ lyfidzL12 -
a(z) = ([O;f(;) KKlmK4yT23T34 512(2)) - 0a?) (oz;{( )K K1, 114734 Pralz )> ’
1y 3y e 12 lydi 4z 12
Bos(2) = o T Ba(2), Pule) = e Pl
514(2) ly 12ﬂ12< ) 1y 22 A 3yHhde -1
leT14 leKQyK3xK4y
(26)
Obviously, we have taken a; and 512 as degrees of freedom, here. However, these functions
must be chosen in such a way that —— 7é 0fore=1,...,4.

Remark 5.1 We would like to emplicitly calculate the jump at the matriz-fracture interfaces
for this class of solutions. At I';; we have

ui(O,y,z) - Uj(O,y, Z) = (al(z) - CYj(Z)) : af(z) : uij(y72>v fO?“ Z] € {12734}
ui(x,0,2) —uj(x,0,2) = (a;(2) — aj(2)) - ap(2) - ui(x, 2), forij € {23,14}.

From (26), we observe, that the pressure becomes continuous at the matriz-fracture interfaces,
as the T;; tend to oo uniformly.

Remark 5.2 In order to obtain solutions with discontinuities at the matrix-fracture interfaces,
we had to omit the constraint of flux conservation at fracture-fracture intersections.

5.2 Test Case

We define a solution by setting a;(z) = e*™™) B5(2) = —1, y12(y) = cos(2my) +y — 1,

o3(z) = 2, Ya(y) = =€ 4y te, yy(z) = 2D
test cases are

. The parameters we used for the different
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e [sotropic Heterogeneous Permeability:

K = Ky = Ky, = 1, Koy = Ky = Ky, = 100,
Ksy = K3y = K3, = 3, Kyp = Ky = Ky, = 40,
Tio =1, To3 =0.2, T3y =100, T4 = 10,

Ky =1, Koz =2, K3y =3, K14 = 10.

e Anisotropic Heterogeneous Permeability:

Ky, =K, =1, Ky, =50, Ky, = Ky, =2, Ky, =100,
Ksy = K3, =3, K3, =30, Ky, =4, Ky = Ky = 40,
Tip =Ty =13 =Tia = 1,

Ky = Kog = K3s = K1y = 1.

In the following figures we plot the normalized L? norms of the errors, which are calculated as
follows:

HHDmqu _u7rL||L2(Q)+”H’Dquf _ufHLz(F)

||umHL2<Q)+||“f ||L2(F)

e normalized error of the solution: erry,; =

VD1 0, =Vt |
V]

aHIVpup, =Vrug|

L2(9) r2(m¢—?

d+||VTUf||

e normalized error of the gradient: erry.q,q =

12(Q) L2@m4-1

In the following tables is additionally found the normalized error of the jump:
Yoy M, 4Dy =MD up; —Yaum+usll g2,
Ean ||’Ya“m+“fHL2(ra) ’

erT jump =

VAG | HFV

Hexahedral Meshes

Key | Nb Cells | Nb dof | Nb dof el. | Nb Jac | Nb dof | Nb dof el. | Nb Jac
1 512 1949 1437 31253 2776 2264 20696
2 4096 11701 7605 178845 19248 15152 150320
3 32768 79205 46437 1154861 | 142432 109664 1141856
4 262144 578245 316101 8152653 | 1093824 831680 8892608
5 2097152 | 4408709 2311557 | 60910733 | 8569216 6472064 70173056

Tetrahedral Meshes
6 1337 2514 1177 18729 4943 3606 22642
7 10706 15765 5059 81741 35520 24814 164246
8 100782 131204 30422 492158 317367 216585 1474817
9 220106 279281 59175 956659 685718 465612 3190244

10 428538 533442 104904 1694008 | 1324614 896076 6167300
11 2027449 | 2452416 424967 6818299 | 6193783 4166334 | 28862986

Table 1: Key defines the mesh reference; Nb Cells is the number of cells of the mesh; Nb
dof is the number of discrete unknowns; Nb dof el. is the number of discrete unknowns after
elimination of cell unknowns; Nb Jac refers to the number of non-zero Jacobian entries after
elimination of the cell unknowns and equations.
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HETEROGENEOUS PERMEABILITY - HEXAHEDRAL MESHES
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1E-02

1E-03

1E-04 ¢ E

NORMALIZED L2-NORM OF THE ERROR

1E-05 -
1E-02 1E-01 1E+00 1E+01 1E+02 1E+03

CPU TIME
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Figure 5: Heterogeneous Permeability: Comparison of VAG-FE and HFV on hexahedral and
tetrahedral meshes.
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Figure 6: Anisotropic Permeability: Comparison of VAG-FE and HFV on hexahedral and
tetrahedral meshes.
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‘ Heterogeneous Permeability: VAG

Hezahedral Meshes

Key | Iter | CPU errsol eTTgrad | €T jump | Qsol | Ograd | Qjump
8 1.34E-2 | 5.78E-3 | 1.74E-2 | 8.99E-3 | 1.92 | 1.97 | 1.83
12 0.11 1.53E-3 | 4.44E-3 | 2.53E-3 | 1.92 | 1.97 | 1.83
22 0.98 3.92E-4 | 1.14E-3 | 6.72E-4 | 1.97 | 1.96 | 1.91
41 8.86 9.89E-5 | 2.91E-4 | 1.73E-4 | 1.99 | 1.97 | 1.96
5 79 87.91 | 2.48E-5 | 7.40E-5 | 4.40E-5 | 1.99 | 1.98 | 1.98

Tetrahedral Meshes
6 7 5.82E-3 | 2.01E-2 0.14 2.25E-2 | 1.80 | 0.94 | 1.68
7 10 | 3.73E-2 | 5.78E-3 | 7.09E-2 | 7.03E-3 | 1.80 | 0.94 | 1.68
8 20 0.41 1.44E-3 | 3.52E-2 | 1.81E-3 | 1.86 | 0.94 | 1.82
9 26 1.00 8.11E-4 | 2.71E-2 | 1.06E-3 | 2.20 | 1.01 | 2.06
10 32 2.11 5.60E-4 | 2.19E-2 | 7.36E-4 | 1.67 | 0.95 | 1.62
11 53 12.92 | 1.92E-4 | 1.31E-2 | 2.58E-4 | 2.07 | 1.00 | 2.03

=] | DN —

\ Heterogeneous Permeability: HFV

Hexahedral Meshes

Key | Iter | CPU errsol CTTgrad | €TTjump | Xsol | Qgrad | Ojump
11 | 1.18E-2 | 1.34E-2 | 4.3E-2 | 2.15E-2 | 1.94 | 1.80 | 1.98

19 0.13 3.49E-3 | 1.24E-2 | 5.44E-3 | 1.94 | 1.80 | 1.98

35 1.45 8.91E-4 | 3.41E-3 | 1.38E-3 | 1.97 | 1.86 | 1.98

73 20.36 | 2.25E-4 | 9.15E-4 | 3.47E-4 | 1.99 | 1.90 | 1.99

5 141 | 315.38 | 5.65E-5 | 2.42E-4 | 8.69E-5 | 1.99 | 1.92 | 2.00

Tetrahedral Meshes
6 12 | 1.56E-2 | 1.01E-2 0.11 1.74E-2 | 1.88 | 0.96 | 1.73
7 21 0.22 2.74E-3 | 5.87E-2 | 5.24E-3 | 1.88 | 0.96 | 1.73
8 43 3.75 6.07E-4 | 2.75E-2 | 1.17E-3 | 2.02 | 1.02 | 2.00
9 60 10.51 | 3.38E-4 | 2.07E-2 | 6.62E-4 | 2.25 | 1.08 | 2.20
10 73 23.52 | 2.22E-4 | 1.68E-2 | 4.37E-4 | 1.90 | 0.94 | 1.87
11 119 | 166.46 | 7.73E-5 | 9.87TE-3 | 1.58E-4 | 2.03 | 1.02 | 1.96

=W DN =

Table 2: Isotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errso, €r7grad, €17 jump are
the respective L2-errors as defined above; oy, Qlgrad, Qjump are the orders of convergence of the
solution, of the gradient and of the jump, respectively.
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‘ Anisotropic Permeability: VAG

Hexahedral Meshes

Key | Iter | CPU erTol eTTgrad | €T jump | Qsol | Ograd | Qjump
7 | 6.32E-3 | 8.78E-3 | 1.98E-2 | 8.69E-3 | 1.89 | 1.99 | 1.89

9 | 5.56E-2 | 2.37E-3 | 4.97E-3 | 2.34E-3 | 1.89 | 1.99 | 1.89

14 0.67 | 6.15E-4 | 1.24E-3 | 6.06E-4 | 1.95 | 2.00 | 1.95

26 6.35 2.28E-4 | 1.57E-4 | 3.11E-4 | 1.97 | 2.00 | 1.97

5 47 62.65 | 3.95E-5 | 7.78E-5 | 3.89E-5 | 1.99 | 2.00 | 1.99

Tetrahedral Meshes
6 7 1.95E-3 | 2.73E-2 0.13 2.70E-2 | 1.95 | 0.99 | 1.95
7 8 2.14E-2 | 7.05E-3 | 6.76E-2 | 6.98E-3 | 1.95 | 0.99 | 1.95
8 15 0.38 2.56E-3 | 3.92E-2 | 2.53E-3 | 1.35 | 0.73 | 1.36
9 21 1.02 1.34E-3 | 2.84E-2 | 1.32E-3 | 2.49 | 1.24 | 2.49
10 25 2.24 9.26E-4 | 2.22E-2 | 9.14E-4 | 1.66 | 1.10 | 1.67
11 41 13.78 | 3.10E-4 | 1.36E-2 | 3.07TE-4 | 2.11 | 0.95 | 2.11

=W N

‘ Anisotropic Permeability: HFV

Hezahedral Meshes

Key | Iter | CPU erTeol CTTgrad | €TTjump | Xsol | Qgrad | Ojump
9 6.02E-3 | 2.64E-2 | 4.89E-2 | 3.35E-2 | 1.91 | 1.78 | 2.01
16 | 8.48E-2 | 7.02E-3 | 1.43E-2 | 8.30E-3 | 1.91 | 1.78 | 2.01
29 1.13 1.81E-3 | 3.96E-3 | 2.07E-3 | 1.95 | 1.85 | 2.00
55 16.55 | 4.60E-4 | 1.07E-3 | 5.19E-4 | 1.98 | 1.89 | 2.00
5 108 | 248.20 | 1.16E-4 | 2.86E-4 | 1.30E-4 | 1.99 | 1.91 | 2.00

Tetrahedral Meshes
6 10 | 1.41E-2 | 1.77E-2 0.14 1.79E-2 | 1.86 | 0.98 | 1.91
7 19 0.26 4.86E-3 | 7.13E-2 | 4.75E-3 | 1.86 | 0.98 | 1.91
8 37 4.56 1.28E-3 | 3.63E-2 | 1.21E-3 | 1.79 | 0.90 | 1.83
9 47 12.16 | 6.92E-4 | 2.62E-2 | 6.66E-4 | 2.35 | 1.25 | 2.28
10 63 27.96 | 4.75E-4 | 2.16E-2 | 4.68E-4 | 1.69 | 0.88 | 1.59
11 105 | 189.66 | 1.65E-4 | 1.28E-2 | 1.58E-4 | 2.04 | 1.00 | 2.09

=W N

\ Anisotropic Permeability: VAG Lump

Hexahedral Meshes

Key | Iter | CPU errsol €TTgrad | €TTjump | Qsol | Ograd | Qjump
7 | 3.90E-3 | 9.09E-3 | 2.01E-2 | 9.06E-3 | 1.89 | 1.99 | 1.89
9 5.15E-2 | 2.46E-3 | 5.06E-3 | 2.44E-3 | 1.89 | 1.99 | 1.89
15 0.66 6.37E-4 | 1.27E-3 | 6.34E-4 | 1.95 | 2.00 | 1.95
26 6.39 1.62E-4 | 3.17TE-4 | 1.61E-4 | 1.97 | 2.00 | 1.97
5 47 62.19 | 4.09E-5 | 7.93E-5 | 4.07E-5 | 1.99 | 2.00 | 1.99

Tetrahedral Meshes
6 7 | 2.11E-3 | 2.75E-2 0.13 2.73E-2 | 1.95 | 0.99 | 1.94
7 8 2.00E-2 | 7.14E-3 | 6.76E-2 | 7.10E-3 | 1.95 | 0.99 | 1.94
8 15 0.38 2.60E-3 | 3.92E-2 | 2.58E-3 | 1.35 | 0.73 | 1.35
9 21 1.02 1.36E-3 | 2.84E-2 | 1.35E-3 | 2.48 | 1.24 | 2.49
10 25 2.24 9.40E-4 | 2.22E-2 | 9.33E-4 | 1.66 | 1.10 | 1.67
11 41 13.91 | 3.15E-4 | 1.36E-2 | 3.13E-4 | 2.11 | 0.95 | 2.11

=W N| =

Table 3: Anisotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errg, €r7grad; €77 jump are
the respective L2-errors as defined above; g, Qgrad, Ojump are the orders of convergence w.r.t.
#./\/l_% of the solution, of the gradient and of the jump, respectively.
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The test case shows that, on cartesian grids, we obtain, as classically expected, convergence
of order 2 for both, the solution and it’s gradient. For tetrahedral grids, we obtain convergence
of order 2 for the solution and convergence of order 1 for it’s gradient. We observe that the
VAG scheme is more efficient then the HFV scheme and this observation gets more obvious
with increasing anisotropy. Comparing the precision of the discrete solution (and it’s gradient)
for VAG and HFV on a given mesh, we see that on hexahedral meshes, the advantage is on the
side of VAG, whereas on tetrahedral meshes HFV is more precise (but much more expensive).
On a given mesh, HFV is usually (see [19]) more accurate than VAG both for tetrahedral and
hexahedral meshes. This is not the case for our test cases on Cartesian meshes maybe due to
the higher number for VAG than for HFV of d.o.f. at the interfaces I', on the matrix side. It
is also important to notice that there is literally no difference between VAG with finite element
respectively lumped mf-fluxes concerning accuracy and convergence rate.

6 Conclusion

In this work, we extended the framework of gradient schemes (see [7]) to the model problem (4)
of stationary Darcy flow through fractured porous media and gave numerical analysis results
for this general framework.

The model problem (an extension to a network of fractures of a PDE model presented in
[10], [12] and [3]) takes heterogeneities and anisotropy of the porous medium into account and
involves a complex network of planar fractures, which might act either as barriers or as drains.

We also extended the VAG and HFV schemes to our model, where fractures acting as
barriers force us to allow for pressure jumps across the fracture network. We developed two
versions of VAG schemes, the conforming finite element version and the non-conforming control
volume version, the latter particularly adapted for the treatment of material interfaces (cf. [9]).
We showed, furthermore, that both versions of VAG schemes, as well as the proposed non-
conforming HFV schemes, are incorporated by the gradient scheme’s framework. Then, we
applied the results for gradient schemes on VAG and HFV to obtain convergence, and, in
particular, convergence of order 1 for ”piecewise regular” solutions.

For implementation purposes and in view of the application to multi-phase flow, we also
proposed a uniform Finite Volume formulation for VAG and HFV schemes. The numerical
experiments on a family of analytical solutions show that the VAG scheme offers a better
compromise between accuracy and CPU time than the HFV scheme especially for anisotropic
problems.
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