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Gradient discretization of Hybrid Dimensional Darcy
Flows in Fractured Porous Media with discontinuous

pressures at the matrix fracture interfaces

K. Brenner ∗, J. Hennicker ∗†, R. Masson ∗, P. Samier †

September 4, 2015

Abstract

We investigate the discretization of Darcy flow through fractured porous media on
general meshes. We consider a hybrid dimensional model, invoking a complex network of
planar fractures. The model accounts for matrix-fracture interactions and fractures acting
either as drains or as barriers, i.e. we have to deal with pressure discontinuities at matrix-
fracture interfaces. The numerical analysis is performed in the general framework of
gradient discretizations which is extended to the model under consideration. Two families
of schemes namely the Vertex Approximate Gradient scheme (VAG) and the Hybrid Finite
Volume scheme (HFV) are detailed and shown to satisfy the gradient scheme framework,
which yields, in particular, convergence. Numerical tests confirm the theoretical results.
Gradient Discretization; Darcy Flow, Discrete Fracture Networks, Finite Volume

1 Introduction

This work deals with the discretization of Darcy flows in fractured porous media for which
the fractures are modelized as interfaces of codimension one. In this framework, the d − 1
dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading
to the so called, hybrid dimensional Darcy flow model. We consider the case for which the
pressure can be discontinuous at the matrix fracture interfaces in order to account for fractures
acting either as drains or as barriers as described in [10], [12] and [3]. In this paper, we will
study the family of models described in [12] and [3].

It is also assumed in the following that the pressure is continuous at the fracture intersec-
tions. This corresponds to a ratio between the permeability at the fracture intersection and
the width of the fracture assumed to be high compared with the ratio between the tangential
permeability of each fracture and its length. We refer to [14] for a more general reduced model
taking into account discontinuous pressures at fracture intersections in dimension d = 2.

The discretization of such hybrid dimensional Darcy flow model has been the object of
several works. In [10], [11], [3] a cell-centered Finite Volume scheme using a Two Point Flux
Approximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic per-
meability fields. Cell-centered Finite Volume schemes have been extended to general meshes
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and anisotropic permeability fields using MultiPoint Flux Approximations (MPFA) in [13], [16],
and [2]. In [12], a Mixed Finite Element (MFE) method is proposed and a MFE discretiza-
tion adapted to non-matching fracture and matrix meshes is studied in [6]. More recently the
Hybrid Finite Volume (HFV) scheme, introduced in [8], has been extended in [27] for the non
matching discretization of two reduced fault models. Also a Mimetic Finite Difference (MFD)
scheme is used in [1] in the matrix domain coupled with a TPFA scheme in the fracture network.
Discretizations of the related reduced model [28] assuming a continuous pressure at the matrix
fracture interfaces have been proposed in [28] using a MFE method, in [20] using a Control
Volume Finite Element method (CVFE), in [19] using the HFV scheme, and in [19, 5] using an
extension of the Vertex Approximate Gradient (VAG) scheme introduced in [7].

In terms of convergence analysis, the case of continuous pressure models at the matrix frac-
ture interfaces [28] is studied in [19] for a general fracture network but the current state of
the art for the discontinuous pressure models at the matrix fracture interfaces is still limited
to rather simple geometries. Let us recall that the family of models introduced in [12] and [3]
depends on a quadrature parameter denoted by ξ ∈ [1

2
, 1] for the approximate integration in

the width of the fractures. Existing convergence analysis for such models cover the case of one
non immersed fracture separating the domain into two subdomains using a MFE discretization
in [12] or a non matching MFE discretization in [6] for the range ξ ∈ (1

2
, 1]. In [3], the case of

one fully immersed fracture in dimension d = 2 using a TPFA discretization is analysed for the
full range of parameters ξ ∈ [1

2
, 1].

The main goal of this paper is to study the discretizations of such models and their con-
vergence properties by extension of the gradient scheme framework. The gradient scheme
framework has been introduced in [7], [22], [21] to analyse the convergence of numerical meth-
ods for linear and nonlinear second order diffusion problems. As shown in [22], this framework
accounts for various conforming and non conforming discretizations such as Finite Element
methods, Mixed and Mixed Hybrid Finite Element methods, and some Finite Volume schemes
like symmetric MPFA, the VAG schemes [7], and the HFV schemes [8].

Our extension of the gradient scheme framework to the hybrid dimensional Darcy flow model
will account for general fracture networks including fully, partially and non immersed fractures
as well as fracture intersections in a 3D surrounding matrix domain. Each individual fracture
will be assumed to be planar. The framework will cover the range of parameters ξ ∈ (1

2
, 1]

excluding the value ξ = 1
2

in order to allow for a primal variational formulation.
Two examples of gradient discretizations will be provided, namely the extension of the VAG

and HFV schemes defined in [7] and [8] to the family of hybrid dimensional Darcy flow models.
In both cases, it is assumed that the fracture network is conforming to the mesh in the sense
that it is defined as a collection of faces of the mesh. The mesh is assumed to be polyhedral
with possibly non planar faces for the VAG scheme and planar faces for the HFV scheme. Two
versions of the VAG scheme will be studied, the first corresponding to the conforming P1 finite
element on a tetrahedral submesh, and the second to a finite volume scheme using lumping for
the source terms as well as for the matrix fracture fluxes. The VAG scheme has the advan-
tage to lead to a sparse discretization on tetrahedral or mainly tetrahedral meshes. It will be
compared to the HFV discretization using face and fracture edge unknowns in addition to the
cell unknowns. Note that the HFV scheme of [8] has been generalized in [23] as the family of
Hybrid Mimetic Mixed methods which which encompasses the family of MFD schemes [24]. In
this article, we will focus without restriction on the particular case presented in [8] for the sake
of simplicity.

In section 2 we introduce the geometry of the matrix and fracture domains and present
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the strong and weak formulation of the model. Section 3 is devoted to the introduction of the
general framework of gradient discretizations and the derivation of the error estimate 3.3. In
section 4 we define and investigate the families of VAG and HFV discretizations. Having in
mind applications to multi-phase flow, we also present a Finite Volume formulation involving
conservative fluxes, which applies for both schemes. In section 5, the VAG and HFV schemes
are compared in terms of accuracy and CPU efficiency for both Cartesian and tetrahedral
meshes on hererogeneous isotropic and anisotropic media using a family of analytical solutions.

2 Hybrid dimensional Darcy Flow Model in Fractured

Porous Media

2.1 Geometry and Function Spaces

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polyg-
onal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified,
for instance in the naming of the geometrical objects or for the space discretization in the next
section. The adaptations to the case d = 2 are straightforward.

Let Γ =
⋃
i∈I Γi and its interior Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω, i ∈ I,

such that each Γi is a planar polygonal simply connected open domain included in a plane Pi
of Rd. It is assumed that the angles of Γi are strictly smaller than 2π, and that Γi ∩ Γj = ∅ for
all i 6= j .

For all i ∈ I, let us set Σi = ∂Γi, with nΣi as unit vector in Pi, normal to Σi and outward
to Γi. Further Σi,j = Σi ∩ Σj, j ∈ I \ {i}, Σi,0 = Σi ∩ ∂Ω, Σi,N = Σi \ (

⋃
j∈I\{i}Σi,j ∪ Σi,0),

Σ =
⋃

(i,j)∈I×I,i 6=j(Σi,j \ Σi,0) and Σ0 =
⋃
i∈I Σi,0. It is assumed that Σi,0 = Γi ∩ ∂Ω.

Γ2

Γ3

Γ1
Σ1,0

Σ2,0

Σ

Ω

Σ3,N

Γα2

Γα3
Γnα3

nα2

nα1

Γα1

Ω

Figure 1: Example of a 2D domain Ω and 3 intersecting fractures Γi, i = 1, 2, 3. We might define
the fracture plane orientations by α+(1) = α1, α

−(1) = α3 for Γ1, α+(2) = α1, α
−(2) = α2 for

Γ2, and α+(3) = α3, α
−(3) = α2 for Γ3.

We will denote by dτ(x) the d − 1 dimensional Lebesgue measure on Γ. On the fracture
network Γ, we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}, endowed

with the norm ‖v‖L2(Γ) = (
∑

i∈I ‖vi‖2
L2(Γi)

)
1
2 and its subspace H1(Γ) consisting of functions

v = (vi)i∈I such that vi ∈ H1(Γi), i ∈ I with continuous traces at the fracture intersections

Σi,j, j ∈ I \ {i}. The space H1(Γ) is endowed with the norm ‖v‖H1(Γ) = (
∑

i∈I ‖vi‖2
H1(Γi)

)
1
2 .

We also define it’s subspace with vanishing traces on Σ0, which we denote by H1
Σ0

(Γ).

On Ω\Γ, the gradient operator from H1(Ω\Γ) to L2(Ω)d is denoted by ∇. On the fracture
network Γ, the tangential gradient, acting from H1(Γ) to L2(Γ)d−1, is denoted by ∇τ , and such
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that
∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1 by fixing

a reference Cartesian coordinate system of the plane Pi containing Γi. We also denote by divτi
the divergence operator from Hdiv(Γi) to L2(Γi).

We assume that there exists a finite family (Γα)α∈χ such that for all α ∈ χ holds: Γα ⊂ Γ
and there exists a lipschitz domain ωα ⊂ Ω\Γ, such that Γα = ∂ωα∩Γ. For α ∈ χ and an apro-
priate choice of Iα ⊂ I we assume that Γα =

⋃
i∈Iα Γi. Furthermore should hold Γ =

⋃
α∈χ Γα.

We also assume that each Γi ⊂ Γ is contained in Γα for exactly two α ∈ χ and that we can
define a unique mapping i 7−→ (α+(i), α−(i)) from I to χ×χ, such that Γi ⊂ Γα+(i)∩Γα−(i) and

α+(i) 6= α−(i) (cf. figure 1). For all i ∈ I, α±(i) defines the two sides of the fracture Γi in Ω\Γ
and we can introduce the corresponding unit normal vectors nα±(i) at Γi outward to ωα±(i), such
that nα+(i) + nα−(i) = 0. We therefore obtain for α ∈ χ and a.e. x ∈ Γα a unique unit normal
vector nα(x) outward to ωα. A simple choice of (Γα)α∈χ is given by both sides of each fracture
i ∈ I but more general choices are also possible such as for example the one exhibited in figure 1.

Then, for α ∈ χ, we can define the trace operator on Γα:

γα : H1(Ω \ Γ)→ L2(Γα),

and the normal trace operator on Γα outward to the side α:

γn,α : Hdiv(Ω \ Γ)→ D′(Γα).

We now define the hybrid dimensional function spaces that will be used as variational spaces
for the Darcy flow model in the next subsection:

V = H1(Ω \ Γ)×H1(Γ),

and its subspace
V 0 = H1

∂Ω(Ω \ Γ)×H1
Σ0

(Γ),

where (with γ∂Ω : H1(Ω\Γ)→ L2(∂Ω) denoting the trace operator on ∂Ω)

H1
∂Ω(Ω \ Γ) = {v ∈ H1(Ω\Γ) | γ∂Ωv = 0 on ∂Ω},

as well as
W = Wm ×Wf ,

where

Wm =
{
qm ∈ Hdiv(Ω \ Γ) | γn,αqm ∈ L2(Γα) for all α ∈ χ

}
and

Wf = {qf = (qf,i)i∈I | qf,i ∈ Hdiv(Γi) for all i ∈ I

and
∑
i∈Γ

∫
Γi

(
∇τv · qf,i + v · divτiqf,i

)
dτ(x) = 0 for all v ∈ H1

Σ0
(Γ)}.

On V , we define the positive semidefinite, symmetric bilinear form

((um, uf ), (vm, vf ))V =

∫
Ω

∇um · ∇vmdx +

∫
Γ

∇τuf · ∇τvfdτ(x)

+
∑
α∈χ

∫
Γα

(γαum − uf )(γαvm − vf )dτ(x)
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for (um, uf ), (vm, vf ) ∈ V , which induces the seminorm |(vm, vf )|V . Note that (·, ·)V is a scalar
product and | · |V is a norm on V 0, denoted by ‖ · ‖V 0 in the following.

We define for all (pm,pf ), (qm,qf ) ∈ W the scalar product

((pm,pf ), (qm,qf ))W =

∫
Ω

pmqmdx +

∫
Ω

divpm · divqmdx

+

∫
Γ

pfqfdτ(x) +

∫
Γ

divτpf · divτqfdτ(x)

+
∑
α∈χ

∫
Γα

(γn,αpm · γn,αqm)dτ(x),

which induces the norm ‖(qm,qf )‖W , and where we have used the notation divτpf = divτipf,i
on Γi for all i ∈ I and pf = (pf,i)i∈I ∈ Wf .

Using similar arguments as in the proof of [15], example II.3.4, one can prove the following
Poincaré type inequality.

Proposition 2.1 The norm ‖ · ‖V 0 satisfies the following inequality

‖vm‖H1(Ω\Γ) + ‖vf‖H1(Γ) ≤ CP‖(vm, vf )‖V 0 , (1)

for all (vm, vf ) ∈ V 0.

Proof We apply the ideas of the proof of [15], example II.3.4 and assume that the statement
of the proposition is not true. Then we can define a sequence (vl)l∈N in V 0, such that

‖vl‖H1 = 1 and ‖vl‖V 0 <
1

l
, (2)

where, for this proof, ‖ · ‖H1 = ‖ · ‖H1(Ω\Γ) + ‖ · ‖H1(Γ). The imbedding

(V 0, ‖ · ‖H1) ↪→
(
L2(Ω)× L2(Γ), ‖ · ‖L2(Ω) + ‖ · ‖L2(Γ)

)
is compact, provided that Ω\Γ has the cone property (see [18], theorem 6.2). Thus, there is a
subsequence (vµ)µ of (vl)l∈N and v ∈ L2(Ω)× L2(Γ), such that

vµ −→ v in L2(Ω)× L2(Γ).

On the other hand it follows from (2) that

∇vmµ −→ 0 in L2(Ω)

∇τvfµ −→ 0 in L2(Γ).

Since (V 0, ‖ · ‖H1) is complete, we have

vµ −→ v in V 0,

with
‖v‖V 0 = lim

µ→∞
‖vµ‖V 0 = 0.

Since ‖ · ‖V 0 is a norm on V 0, we have v = 0 ∈ V 0, but ‖v‖ = 1, which is a contradiction. �
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Remark 2.1 With the precedent proof it is readily seen that inequality (1) holds for all func-
tions v ∈ V whose trace vanishes on a subset of ∂(Ω\Γ) with positive surface measure. The
requirement is that v has to be in a closed subspace of (V, ‖ · ‖H1) for which ‖ · ‖V 0 is a well
defined norm.

The convergence analysis presented in section 4 requires some results on the density of
smooth subspaces of V and W , which we state below.

Definition 2.1 1. C∞Ω is defined as the subspace of functions in C∞b (Ω \ Γ) vanishing on a
neighbourhood of the boundary ∂Ω, where C∞b (Ω \ Γ) ⊂ C∞(Ω \ Γ) is the set of functions
ϕ, such that for all x ∈ Ω there exists r > 0, such that for all connected components ω of
{x + y ∈ Rd | |y| < r} ∩ (Ω \ Γ) one has ϕ ∈ C∞(ω).

2. C∞Γ = γΓ(C∞0 (Ω)) is defined as the image of C∞0 (Ω) of the trace operator γΓ : H1
0 (Ω) →

L2(Γ).

3. C∞Wm
= C∞b (Ω \ Γ)

d
.

4. C∞Wf
= {qf = (qf,i)i∈I | qf,i ∈ C∞(Γi)

d−1
,
∑

i∈I qf,i · nΣi = 0 on Σ, qf,i · nΣi =

0 on Σi,N , i ∈ I}.

Let us first state the following Lemma that will be used to prove the density of C∞Wm
×C∞Wf

in
W .

Lemma 2.1 Let vm ∈ L2(Ω), vf ∈ L2(Γ), G ∈ L2(Ω)d, H ∈ L2(Γ)d−1 and Jα ∈ L2(Γα), α ∈ χ
such that∫

Ω

(G · qm + vmdivqm)dx +

∫
Γ

(H · qf + vfdivτqf )dτ(x) +
∑
α∈χ

∫
Γα

γn,αqmdτ(x)(Jα − vf ) = 0

(3)

for all (qm,qf ) ∈ C∞Wm
× C∞Wf

. Then holds (vm, vf ) ∈ V 0, (G,H) = (∇vm,∇τvf ) and Jα =
vf − γαvm for α ∈ χ.

Proof Firstly, for all qm ∈ C∞0 (Ω\Γ)d, we have∫
Ω

(G · qm + vmdivqm)dx = 0

and therefore vm ∈ H1(Ω\Γ) and ∇vm = G.
For a.e. x ∈ ∂Ω, there exists an open planar domain ω ⊂⊂ ∂Ω\∂Γ containing x such that

for all f ∈ C∞0 (ω) there exists qm ∈ C∞Wm
with

γn∂Ω
qm =

{
f on ω,
0 on ∂Ω\ω,

γn,αqm = 0 on Γα, α ∈ χ,

where γn∂Ω
denotes the normal trace operator on the boundary of Ω. From (3), taking qf = 0,

we obtain

0 =

∫
Ω

(∇vm · qm + vmdivqm)dx =

∫
∂Ω

γ∂Ωvmγn∂Ω
qmdτ(x) =

∫
ω

γ∂Ωvmfdτ(x).
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where γ∂Ω denotes the trace operator on the boundary of Ω. We deduce γ∂Ωvm = 0 a.e. on
∂Ω\∂Γ. Hence vm ∈ H1

∂Ω(Ω\Γ).
Further, for a.e. x ∈ Γα there exists an open planar domain ωα ⊂⊂ Γα containing x such

that for all g ∈ C∞0 (ωα) there exists qm ∈ C∞Wm
with

γn,αqm =

{
g on ωα,
0 on Γα\ωα,

γn,βqm = 0 on Γβ, for β 6= α,

γn∂Ω
qm = 0 on ∂Ω.

From (3) we obtain

0 =

∫
Ω

(∇vm · qm + vmdivqm)dx +
∑
α∈χ

∫
Γα

γn,αqm(Jα − vf )dτ(x)

=

∫
Γα

γn,αqm(Jα − vf + γαvm)dτ(x) =

∫
ωα

g(Jα − vf + γαvm)dτ(x).

We deduce Jα = vf − γαvm a.e. on Γα, α ∈ χ.
Next, for all qf ∈ C∞0 (Γi)

d−1, i ∈ I, we have from (3)∫
Γi

(H · qf + vfdivqf )dτ(x) = 0

and therefore vf�Γi
∈ H1(Γi) for i ∈ I and ∇τivf�Γi

= H�Γi
.

Let i, j ∈ I, i 6= j. For a.e. x ∈ Σi,j \ Σi,0 there exists an open interval cij ⊂⊂ Σi,j \ Σi,0

containing x such that for all h ∈ C∞0 (cij) there exists s ∈ C∞Wf
with

γnΣi
s = h = −γnΣj

s on cij,

γnΣk
s = 0 on Σk\cij, k ∈ I.

From (3) we obtain

0 =

∫
Γ

(∇τvf · s+ vfdivτs)dτ(x) =

∫
cij

(γΣivf − γΣjvf )γnΣi
sdσ(x),

dσ(x) denoting the d − 2 dimensional Lebesgue measure on Σ. We deduce γΣivf = γΣjvf a.e.
on Σi,j \ Σi,0, i, j ∈ I, i 6= j. The proof of γΣ0vf = 0 a.e. on Σ0 goes analogously. Hence
vf ∈ H1

Σ0
(Γ). �

Proposition 2.2 C∞Ω × C∞Γ is dense in V 0.

Proof Firstly, note that we have

1√
2

(
‖∇um‖L2(Ω)d + ‖∇τuf‖L2(Γ)d−1

)
≤ ‖(um, uf )‖V 0

≤ C(Ω,Γ) ·
(
‖∇um‖L2(Ω)d + ‖∇τuf‖L2(Γ)d−1

)
,

i.e. ‖ ·‖V 0 is equivalent to the standard norm ‖∇·‖L2(Ω)d +‖∇τ · ‖L2(Γ)d−1 on V 0. The density of

C∞Ω in H1
∂Ω(Ω\Γ) being a classical result, we are concerned to prove the density of C∞Γ in H1

Σ0
(Γ)

in the following. Since H1
Σ0

(Γ) ⊂ γΓ(H1
0 (Ω)), we can define Ṽ 0 = γ−1

Γ (H1
Σ0

(Γ)) ⊂ H1
0 (Ω). In

Proposition 2 of [19] it is shown that C∞0 (Ω) is dense in (Ṽ 0, ‖∇ · ‖L2(Ω)d + ‖∇τγΓ · ‖L2(Γ)d−1).
Hence C∞Γ is dense in (H1

Σ0
(Γ), ‖∇τ · ‖L2(Γ)d−1). �
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Proposition 2.3 C∞Wm
× C∞Wf

is dense in W .

Proof Since Wf is a closed subspace of the Hilbert space
∏

i∈I Hdiv(Γi), any linear form l ∈ W ′
f

is the restriction to Wf of a linear form still denoted by l in
∏

i∈I Hdiv(Γi)
′. Then, for some

f ∈ L2(Γ) and g ∈ L2(Γ)
d−1

holds

< l,qf >=
∑
i∈I

∫
Γi

(
g · qf + f · divτqf

)
dτ(x),

for all qf ∈ Wf . Let us assume now that < l,ϕ >= 0 for all ϕ ∈ C∞Wf
. Corresponding to

Lemma 2.1 holds f ∈ H1
Σ0

(Γ). From the definition of Wf we conclude that < l,qf >= 0 for all
qf ∈ Wf .

Let now l ∈ W ′
m. Then there exist f ∈ L2(Ω), g ∈ L2(Ω)

d
and hα ∈ L2(Γα) (α ∈ χ), such

that

< l,qm >=

∫
Ω

(
g · qm + f · divqm

)
dx +

∑
α∈χ

∫
Γα

hαγn,αqmdτ(x),

for all qm ∈ Wm. Furthermore, let us assume that < l,ϕ >= 0 for all ϕ ∈ C∞Wm
. From Lemma

2.1 we deduce that f ∈ H1
∂Ω(Ω \ Γ), that g = ∇f and that hα = γαf (α ∈ χ). Using this, we

conclude, again by the rule of partial integration, that < l,qm >= 0 for all qm ∈ Wm. �

2.2 Single Phase Darcy Flow Model

2.2.1 Strong formulation

In the matrix domain Ω\Γ, let us denote by Λm ∈ L∞(Ω)d×d the permeability tensor such that
there exist λm ≥ λm > 0 with

λm|ζ|2 ≤ (Λm(x)ζ, ζ) ≤ λm|ζ|2 for all ζ ∈ Rd,x ∈ Ω,

Analogously, in the fracture network Γ, we denote by Λf ∈ L∞(Γ)(d−1)×(d−1) the tangential
permeability tensor, and assume that there exist λf ≥ λf > 0, such that holds

λf |ζ|2 ≤ (Λf (x)ζ, ζ) ≤ λf |ζ|2 for all ζ ∈ Rd−1,x ∈ Γ.

At the fracture network Γ, we introduce the orthonormal system
(τ1(x), τ2(x),n(x)), defined a.e. on Γ. Inside the fractures, the normal direction is assumed
to be a permeability principal direction. The normal permeability λf,n ∈ L∞(Γ) is such that
λf,n ≤ λf,n(x) ≤ λf,n for a.e. x ∈ Γ with 0 < λf,n ≤ λf,n. We also denote by df ∈ L∞(Γ) the

width of the fractures assumed to be such that there exist df ≥ df > 0 with

df ≤ df (x) ≤ df

for a.e. x ∈ Γ. Let us define the weighted Lebesgue d − 1 dimensional measure on Γ by
dτf (x) = df (x)dτ(x). We consider the source terms hm ∈ L2(Ω) (resp. hf ∈ L2(Γ)) in the
matrix domain Ω \Γ (resp. in the fracture network Γ). The half normal transmissibility in the

fracture network is denoted by Tf =
2λf,n
df

.

Given ξ ∈ (1
2
, 1], the PDEs model writes: find (um, uf ) ∈ V 0, (qm,qf ) ∈ W such that:


div(qm) = hm on Ω \ Γ,

qm = −Λm∇um on Ω \ Γ,

γn,α±(i)qm =
Tf

2ξ−1
(ξγα±(i)um + (1− ξ)γα∓(i)um − uf ) on Γi, i ∈ I,

divτi(qf )− γn,α+(i)qm − γn,α−(i)qm = dfhf on Γi, i ∈ I
qf = −df Λf∇τuf on Γ,

(4)
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2.2.2 Weak formulation

The hybrid dimensional weak formulation amounts to find (um, uf ) ∈ V 0 satisfying the following
variational equality for all (vm, vf ) ∈ V 0:∫

Ω

Λm∇um · ∇vmdx +

∫
Γ

Λf∇τuf · ∇τvfdτf (x)

+
∑
i∈I

∫
Γi

Tf
2ξ − 1

∑
(α,β)∈{(α±(i),α∓(i))}

(
ξγαum + (1− ξ)γβum − uf

)(
γαvm − vf

)
dτ(x)

−
∫

Ω

hmvmdx−
∫

Γ

hfvfdτf (x) = 0.

(5)

The following proposition states the well posedness of the variational formulation (5).

Proposition 2.4 For all ξ ∈ (1
2
, 1], the variational problem (5) has a unique solution (um, uf ) ∈

V 0 which satisfies the a priori estimate

‖(um, uf )‖V 0 ≤ C
(
‖hm‖L2(Ω) + ‖hf‖L2(Γ)

)
,

with C depending only on ξ, CP , λm, λf , df , df , and λf,n. In addition (qm,qf ) =
−(Λm∇um, dfΛf∇τuf ) belongs to W .

Proof Using that for all ξ ∈ (1
2
, 1] and for all (a, b) ∈ R2 one has

a2 + b2 ≤ (ξa+ (1− ξ)b)a+ (ξb+ (1− ξ)a)b ≤ 1

2ξ − 1
(a2 + b2),

the Lax-Milgram Theorem applies, which ensures the statement of the proposition. �

3 Gradient Discretization of the Hybrid Dimensional Model

3.1 Gradient Scheme Framework

A gradient discretization D of hybrid dimensional Darcy flow models is defined by a vector space
of degrees of freedom XD = XDm ×XDf , its subspace satisfying ad hoc homogeneous boundary
conditions X0

D = X0
Dm ×X0

Df , and the following gradient and reconstruction operators:

• Gradient operator on the matrix domain: ∇Dm : XDm → L2(Ω)d

• Gradient operator on the fracture network: ∇Df : XDf → L2(Γ)d−1

• A function reconstruction operator on the matrix domain:
ΠDm : XDm → L2(Ω)

• Two function reconstruction operators on the fracture network:
ΠDf : XDf → L2(Γ) and Π̃Df : XDf → L2(Γ)

• Reconstruction operators of the trace on Γα for α ∈ χ:
Πα
Dm : XDm → L2(Γα).
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The space XD is endowed with the seminorm

‖(vDm , vDf )‖D =
(
‖∇DmvDm‖2

L2(Ω)d + ‖∇DfvDf‖2
L2(Γ)d−1 +

∑
α∈χ

‖Πα
DmvDm − Π̃DfvDf‖2

L2(Γα)

) 1
2
,

which is assumed to define a norm on X0
D.

The following properties of gradient discretizations are crucial for the convergence analysis
of the corresponding numerical schemes:

Coercivity: Let D be a gradient discretization and

CD = max
0 6=(vDm ,vDf )∈X0

D

‖ΠDmvDm‖L2(Ω) + ‖ΠDfvDf‖L2(Γ)

‖(vDm , vDf )‖D
.

A sequence (Dl)l∈N of gradient discretizations is said to be coercive, if there exists CP > 0 such
that CDl ≤ CP for all l ∈ N.

Consistency: LetD be a gradient discretization. For u = (um, uf ) ∈ V 0 and vD = (vDm , vDf ) ∈
X0
D let us define

s(vD, u) = ‖∇DmvDm −∇um‖L2(Ω)d + ‖∇DfvDf −∇τuf‖L2(Γ)d−1

+ ‖ΠDmvDm − um‖L2(Ω) + ‖ΠDfvDf − uf‖L2(Γ)

+ ‖Π̃DfvDf − uf‖L2(Γ) +
∑

α∈χ ‖Πα
DmvDm − γαum‖L2(Γα).

and SD(u) = minvD∈X0
D
s(vD, u). A sequence (Dl)l∈N of gradient discretizations is said to be

consistent, if for all u = (um, uf ) ∈ V 0 holds

lim
l→∞
SDl(u) = 0.

Limit Conformity: Let D be a gradient discretization. For all q = (qm,qf ) ∈ W, vD =
(vDm , vDf ) we define

w(vD,q) =

∫
Ω

(
∇DmvDm · qm + (ΠDmvDm)divqm

)
dx

+

∫
Γ

(
∇DfvDf · qf + (ΠDfvDf )divτqf

)
dτ(x)

+
∑
α∈χ

∫
Γα

γn,αqm

(
Π̃DfvDf − ΠDfvDf − Πα

DmvDm

)
dτ(x)

and WD(q) = max0 6=vD∈X0
D

1
‖vD‖D

|w(vD,q)|. A sequence (Dl)l∈N of gradient discretizations is

said to be limit conforming, if for all q = (qm,qf ) ∈ W holds

lim
l→∞
WDl(q) = 0.

Lemma 3.1 Let (Dl)l∈N = (X0
Dl ,ΠDlm ,ΠDlf , Π̃Dlf , (Π

α
Dlm

)α∈χ,∇Dlm ,∇Dlf )l∈N and

(Dl)l∈N = (X0
Dl ,ΠDlm ,ΠDlf , Π̃Dlf , (Π

α

Dlm)α∈χ,∇Dlm ,∇Dlf )l∈N be two sequences of gradient discreti-

sations of (5) and let us assume that (Dl)l∈N is coercive, consistent and limit conforming. Let
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us furthermore assume that the sequence (ζDl,Dl)l∈N, defined by

ζDl,Dl := max
06=vDl∈X

0
Dl

( 1

‖vDl‖Dl
·
(
‖ΠDlmvDlm − ΠDlmvDlm‖L2(Ω) + ‖ΠDlfvDlf − ΠDlfvDlf‖L2(Γ)

+ ‖Π̃DlfvDlf − Π̃DlfvDlf‖L2(Γ) +
∑
α∈χ

‖Πα
DlmvDlm − Π

α

DlmvDlm‖L2(Γα)

))
,

satisfies

lim
l→∞

ζDl,Dl = 0 (6)

and that there is a constant C ∈ R independent of l such that∑
α∈χ

‖Πα
DlmvDlm − Π̃DlfvDlf‖L2(Γα) ≤ C ·

∑
α∈χ

‖Πα

DlmvDlm − Π̃DlfvDlf‖L2(Γα) (7)

for all vDl ∈ X0
Dl , l ∈ N. Then (Dl)l∈N is coercive, consistent and limit conforming.

Proof Coercivity: (Dl)l∈N is coercive, since for all l ∈ N we have (with D = Dl,D = Dl)

‖ΠDmvDm‖L2(Ω) + ‖ΠDfvDf‖L2(Γ) ≤ (ζD,D + CD)‖vD‖D ≤ max(1, C)(ζD,D + CD)‖vD‖D
and since max(1, C) · (ζDl,Dl + CDl) is uniformly bounded. In the last inequality we have used

that ‖vD‖D ≤ max(1, C)‖vD‖D, which follows from (7).

Consistency: Let l ∈ N be fixed and D = Dl,D = Dl. We first choose, for a given u =
(um, uf ) ∈ V 0, a vD ∈ X0

D, such that sD(vD, u) = SD(u). Using the inequality

sD(vD, u) ≤ sD(vD, u) + ‖ΠDmvDm − ΠDmvDm‖L2(Ω) + ‖ΠDfvDf − ΠDfvDf‖L2(Γ)

+ ‖Π̃DfvDf − Π̃DfvDf‖L2(Γ) +
∑
α∈χ

‖Πα
DmvDm − Π

α

DmvDm‖L2(Γα),

which holds for all vD ∈ XD, we obtain

SD(u) ≤ SD(u) + ζD,D‖vD‖D.

Moreover

‖vD‖D ≤ SD(u) + ‖∇um‖L2(Ω)d + ‖∇τuf‖L2(Γ)d−1 +
∑
α∈χ

‖(γαum − uf )‖L2(Γα ),

which implies that ‖vDl‖Dl is uniformly bouded and therefore SDl(u)→ 0 as l→∞.

Limit Conformity: Let again l ∈ N be fixed and D = Dl,D = Dl. For given q = (qm,qf ) ∈ W
and vD ∈ X0

D we calculate

wD(vD,q) ≤ wD(vD,q) + ‖ΠDmvDm − ΠDmvDm‖L2(Ω) · ‖divqm‖L2(Ω)

+ ‖ΠDfvDf − ΠDfvDf‖L2(Γ) · ‖divτqf‖L2(Γ) +
∑
α∈χ

(
‖ΠDfvDf − ΠDfvDf‖L2(Γα)

+ ‖Π̃DfvDf − Π̃DfvDf‖L2(Γα) + ‖Πα
DmvDm − Π

α

DmvDm‖L2(Γα)

)
· ‖γn,αqm‖L2(Γα)

≤ wD(vD,q) + ζD,D · ‖vD‖D ·
(
‖divqm‖L2(Ω) + ‖divτqf‖L2(Γ) +

∑
α∈χ

‖γn,αqm‖L2(Γα)

)
.
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Taking (7) into account, we derive

WD(qm,qf ) ≤ max(1, C) · sup
06=vD∈XD

wD(vD,q)

‖vD‖D
≤ max(1, C) · (WD(qm,qf ) + ζD,D‖q‖W ).

Therefore WDl(qm,qf ) tends to zero as l goes to infinity. �

Proposition 3.1 (Regularity at the Limit) Let (Dl)l∈N be a coercive and limit conforming
sequence of gradient discretizations and let (vDlm , vDlf )l∈N be a uniformly bounded sequence in

X0
Dl. Then, there exist (vm, vf ) ∈ V 0 and a subsequence still denoted by (vDlm , vDlf )l∈N such that

ΠDlmvDlm ⇀ vm in L2(Ω),
∇DmvDlm ⇀ ∇vm in L2(Ω)d,
ΠDlfvDlf ⇀ vf in L2(Γ),

∇DfvDlf ⇀ ∇τvf in L2(Γ)d−1,

Π̃DfvDlf − Πα
DmvDlm ⇀ vf − γαvm in L2(Γα), for all α ∈ χ.

Proof By definition of the norm of X0
Dl and by coercivity, ΠDlmvDlm , ΠDlfvDlf , ∇DmvDlm , ∇DfvDlf

and (Πα
DmuDlm − Π̃DfuDlf ), α ∈ χ, are uniformly bounded in L2 (for l → ∞). Therefore there

exist vm ∈ L2(Ω), vf ∈ L2(Γ), G ∈ L2(Ω)d, H ∈ L2(Γ)d−1 and Jα ∈ L2(Γα), α ∈ χ, and a
subsequence still denoted by (vDlm , vDlf )l∈N such that

ΠDlmvDlm ⇀ vm in L2(Ω),
∇DmvDlm ⇀ G in L2(Ω)d,
ΠDlfvDlf ⇀ vf in L2(Γ),

∇DfvDlf ⇀ H in L2(Γ)d−1,

Π̃DfvDlf − Πα
DmvDlm ⇀ Jα in L2(Γα), for α ∈ χ.

Using limit conformity we obtain (by letting l→∞)∫
Ω

(G · qm + vmdivqm)dx +

∫
Γ

(H · qf + vfdivτqf )dτ(x) +
∑
α∈χ

∫
Γα

γn,αqm(Jα − vf )dτ(x) = 0

(8)

for all (qm,qf ) ∈ C∞Wm
×C∞Wf

. The statement of the proposition follows now from Lemma 2.1.
�

Corollary 3.1 Let (Dl)l∈N be a sequence of gradient discretizations, assumed to be limit con-
forming against regular test functions (qm,qf ) ∈ C∞Wm

× C∞Wf
and let (vDlm , vDlf )l∈N be a uni-

formly bounded sequence in X0
Dl, such that ΠDlmvDlm and ΠDlfvDlf are uniformly bounded in L2

(for l→∞). Then holds the conclusion of Proposition 3.1.

3.2 Application to (5)

The non conforming discrete variational formulation of the model problem is defined by: find
(uDm , uDf ) ∈ X0

D such that∫
Ω

Λm∇DmuDm · ∇DmvDmdx +

∫
Γ

Λf∇DfuDf · ∇DfvDfdτf (x) +
∑
i∈I

∫
Γi

Tf
2ξ − 1∑

(α,β)∈{(α±(i),α∓(i))}

(
ξΠα
DmuDm + (1− ξ)Πβ

DmuDm − Π̃DfuDf

)(
Πα
DmvDm − Π̃DfvDf

)
dτ(x)

−
∫

Ω

hmΠDmvDmdx−
∫

Γ

hfΠDfvDfdτf (x) = 0,

(9)
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for all (vDm , vDf ) ∈ X0
D.

Proposition 3.2 Let ξ ∈ (1
2
, 1] and D be a gradient discretization, then (9) has a unique

solution (uDm , uDf ) ∈ X0
D satisfying the a priori estimate

‖(uDm , uDf )‖D ≤ C
(
‖hm‖L2(Ω) + ‖hf‖L2(Γ)

)
with C depending only on ξ, CD, λm, λf , df , df , and λf,n.

Proof The Lax-Milgram Theorem applies, which ensures this result. �

The main theoretical result for gradient schemes is stated by the following proposition:

Proposition 3.3 (Error Estimate) Let u = (um, uf ) ∈ V 0, q = (qm,qf ) ∈ W be the solution
of (4). Let ξ ∈ (1

2
, 1], D be a gradient discretization and uD = (uDm , uDf ) ∈ X0

D be the solution

of (9). Then, there exists C0 > 0 depending only on ξ, CD, λm, λf ,λm, λf , df , df , λf,n, and

λf,n such that one has the following error estimate:

‖ΠDmuDm − um‖L2(Ω) + ‖ΠDfuDf − uf‖L2(Γ) + ‖Π̃DfuDf − uf‖L2(Γ)

+
∑
α∈χ

‖Πα
DmuDm − γαum‖L2(Γα) + ‖∇um −∇DmuDm‖L2(Ω)d + ‖∇τuf −∇DfuDf‖L2(Γ)d−1

≤ C0(SD(um, uf ) +WD(qm,qf )).

Proof From the definition of WD, and using the definitions (4) of the solution u,q and (9) of
the discrete solution uD, it holds for all (vDm , vDf ) ∈ V 0

‖(vDm , vDf )‖D · WD(qm,qf )

≥
∣∣∣∣ ∫

Ω

(
∇DmvDm · qm + (ΠDmvDm)hm

)
dx +

∫
Γ

(
∇DfvDf · qf + (ΠDfvDf )dfhf

)
dτ(x)

+
∑
i∈I

∫
Γi

Tf
2ξ − 1

∑
(α,β)∈{(α±(i),α∓(i))}

(
ξγαum + (1− ξ)γβum − uf

)(
Π̃DfvDf − Πα

DmvDm

)
dτ(x)

∣∣∣∣
=

∣∣∣∣ ∫
Ω

(
Λm∇DmvDm · (∇DmuDm −∇um)

)
dx +

∫
Γ

(
Λf∇DfvDf · (∇DfuDf −∇τuf )

)
dτf (x)

+
∑
i∈I

∫
Γi

Tf
2ξ − 1

∑
(α,β)∈{(α±(i),α∓(i))}

(
Π̃DfvDf − Πα

DmvDm

)
×
(
ξγαum + (1− ξ)γβum − uf − ξΠα

DmuDm − (1− ξ)Πβ
DmuDm + Π̃DfuDf

)
dτ(x)

∣∣∣∣
(10)

Let us choose wD = (wDm , wDf ) ∈ X0
D, s.t. s(wD, u) = SD(u) and set (vDm , vDf ) = uD − wD in

(10). Then holds

‖∇um −∇DmuDm‖L2(Ω)d + ‖∇τuf −∇DfuDf‖L2(Γ)d−1

+
∑
α∈χ

‖Πα
DmuDm − Π̃DfuDf − γαum + uf‖L2(Γα) ≤ C · (SD(um, uf ) +WD(qm,qf )),

with a constant C > 0 depending only on ξ, λm, λf ,λm, λf , df , df , λf,n, and λf,n. Taking
coercivity into account leads to the statement of the proposition. �
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4 Two Examples of Gradient Schemes

Following [7], we consider generalised polyhedral meshes of Ω. Let M be the set of cells that
are disjoint open subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈ M, xK denotes the

so-called “center” of the cell K under the assumption that K is star-shaped with respect to
xK . Let F denote the set of faces of the mesh. The faces are not assumed to be planar for the
VAG discretization, hence the term “generalised polyhedral cells”, but they need to be planar
for the HFV discretization. We denote by V the set of vertices of the mesh. Let VK , FK , Vσ
respectively denote the set of the vertices of K ∈ M, faces of K, and vertices of σ ∈ F . For
any face σ ∈ FK , we have Vσ ⊂ VK . LetMs (resp. Fs) denote the set of the cells (resp. faces)
sharing the vertex s ∈ V . The set of edges of the mesh is denoted by E and Eσ denotes the set
of edges of the face σ ∈ F . Let Fe denote the set of faces sharing the edge e ∈ E , and Mσ

denote the set of cells sharing the face σ ∈ F . We denote by Fext the subset of faces σ ∈ F
such that Mσ has only one element, and we set Eext =

⋃
σ∈Fext Eσ, and Vext =

⋃
σ∈Fext Vσ. The

mesh is assumed to be conforming in the sense that for all σ ∈ F \ Fext, the set Mσ contains
exactly two cells. It is assumed that for each face σ ∈ F , there exists a so-called “center” of
the face xσ such that

xσ =
∑
s∈Vσ

βσ,s xs, with
∑
s∈Vσ

βσ,s = 1,

where βσ,s ≥ 0 for all s ∈ Vσ. The face σ is assumed to match with the union of the triangles
Tσ,e defined by the face center xσ and each of its edge e ∈ Eσ.

The mesh is assumed to be conforming w.r.t. the fracture network Γ in the sense that there
exist subsets FΓi , i ∈ I of F such that

Γi =
⋃

σ∈FΓi

σ̄. (11)

We will denote by FΓ the set of fracture faces
⋃
i∈I FΓi . Similarly, we will denote by EΓ the set

of fracture edges
⋃
σ∈FΓ

Eσ and by VΓ the set of fracture vertices
⋃
σ∈FΓ

Vσ.

We also define a submesh T of tetrahedra, where each tetrahedron DK,σ,e is the convex hull
of the cell center xK of K, the face center xσ of σ ∈ FK and the edge e ∈ Eσ. Similarly we
define a triangulation ∆ of Γ, such that we have:

T =
⋃

K∈F ,σ∈FK ,e∈Eσ

DK,σ,e and ∆ =
⋃

σ∈FΓ,e∈Eσ

Tσ,e.

We introduce for D ∈ T the diameter hD of D and set hT = maxD∈T hD. The regularity of our
polyhedral mesh will be measured by the shape regularity of the tetrahedral submesh defined
by θT = maxD∈T

hD
ρD

where ρD is the insphere diameter of D ∈ T .

The set of matrix × fracture degrees of freedom is denoted by dof Dm × dof Df . The real
vector spaces XDm and XDf of discrete unknowns in the matrix and in the fracture network
respectively are then defined by

XDm = span{eν | ν ∈ dof Dm}
XDf = span{eν | ν ∈ dof Df},

where

eν =

{
(δνµ)µ∈dofDm for ν ∈ dof Dm
(δνµ)µ∈dofDf for ν ∈ dof Df .
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For uDm ∈ XDm and ν ∈ dof Dm we denote by uν the νth component of uDm and likewise for
uDf ∈ XDf and ν ∈ dof Df . We also introduce the product of these vector spaces

XD = XDm ×XDf ,
for which we have dimXD = #dof Dm + #dof Df .

To account for our homogeneous boundary conditions on ∂Ω and Σ0 we introduce the subsets
dof Dirm ⊂ dof Dm , and dof Dirf ⊂ dof Df , and we set dof Dir = dof Dirm × dof Dirf , and

X0
D = {u ∈ XD |uν = 0 for all ν ∈ dof Dir}.

4.1 Vertex Approximate Gradient Discretization

In this subsection, the VAG discretization introduced in [7] for diffusive problems on hetero-
geneous anisotropic media is extended to the hybrid dimensional model. We consider the P1

finite element construction as well as a finite volume version using lumping both for the source
terms and the matrix fracture fluxes.

We first establish an equivalence relation on each Ms, s ∈ V , by

K ≡Ms L ⇐⇒ there exists n ∈ N and a sequence (σi)i=1,...,n in Fs\FΓ,

such that K ∈Mσ1 , L ∈Mσn and Mσi+1
∩Mσi 6= ∅

for i = 1, . . . , n− 1.

Let us then denote by Ms the set of all classes of equivalence of Ms and by Ks the element
of Ms containing K ∈ M. Obviously Ms might have more than one element only if s ∈ VΓ.
Then we define (cf. figure 2)

dof Dm =M∪
{
Kσ

∣∣ σ ∈ FΓ, K ∈Mσ

}
∪
{
Ks

∣∣ s ∈ V , Ks ∈Ms

}
,

dof Df = FΓ ∪ VΓ,

dof Dirm :=
{
Ks

∣∣ s ∈ Vext, Ks ∈Ms

}
,

dof Dirf = VΓ ∩ Vext.
We thus have

XDm =
{
uK
∣∣ K ∈M} ∪ {uKσ ∣∣ σ ∈ FΓ, K ∈Mσ

}
∪
{
uKs

∣∣ s ∈ V , Ks ∈Ms

}
,

XDf =
{
uσ
∣∣ σ ∈ FΓ

}
∪
{
us
∣∣ s ∈ VΓ

}
.

(12)

Now we can introduce the piecewise affine interpolators (or reconstruction operators)

ΠT : XDm −→ H1(Ω\Γ) and Π∆ : XDf −→ H1(Γ),

which act linearly on XDm and XDf , such that ΠT uDm is affine on each DK,σ,e ∈ T and satisfies
on each cell K ∈M

ΠT uDm(xK) = uK ,
ΠT uDm(xs) = uKs

∀s ∈ VK ,
ΠT uDm(xσ) = uKσ ∀σ ∈ FK ∩ FΓ,
ΠT uDm(xσ) =

∑
s∈Vσ

βσ,suKs
∀σ ∈ FK\FΓ,
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Figure 2: Cell K touching a
fracture face σ. Illustration
of the simplices on which:
Red: ∇Dm is constant.
Grey: ∇Df is constant.

uK

us

uKσ

uKs

uσ

while Π∆uDf is affine on each Tσ,e ∈ ∆ and satisfies for all ν ∈ dofDf

Π∆uDf (xν) = uν ,

where xν ∈ Ω is the grid point associated with the degree of freedom ν ∈ dof Dm ∪ dof Df . The
discrete gradients on XDm and XDf are subsequently defined by

∇Dm = ∇ΠT and ∇Df = ∇τΠ∆. (13)

We define the VAG-FE scheme’s reconstruction operators by

• ΠDm = ΠT ,

• ΠDf = Π̃Df = Π∆,

• Πα
Dm = γαΠT for all α ∈ χ.

(14)

For the family of VAG-CV schemes, reconstruction operators are piecewise constant. We
introduce, for any given K ∈M, a partition

K = ωK ∪
( ⋃
s∈VK\Vext

ωK,Ks

)
∪
( ⋃
σ∈FK∩FΓ

ωKσ

)
.

Similarly, we define for any given σ ∈ FΓ a partition

σ = ωσ ∪
( ⋃
s∈Vσ\Vext

ωσ,s

)
.

With each s ∈ V \ Vext and Ks ∈Ms we associate an open set ωKs
, satisfying

ωKs
=
⋃

K∈Ks

ωK,Ks
.

Similarly, for all s ∈ VΓ \ Vext we define ωs by

ωs =
⋃

σ∈Fs∩FΓ

ωσ,s.
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We obtain the partitions

Ω =
( ⋃
ν∈dofDm\dofDirm

ων

)
, Γ =

( ⋃
ν∈dofDf \dofDirf

ων

)
.

We also introduce for each T = Tσ,s,s′ ∈ ∆ a partition T =
⋃3
i=1 T i, which we need for

the definition of the VAG-CV matrix-fracture interaction operators. We assume that holds
|T1| = |T2| = |T3| = 1

3
|T | in order to preserve the first order convergence of the scheme.

Finally, we need a mapping between the degrees of freedom of the matrix domain, which
are situated on one side of the fracture network, and the set of indices χ. For Kσ ∈ dof Dm
we have the one-element set χ(Kσ) = {α ∈ χ | nK,σ = nα on σ} and therefore the notation
α(Kσ) = α ∈ χ(Kσ).

The VAG-CV scheme’s reconstruction operators are

• ΠDmuDm =
∑

ν∈dofDm\dofDirm

uν1ων ,

• ΠDfuDf =
∑

ν∈dofDf \dofDirf

uν1ων ,

• Π̃DfuDf =
∑

Tσ,s,s′∈∆

(uσ1T1 + us1T2 + us′1T3),

• Πα
DmuDm =

∑
Tσ,s,s′∈∆

∑
K∈Mσ

(uKσ1T1 + uKs
1T2 + uKs′

1T3)δα(Kσ)α1Γα .

(15)

Remark 4.1 The VAG-CV scheme leads us to recover fluxes for the matrix-fracture interac-
tions involving degrees of freedom located at the same physical point (see subsection 4.3).

Proposition 4.1 Let us consider a sequence of meshes (Ml)l∈N and let us assume that the
sequence (T l)l∈N of tetrahedral submeshes is shape regular, i.e. θT l is uniformly bounded. We
also assume that liml→∞ hT l = 0. Then, the corresponding sequence of gradient discretizations
(Dl)l∈N, defined by (12), (13), (14), is coercive, consistent and limit conforming.

Proof The VAG-FE scheme’s reconstruction operators are conforming, i.e. VD ⊂ V 0. There-
fore we deduce coercivity from Proposition 2.1. Furthermore we have by partial integration
WD(qm,qf ) = 0 for all (qm,qf ) ∈ W . Hence (Dl)l∈N is limit conforming.

To prove consistency, we need the following prerequisites. We define the linear mapping
PDm : C∞Ω → X0

Dm such that for all ψm ∈ C∞Ω and any cell K ∈M one has

(PDmψm)K = ψm(xK),
(PDmψm)Ks

= ψm(xs) ∀s ∈ VK ,
(PDmψm)Kσ = ψm(xσ) ∀σ ∈ FK ∩ FΓ.

Likewise, we define the linear mapping PDf : C∞Γ → X0
Df such that for all ψf ∈ C∞Γ holds

(PDfψf )ν = ψf (xν) for all ν ∈ dofDf . It follows from the classical Finite Element approximation
theory and from the fact that the interpolation

∑
s∈Vσ

βσ,s(PDmψm)Ks
at the point xσ, σ ∈ FK \FΓ

is exact on cellwise affine functions, that for all (ψm, ψf ) ∈ C∞Ω × C∞Γ holds

‖ΠT PDmψm − ψm‖H1(Ω\Γ) + ‖Π∆PDfψf − ψf‖H1(Γ) ≤ C(ψm, ψf , θT )hT . (16)
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The trace inequality implies that for all v ∈ H1
∂Ω(Ω\Γ) holds

‖γαv‖L2(Γα) ≤ C(Ω\Γ)‖v‖H1(Ω\Γ) for α ∈ χ.

We can then calculate for (um, uf ) ∈ C∞Ω × C∞Γ :

SD(um, uf ) ≤
√

2‖ΠT PDmum − um‖H1(Ω\Γ) +
∑
α∈χ

‖γα(ΠT PDmum − um)‖L2(Γα)

+
∑
i∈I

√
8‖Π∆PDfuf − uf‖H1(Γi)

≤ C(Ω\Γ,#χ,#I, (um, uf ), θT ) hT .

Since C∞Ω × C∞Γ is dense in V 0, the sequence of VAG-FE discretisations (Dlm)l∈N is consistent
if hT l → 0 and θT l is bounded for l→∞. �

Proposition 4.2 Let us consider a sequence of meshes (Ml)l∈N and let us assume that the
sequence (T l)l∈N of tetrahedral submeshes is shape regular, i.e. θT l is uniformly bounded. We
also assume that liml→∞ hT l = 0. Then, any corresponding sequence of gradient discretizations
(Dl)l∈N, defined by (12), (13), (15), is coercive, consistent and limit conforming.

Proof We combine Lemma 3.1 and Proposition 4.1. Thus, we have to show that the assump-

tions of Lemma 3.1 are satisfied, where (Dl)l∈N corresponds to the sequence of VAG-CV gradient
discretisations and (Dl)l∈N to the corresponding sequence of VAG-FE gradient discretisations.

For the following, we define Fα =
⋃
i∈Iα FΓi and Vα =

⋃
σ∈Fα Vσ. To ease the notation in the

proof, we will use, for α ∈ χ, the uniquely identified mapping µα : Vα ∪ Fα ⊂ dof Df → dof Dm ,

defined by µα(σ) = Kσ (such that χ(Kσ) = {α}) and µα(s) = Ks (for a cell K such that
K ∈ Mσ with σ ∈ Fα ∩ Fs and χ(Kσ) = {α}). Let now α ∈ χ be fixed. Since the mesh is
conforming with respect to the fracture network, there is for every σ ∈ Fα, e = ss′ ∈ Eσ a
ν(σ, e) ∈ {σ, s, s′}, such that

sup
x∈Tσ,e

|(Πα
DmvDm − Π̃DfvDf )(x)| = |(Πα

DmvDm − Π̃DfvDf )(xν(σ,e))| = |vµα(ν(σ,e)) − vν(σ,e)|.

Then we have

‖Πα
DmvDm − Π̃DfvDf‖2

L2(Γα) ≤
∑
σ∈Fα

∑
e∈Eσ

|Tσ,e||vµα(ν(σ,e)) − vν(σ,e)|2

≤ 3‖Πα

DmvDm − Π̃DfvDf‖2
L2(Γα).

We have to check (6) now. It can be verified that [4], Lemma 3.4 applies to our case, both, in the
matrix domain, where face unknowns might occur, as well as in the fracture network, a domain
of codimension 1. This means that we can state that there exist constants Cm(θT ), Cf (θT ) > 0,
such that

‖ΠDmuDm − ΠDmvDm‖L2(Ω) ≤ Cm · hT · ‖∇DmvDm‖L2(Ω)d and (17)

‖Π̃DfvDf − Π̃DfvDf‖L2(Γ) = ‖ΠDfvDf − ΠDfvDf‖L2(Γ) ≤ Cf · h∆ · ‖∇DfvDf‖L2(Γ)d−1 (18)

For the following calculation we take into account [4], Lemmata 3.2 and 3.4. We also use that
the mesh is conforming with respect to the fracture network and that for σ ∈ F and K ∈Mσ

(or equivalently for K ∈ M, σ ∈ FK) holds: hK is asymptotically equivalent to hσ and |K| is

18



asymptotically equivalent to hσ|σ|, where hK := maxT 3D⊂K hD and hσ := max∆3T⊂σ hT . Let
α ∈ χ, σ ∈ Fα and K ∈Mσ, such that χ(Kσ) = {α}. Then we have

‖Πα
DmvDm − Π

α

DmvDm‖2
L2(σ) = ‖

∑
ν∈{σ}∪(Vσ)

vµα(ν)(ΠDf eν − ΠDf eν)‖2
L2(σ)

≤ C · |σ|
∑
s∈Vσ

(vµα(s) − vµα(σ))
2

≤ C · |K||hK |
·
(∑
s∈VK

(vKs
− vK)2 +

∑
σ∈FK∩FΓ

(vKσ − vK)2
)
≤ C · hσ · ‖∇DmvDm‖2

L2(K)d
.

Therefore

‖Πα
DmvDm − Π

α

DmvDm‖2
L2(Γα) ≤

∑
σ∈Fα

‖Πα
DmvDm − Π

α

DmvDm‖2
L2(σ) ≤ C · h∆ · ‖∇DmvDm‖2

L2(Ω)d
.

(19)

Altogether we obtain

‖ΠDmvDm − ΠDmvDm‖L2(Ω) + ‖ΠDfvDf − ΠDfvDf‖L2(Γ) + ‖Π̃DfvDf − Π̃DfvDf‖L2(Γ)

+
∑
α∈χ

‖Πα
DmvDm − Π

α

DmvDm‖L2(Γα) ≤ C · (hT + h∆ + h
1
2
∆) · ‖(vDm , vDf )‖D,

with a constant C depending only on #χ and θT . This proves that (6) is satisfied. �

Corollary 4.1 The precedent proof shows that SD(um, uf ) = O(h
1
2
T ) for (um, uf ) ∈ C∞Ω × C∞Γ

and thatWD(qm,qf ) = O(h
1
2
T ) for (qm,qf ) ∈ C∞Wm

×C∞Wf
. However, we can prove a higher order

of convergence, i.e. WD(qm,qf ) = O(hT ) for (qm,qf ) ∈ C∞Wm
×C∞Wf

and SD(um, uf ) = O(hT )

for (um, uf ) ∈ C∞Ω × C∞Γ .

Proof Consistency: Classically, for all (ϕm, ϕf ) ∈ C∞Ω × C∞Γ , we have the estimate

‖ΠDmPDmϕm − ϕm‖L2(Ω) + ‖Πα
DmPDmϕm − γαϕm‖L2(Γα)

+ ‖ΠDfPDfϕf − ϕf‖L2(Γ) + ‖Π̃DfPDfϕf − ϕf‖L2(Γ) ≤ cst(ϕm, ϕf ) · hT ,

while (16) grants that holds

‖∇DmPDmϕm −∇ϕ‖L2(Ω) + ‖∇DfPDfϕf −∇ϕ‖L2(Γ) ≤ cst(ϕm, ϕf , θT )hT .

Taking into account that C∞Ω × C∞Γ is dense in V , we see that the treated discretisation is
consistent with SD(ϕm, ϕf ) = O(hT ) for (ϕm, ϕf ) ∈ C∞Ω × C∞Γ .

Limit Conformity: For all T ∈ ∆ and for all uDm ∈ XDm we have that∫
T

(Πα
DmuDm − Π

α

DmuDm)dτ(x) = 0.

Introducing the linear operator P : L2(Γα)→ L2(Γα) such that P (ϕ) = 1
|T |

∫
T
ϕdτ(x) on T for

all T ∈ ∆, we first calculate for any qm ∈ C∞Wm

‖γn,αqm − P (γn,αqm)‖2
L2(Γα) =

∑
σ∈Fα

∑
∆3T⊂σ

‖γn,αqm − P (γn,αqm)‖2
L2(T ) ≤ C(qm, θT ) · h2

T .
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We proceed:

|
∫

Γα

γn,αqm(Πα
DmuDm − Π

α

DmuDm)dτ(x)|

= |
∫

Γα

(γn,αqm − P (γn,αqm))(Πα
DmuDm − Π

α

DmuDm)dτ(x)|

≤ ‖γn,αqm − P (γn,αqm)‖L2(Γα)‖Πα
DmuDm − Π

α

DmuDm‖L2(Γα)

≤ C(qm, θT )h
3
2
T ‖∇DmuDm‖L2(Ω)

for all qm ∈ C∞Wm
, where we have used (19) in the last inequality. We can now conclude by

calculating for all for q = (qm,qf ) ∈ C∞Wm
× C∞Wf

wD(uD,q) = (wD − wD)(uD,q)

=

∫
Ω

divqm(ΠDm − ΠDm)uDmdx +

∫
Γ

divτqf (ΠDf − ΠDf )uDfdτ(x)

+
∑
α∈χ

∫
Γα

γn,αqm

(
(Π̃Df − Π̃Df )uDf − (ΠDf − ΠDf )uDf − (Π

α

Dm − Πα
Dm)uDm

)
dτ(x)

≤ ‖ΠDmuDm − ΠDmuDm‖L2(Ω) · ‖divqm‖L2(Ω)

+ ‖ΠDfuDf − ΠDfuDf‖L2(Γ) · ‖divτqf‖L2(Γ) +
∑
α∈χ

(
(‖Π̃DfuDf − Π̃DfuDf‖L2(Γα)

+ ‖Π̃DfuDf − Π̃DfuDf‖L2(Γα)) · ‖γn,αqm‖L2(Γα)

+

∫
Γα

γn,αqm(Πα
DmuDm − Π

α

DmuDm)dτ(x)
)
≤ C(θT ,q) · hT · ‖uD‖D,

where we have taken into account the conformity of D in the first equation and (17), (18) in
the last inequality. �

Remark 4.2 The proofs of Propositions 4.1 and 4.2 show that for solutions (um, uf ) ∈ V 0 and
(qm,qf ) ∈ W of (4) such that um ∈ C2(K), uf ∈ C2(σ), qm ∈ (C1(K))d, qf ∈ (C1(σ))d−1 for
all K ∈ M and all σ ∈ Γf , the VAG schemes are consistent and limit conforming of order 1,
and therefore convergent of order 1.

4.2 Hybrid Finite Volume Discretization

In this subsection, the HFV scheme introduced in [8] is extended to the hybrid dimensional
Darcy flow model. We assume here that the faces are planar and that xσ is the barycenter of
σ for all σ ∈ F .

The set of indices dof Dm × dof Df for the unknowns is defined by (cf. figure 3)

dof Dm =M∪
(⋃
σ∈F

Mσ

)
dof Df = FΓ ∪ EΓ,

dof Dirm = Fext,
dof Dirf = EΓ ∩ Eext,
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Figure 3: Cell K touching a
fracture face σ. Illustration
of the polyhedron and poly-
gone on which:
Red: ∇Dm is constant.
Grey: ∇Df is constant.

uKσ

uK

ue

uσ

where for σ ∈ F and K ∈Mσ

Kσ =

{
Mσ if σ ∈ F \ FΓ

{K} if σ ∈ FΓ.

and Mσ = {Kσ | K ∈Mσ}. We thus have

XDm =
{
uK
∣∣ K ∈M} ∪ {uKσ

∣∣ σ ∈ FΓ, Kσ ∈Mσ

}
,

XDf =
{
uσ
∣∣ σ ∈ FΓ

}
∪
{
ue
∣∣ e ∈ EΓ

}
.

(20)

The discrete gradients in the matrix (respectively in the fracture domain) are defined in
each cell (respectively in each face) by the 3D (respectively 2D) discrete gradients

∇Dm (resp. ∇Df ) as proposed in [8], pp. 8-9. (21)

The function reconstruction operators are piecewise constant on a partition of the cells and
of the fracture faces.
These partitions are respectively denoted, for all K ∈M, by

K = ωK ∪
( ⋃
σ∈FK\Fext

ωK,Kσ

)
,

and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃
e∈Eσ\Eext

ωσ,e

)
.

With each σ ∈ F \ Fext and Kσ ∈Mσ we associate an open set ωKσ
, s.t.

ωKσ
=
⋃

K∈Kσ

ωK,Kσ
.

Similarly, for all e ∈ EΓ \ Eext we define ωe by

ωe =
⋃

σ∈Fe∩FΓ

ωσ,e.
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We obtain the partitions Ω =
(⋃

ν∈dofDm\dofDirm
ων

)
Γ =

(⋃
ν∈dofDf \dofDirf

ων

)
.

We also need a mapping between the degrees of freedom of the matrix domain, which
are situated on one side of the fracture network, and the set of indices χ. For σ ∈ FΓ and
Kσ ∈Mσ holds by definition Kσ = {K} for a K ∈Mσ and hence nKσ

= nK,σ is well defined.

We obtain the one-element set χ(Kσ) = {α ∈ χ | nKσ
= nα on σ} and therefore the notation

α(Kσ) = α ∈ χ(Kσ).
We define the HFV scheme’s reconstruction operators by

• ΠDmuDm =
∑

ν∈dofDm\dofDirm

uν1ων ,

• ΠDfuDf =
∑

ν∈dofDf \dofDirf

uν1ων ,

• Π̃DfuDf =
∑
σ∈FΓ

uσ1σ,

• Πα
DmuDm =

∑
σ∈FΓ

∑
Kσ∈Mσ

δα(Kσ)αuKσ
1σ for all α ∈ χ.

(22)

Proposition 4.3 Let us consider a sequence of meshes (Ml)l∈N and let us assume that the
sequence (T l)l∈N of tetrahedral submeshes is shape regular, i.e. θT l is uniformly bounded. We
also assume that liml→∞ hT l = 0. Then, any corresponding sequence of gradient discretizations
(Dl)l∈N, defined by (20), (21) and definition (22), is coercive, consistent and limit conforming.

Proof Let us denote in the following by ΠM and ΠF = Π̃F the HFV matrix and fracture
reconstruction operators for the special case that ωKσ

= ∅ = ωe for all Kσ ∈
⋃
σ∈FMσ and

e ∈ EΓ. We start our numerical analysis for HFV by proving the proposition for these special
choices and then use Lemma 3.1 for generalizing the results.

Coercivity: We first prove that limit conformity against regular test functions, as proved
below, implies coercivity.

Assume that the sequence of discretizations (Dl)l∈N is not coercive. Then we can find a
sequence ((uDlm , uDlf ))l∈N with (uDlm , uDlf ) ∈ X

0
Dl , such that

‖ΠDlmuDlm‖L2(Ω) + ‖ΠDlfuDlf‖L2(Γ) = 1 and ‖(uDlm , uDlf )‖Dl <
1

l
. (23)

Then follows from a compactness result of [21] that there exists a u = (um, uf ) ∈ L2(Ω)×L2(Γ),
s.t. up to a subsequence

(ΠDlmuDlm ,ΠDlfuDlf ) −→ (um, uf ) in L2(Ω)× L2(Γ) ( for l→∞)

and therefore ‖um‖L2(Ω) + ‖uf‖L2(Γ) = 1. On the other hand follows from the discretizations’
limit conformity against regular test functions (see below) by Proposition 3.1 and Corollary 3.1
that (um, uf ) ∈ V 0 and that up to a subsequence

∇DmvDlm ⇀ ∇vm in L2(Ω)d,
∇DfvDlf ⇀ ∇τvf in L2(Γ)d−1,

Π̃DfvDlf − Πα
DmvDlm ⇀ vf − γαvm in L2(Γα), for α ∈ χ.
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Since by construction holds ‖(uDlm , uDlf )‖Dl → 0, we obtain ‖(um, uf )‖V 0 = 0. But ‖ · ‖V 0 is a

norm on V 0, which contradicts the fact that ‖um‖L2(Ω) + ‖uf‖L2(Γ) = 1.

Consistency: For (ϕm, ϕf ) ∈ C∞Ω × C∞Γ let us define the projection PDmϕm ∈ X0
Dm such that

for all cell K ∈M one has

(PDmϕm)K = ϕm(xK),
(PDmϕm)Kσ

= ϕm(xσ) ∀σ ∈ FK ,

and the projection PDfϕf ∈ X0
Df such that (PDfϕf )ν = ϕf (xν) for all ν ∈ dofDf . Let us set

vD = (PDmϕm, PDfϕf ). Then holds

‖vK − ϕm‖L2(K) ≤ Cϕm · hT · |K|
1
2 for K ∈M,

where Cϕm := maxΩ ‖∇ϕm‖. Summing over K ∈M yields

‖ΠMvDm − ϕm‖L2(Ω) ≤ Cϕm · hT · |Ω|
1
2 .

We also have

‖vKσ
− γαϕm‖L2(Γα) ≤ cαϕm · hT · |σ|

1
2 for σ ∈ Fα, Kσ ∈Mα

σ

where cαϕm := maxΓα ‖∇τγαϕm‖, from which we obtain

‖Πα
DmvDm − γαϕm‖L2(Γα) ≤ cαϕm · hT · |Γα|

1
2 .

Analogously we can derive

‖ΠFvDf − ϕf‖L2(Γ) ≤ cϕf · hT · |Γ|
1
2 ,

where cϕf := maxΓ ‖∇τϕf‖. Furthermore, it follows from Lemma 4.3 of [8] that there exists
C > 0 depending only on θT and ϕ such that

‖∇DmvDm −∇ϕ‖L2(Ω) + ‖∇DfvDf −∇ϕ‖L2(Γ) ≤ ChT

Taking into account that C∞Ω × C∞Γ is dense in V 0, we see that the treated discretisation is
consistent.

Limit Conformity: Let ϕm ∈ C∞Wm
and for all K ∈ M, σ ∈ FK let ϕK := 1

|K|

∫
K
ϕmdx and

ϕK,σ := 1
|σ|

∫
σ
γnK,σϕmdτ(x). In exactly the same manner as [19], (29)-(31) are proved, we can

show that holds

A12
DmuDm ≤ ChT ‖∇DmuDm‖L2(Ω)d and (24)

A11
DmuDm + A2

DmuDm −
∑
α∈χ

∫
Γα

γn,αϕm(Πα
DmuDm)dτ(x)

=
∑
K∈M

∑
σ∈FK

|σ|(uK − uKσ
)(ϕK,σ −ϕK) · nK,σ, (25)
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where

A11
DmuDm :=

∑
K∈M

∑
σ∈FK

|σ|(uKσ
− uK)ϕK · nK,σ,

A12
DmuDm :=

∑
K∈M

∑
σ∈FK

RK,σ(uDm)nK,σ ·
∫
DK,σ

ϕmdx,

A2
DmuDm :=

∑
K∈M

∑
σ∈FK

|σ|uKϕK,σ · nK,σ and

A11
DmuDm + A12

DmuDm + A2
DmuDm =

∫
Ω

(
∇DmuDm ·ϕm + (ΠMuDm)div(ϕm)

)
dx,

with the definition of the gradient stabilization term RK,σ(uDm) as in [8], pp. 8-9. Therefore,
applying Cauchy-Schwarz inequality to (25), using the regularity of ϕm, and the estimate (24),
we deduce that there exists C depending only on ϕm, θT , such that∫

Ω

(
∇DmuDm ·ϕm + (ΠMuDm)div(ϕm)

)
dx−

∑
α∈χ

∫
Γα

γn,αϕm(Πα
DmuDm)dτ(x) ≤ ChT ‖∇DmuDm‖L2(Ω)d .

Taking into account the result [19] (33), i.e. for all ϕ ∈ C∞Wf
exists a constant C > 0 depending

only on θT , such that ∣∣∣ ∫
Γ

(
∇DfuDf ·ϕf + (ΠFuDf )div(ϕf )

)
dτ(x)

∣∣∣
≤ Ch∆‖∇DfuDf‖L2(Γ)d−1 ,

we obtain all together

wD(uD,q) ≤ C · hT · ‖uD‖D for all q ∈ C∞Wm
× C∞Wf

.

This result is shown above to imply coercivity, which is needed to conclude now.
Finally, using that C∞Wm

× C∞Wf
is dense in W and the coercivity of the scheme, we derive

limit conformity on the whole space of test functions.

Generalization to arbitrary HFV discretizations: We want to apply Lemma 3.1. From [8]
Lemma 4.1 and [21], it follows that there are positive constants Cm and Cf only depending on
θT and d, such that for all uD ∈ XD holds

‖ΠMuDm − ΠDmuDm‖2
L2(Ω) =

∑
K∈M

∑
σ∈FK

|ωK,Kσ
|(uK − uKσ

)2 ≤ Cm · h2
T · ‖∇DmuDm‖2

L2(Ω)d

‖ΠFuDf − ΠDfuDf‖2
L2(Γ) =

∑
σ∈FΓ

∑
e∈Eσ

|ωσ,e|(uσ − ue)2 ≤ Cf · h2
∆ · ‖∇DfuDf‖2

L2(Γ)d−1 .

The remaining conditions of Lemma 3.1 are trivially satisfied, from what follows the statement
of the proposition. �

Remark 4.3 The precedent proof shows that for solutions (um, uf ) ∈ V 0 and (qm,qf ) ∈ W
of (4) such that um ∈ C2(K), uf ∈ C2(σ), qm ∈ (C1(K))d, qf ∈ (C1(σ))d−1 for all K ∈ M
and all σ ∈ Γf , the HFV schemes are consistent and limit conforming of order 1, and therefore
convergent of order 1.
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4.3 Finite Volume Formulation for VAG and HFV Schemes

For K ∈M let

dofK =

{
{Ks, s ∈ VK} ∪ {Kσ, σ ∈ FK ∩ FΓ} for V AG,
{Kσ, σ ∈ FK} for HFV.

Analogously, in the fracture domain, for σ ∈ FΓ let

dofσ =

{
Vσ for VAG,
Eσ for HFV.

Then, for any ν ∈ dofK the discrete matrix-matrix -fluxes are defined as

FKν(uDm) =
∑

ν′∈dofK

(∫
K

Λm∇Dmeν∇Dmeν′dx
)

(uK − uν′).

such that
∫

Ω
Λm∇DmuDm∇DmvDmdx =

∑
K∈M

∑
ν∈dofK FKν(uDm)(vK − vν). For all ν ∈ dofσ

the discrete fracture-fracture-fluxes are defined as

Fσν(uDf ) =
∑

ν′∈dofσ

(∫
σ

Λf∇Df eν∇Df eν′dτf (x)
)

(uσ − uν′),

such that
∫

Γ
Λf∇DfuDf∇DfvDfdτf (x) =

∑
σ∈FΓ

∑
ν∈dofσ Fσν(uDf )(vσ−vν). To take interactions

of the matrix and the fracture domain into account we introduce the set of matrix-fracture (mf )
connectivities

C = {(νm, νf ) | νm ∈ dof Γ
Dm , νf ∈ dof Df s.t. xνm = xνf}

with dof Γ
Dm = {ν ∈ dof Dm |xν ∈ Γ}. The mf -fluxes are built such that

aDmf

(
(uDm , uDf ), (vDm , vDf )

)
=

∑
(νm,νf )∈C

Fνmνf (uDm , uDf )(vνm − vνf )

=
∑
i∈I

∫
Γi

Tf
2ξ − 1

∑
(α,β)∈

{(α±(i),α∓(i))}

(
ξΠα
DmuDm + (1− ξ)Πβ

DmuDm − Π̃DfuDf

)(
Πα
DmvDm − Π̃DfvDf

)
dτ(x),

for all (vDm , vDf ) ∈ XD. For all σ ∈ FΓ and K ∈Mσ, let us denote by α(K, σ) the unique α ∈ χ
such that σ ∈ Fα and nα = nK,σ. Let us also set for all σ ∈ FΓ, (χ×χ)σ = {(α(K, σ), α(L, σ)),
(α(L, σ), α(K, σ))} with Mσ = {K,L}. Then, holds

aDmf

(
(uDm , uDf ), (vDm , vDf )

)
=∑

σ∈FΓ

∑
(α,β)∈(χ×χ)σ

∫
σ

Tf
2ξ − 1

(
ξΠα
DmuDm + (1− ξ)Πβ

DmuDm − Π̃DfuDf

)(
Πα
DmvDm − Π̃DfvDf

)
dτ(x).

For all σ ∈ FΓ, K ∈ Mσ and x ∈ σ, let us notice that, for the VAG scheme, one has
Π
α(K,σ)
Dm eKσ(x) = Π̃Df eσ(x), and Π

α(K,σ)
Dm eKs

(x) = Π̃Df es(x) for all s ∈ Vσ, and for the HFV

scheme, one has Π
α(K,σ)
Dm eKσ

(x) = Π̃Df eσ(x) = 1�σ. It result after some computations that the
VAG matrix fracture fluxes are defined by

FKσσ(uDm , uDf ) =
∑
s∈Vσ

(∫
σ

Tf
2ξ − 1

(Π̃Df eσ)(Π̃Df es)dτ(x)
)(
ξuKs

+ (1− ξ)uLs − us
)

+
(∫

σ

Tf
2ξ − 1

(Π̃Df eσ)2dτ(x)
)(
ξuKσ + (1− ξ)uLσ − uσ

)
,

25



for all σ ∈ FΓ, Mσ = {K,L} , and by

FQss(uDm , uDf ) =
∑

σ∈(
⋃
Q∈Qs

FQ)∩Fs∩FΓ

∑
K∈Mσ∩Qs, L∈Mσ\{K}

{
(∫

σ

Tf
2ξ − 1

(Π̃Df es)
2dτ(x)

)(
ξuKs

+ (1− ξ)uLs − us
)

+
∑

s′∈Vσ | ss′∈Eσ

(∫
σ

Tf
2ξ − 1

(Π̃Df es′)(Π̃Df es)dτ(x)
)(
ξuKs′

+ (1− ξ)uLs′ − us′
)

+
(∫

σ

Tf
2ξ − 1

(Π̃Df eσ)(Π̃Df es)dτ(x)
)(
ξuKσ + (1− ξ)uLσ − uσ

) }
,

for all s ∈ VΓ, Qs ∈Ms. Similarly the HFV matrix fracture fluxes are defined by

FKσσ
(uDm , uDf ) =

1

2ξ − 1

(∫
σ

Tf (x)dτ(x)
)(
ξuKσ + (1− ξ)uLσ − uσ

)
,

for all σ ∈ FΓ, Mσ = {K,L}.
We observe that for the VAG-CV scheme (since

∫
σ
Tf (Π̃Df es′)(Π̃Df es)dτ(x) = 0 for s 6= s′

and
∫
σ
Tf (Π̃Df eσ)(Π̃Df es)dτ(x) = 0) as well as for the HFV scheme, the fluxes Fνmνf only

involves the d.o.f. located at the point xνm = xνf .
The discrete source terms are defined by

Hν =


∫

Ω

hmΠDmeνdx for ν ∈ dof Dm ,∫
Γ

hfΠDf eνdτf (x) for ν ∈ dof Df .

FKσ,σFK,Kσ

Fσ,s

us

uKs

FKs,s

uσ

uKσ

uKs′

uK

FK,Ks
FK,Ks′

FKσ,σ

ue

uσ

uKσ

Fσ,e

uKσ′
uK

FK,Kσ

FK,Kσ′

Figure 4: mm-fluxes (red), mf -fluxes (dark red) and ff -fluxes (black) for VAG (left) and HFV
(right) on a 3D cell touching a fracture

The following Finite Volume formulation of (5) is equivalent to the discrete variational
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formulation (9): find (uDm , uDf ) ∈ X0
D such that

for all K ∈M :
∑

ν∈dofK
FKν(uDm) = HK

for all σ ∈ FΓ :
∑

ν∈dofσ
Fσν(uDf )−

∑
νm∈dofDm

s.t. (νm,σ)∈C

Fνmσ(uDm , uDf ) = Hσ

for all νm ∈ dofDm \ (M∪ dof Dirm) :

− ∑
K∈Mνm

FKνm(uDm) +
∑

νf∈dofDf
s.t. (νm,νf )∈C

Fνmνf (uDm , uDf ) = Hνm

for all νf ∈ dofDf \ (FΓ ∪ dof Dirf ) :

− ∑
σ∈FΓ,νf

Fσνf (uDf )−
∑

νm∈dofDm
s.t. (νm,νf )∈C

Fνmνf (uDm , uDf ) = Hνf .

Here,Mνm stands for the set of indices {K ∈M | νm ∈ dofK} and FΓ,νf stands for the set
{σ ∈ FΓ | νf ∈ dofσ}.

It is important to note that, using the equation in each cell, the cell unknowns uK , K ∈M,
can be eliminated without fill-in.

5 Numerical Results

The objective of this numerical section is to compare the VAG-FE, VAG-CV, and the HFV
schemes in terms of accuracy and CPU efficiency for both Cartesian and tetrahedral meshes on
heterogeneous isotropic and anisotropic media. For that purpose a family of analytical solutions
is built for the fixed value of the parameter ξ = 1. We refer to [12], [3], [2] for a comparison
of the solutions obtained with different values of the parameter ξ ∈ [1

2
, 1] with the solution

obtained with a 3D representation of the fractures.
Table 1 exhibits for the Cartesian and tetrahedral meshes, as well as for both the VAG

and HFV schemes, the number of degrees of freedom (Nb dof), the number of d.o.f. after
elimination of the cell and Dirichlet unknowns (nb dof el.), and the number of nonzero element
in the linear system after elimination without any fill-in of the cell unknowns (Nb Jac).

In all test cases, the linear system obtained after elimination of the cell unknowns is solved
using the GMRes iterative solver with the stopping criteria 10−10. The GMRes solver is pre-
conditioned by ILUT [25], [26] using the thresholding parameter 10−4 chosen small enough in
such a way that all the linear systems can be solved for both schemes and for all meshes. In
tables 2 and 3, we report the number of GMRes iterations Iter and the CPU time taking into
account the elimination of the cell unknowns, the ILUT factorization, the GMRes iterations,
and the computation of the cell values.

We ran the program on a 2,6 GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3
memory.

5.1 A class of analytical solutions

We consider a 3-dimensional open, bounded, simply connected domain Ω = (−0.5, 0.5)3 with
four intersecting fractures Γ12 = {(x, y, z) ∈ Ω | x = 0, y > 0}, Γ23 = {(x, y, z) ∈ Ω | y = 0, x >

27



0}, Γ34 = {(x, y, z) ∈ Ω | x = 0, y < 0} and Γ14 = {(x, y, z) ∈ Ω | y = 0, x < 0}. We also
introduce the piecewise disjoint, connex subspaces of Ω, Ω1 = {(x, y, z) ∈ Ω | y > 0, x < 0},
Ω2 = {(x, y, z) ∈ Ω | y > 0, x > 0}, Ω3 = {(x, y, z) ∈ Ω | y < 0, x > 0} and Ω4 = {(x, y, z) ∈
Ω | y < 0, x < 0}.

Derivation: For (um, uf ) ∈ V , we denote um(x, y, z) = ui(x, y, z) on Ωi, i = 1, . . . , 4 and
uf (x, y, z) = uij(y, z) on Γij, ij ∈ J, where we have introduced J = {12, 23, 34, 14}. We assume
that a solution of the discontinuous pressure model writes in the fracture network uij(y, z) =
αf (z) + βij(z)γij(y), ij ∈ J and in the matrix domain

u1(x, y, z) = α1(z)u12(y, z)u14(x, z)
u2(x, y, z) = α2(z)u12(y, z)u23(x, z)
u3(x, y, z) = α3(z)u34(y, z)u23(x, z)
u4(x, y, z) = α4(z)u34(y, z)u14(x, z).

On γij, ij ∈ J we assume γij(0) = 0, such that the continuity of uf is well established at the
fracture-fracture intersection, as well as γ′ij(0) = 1, to ease the following calculations. For
i = 1, . . . , 4 let Ki = Λm�Ωi

and for ij ∈ J let Tij = Tf�Γij
. From the conditions γn,αqm =

Tf (γαum − uf ) on Γα, α ∈ χ, we then get, after some effort in computation,

α1(z) =
(
αf (z)− K1y

T14

β12(z)
)−1

, α2(z) =
(
αf (z)− K1yK2xK3yK4x

K1xK3xK4yT23

β12(z)
)−1

,

α3(z) =
(
αf (z)− K1yK3yK4xT12

K1xK4yT23T34

β12(z)
)−1

, α4(z) =
(
αf (z)− K1yK4xT12

K1xT14T34

β12(z)
)−1

,

β23(z) =
K1yK3yK4xT12

K1xK3xK4yT23

β12(z), β34(z) = −K1yK4xT12

K1xK4yT34

β12(z)

β14(z) = −K1yT12

K1xT14

β12(z),
K1yK2xK3yK4x

K1xK2yK3xK4y

= 1.

(26)
Obviously, we have taken αf and β12 as degrees of freedom, here. However, these functions
must be chosen in such a way that 1

αi(z)
6= 0 for i = 1, . . . , 4.

Remark 5.1 We would like to explicitly calculate the jump at the matrix-fracture interfaces
for this class of solutions. At Γij we have

ui(0, y, z)− uj(0, y, z) = (αi(z)− αj(z)) · αf (z) · uij(y, z), for ij ∈ {12, 34}
ui(x, 0, z)− uj(x, 0, z) = (αi(z)− αj(z)) · αf (z) · uij(x, z), for ij ∈ {23, 14}.

From (26), we observe, that the pressure becomes continuous at the matrix-fracture interfaces,
as the Tij tend to ∞ uniformly.

Remark 5.2 In order to obtain solutions with discontinuities at the matrix-fracture interfaces,
we had to omit the constraint of flux conservation at fracture-fracture intersections.

5.2 Test Case

We define a solution by setting αf (z) = esin(πz), β12(z) = −1, γ12(y) = cos(2πy) + y − 1,

γ23(x) = x, γ34(y) = −ecos(πy) +y+e, γ14(x) = sin(πx)
π

. The parameters we used for the different
test cases are
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• Isotropic Heterogeneous Permeability:

K1x = K1y = K1z = 1, K2x = K2y = K2z = 100,

K3x = K3y = K3z = 3, K4x = K4y = K4z = 40,

T12 = 1, T23 = 0.2, T34 = 100, T14 = 10,

K12 = 1, K23 = 2, K34 = 3, K14 = 10.

• Anisotropic Heterogeneous Permeability:

K1x = K1z = 1, K1y = 50, K2x = K2z = 2, K2y = 100,

K3y = K3z = 3, K3x = 30, K4z = 4, K4x = K4y = 40,

T12 = T23 = T34 = T14 = 1,

K12 = K23 = K34 = K14 = 1.

In the following figures we plot the normalized L2 norms of the errors, which are calculated as
follows:

• normalized error of the solution: errsol =
‖ΠDmuDm−um‖L2(Ω)+‖ΠDf uDf−uf‖L2(Γ)

‖um‖L2(Ω)+‖uf‖L2(Γ)

• normalized error of the gradient: errgrad =
‖∇DmuDm−∇um‖L2(Ω)

d+‖∇Df uDf−∇τuf‖L2(Γ)
d−1

‖∇um‖
L2(Ω)

d+‖∇τuf‖
L2(Γ)

d−1

In the following tables is additionally found the normalized error of the jump:

errjump =
∑
α∈χ ‖ΠαDmuDm−ΠDf uDf−γαum+uf‖L2(Γα)∑

α∈χ ‖γαum+uf‖L2(Γα)
.

VAG HFV
Hexahedral Meshes
Key Nb Cells Nb dof Nb dof el. Nb Jac Nb dof Nb dof el. Nb Jac

1 512 1949 1437 31253 2776 2264 20696
2 4096 11701 7605 178845 19248 15152 150320
3 32768 79205 46437 1154861 142432 109664 1141856
4 262144 578245 316101 8152653 1093824 831680 8892608
5 2097152 4408709 2311557 60910733 8569216 6472064 70173056

Tetrahedral Meshes
6 1337 2514 1177 18729 4943 3606 22642
7 10706 15765 5059 81741 35520 24814 164246
8 100782 131204 30422 492158 317367 216585 1474817
9 220106 279281 59175 956659 685718 465612 3190244
10 428538 533442 104904 1694008 1324614 896076 6167300
11 2027449 2452416 424967 6818299 6193783 4166334 28862986

Table 1: Key defines the mesh reference; Nb Cells is the number of cells of the mesh; Nb
dof is the number of discrete unknowns; Nb dof el. is the number of discrete unknowns after
elimination of cell unknowns; Nb Jac refers to the number of non-zero Jacobian entries after
elimination of the cell unknowns and equations.

29



1E-05

1E-04

1E-03

1E-02

1E-01

1E-02 1E-01 1E+00 1E+01 1E+02 1E+03

N
O

R
M

A
L

IZ
E

D
 L

2-
N

O
R

M
 O

F 
T

H
E

 E
R

R
O

R

CPU TIME

HETEROGENEOUS PERMEABILITY - HEXAHEDRAL MESHES

VAG Sol
VAG Grad

HFV Sol
HFV Grad

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03

N
O

R
M

A
L

IZ
E

D
 L

2-
N

O
R

M
 O

F 
T

H
E

 E
R

R
O

R

CPU TIME

HETEROGENEOUS PERMEABILITY - TETRAHEDRAL MESHES

VAG Sol
VAG Grad

HFV Sol
HFV Grad

Figure 5: Heterogeneous Permeability: Comparison of VAG-FE and HFV on hexahedral and
tetrahedral meshes.
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Figure 6: Anisotropic Permeability: Comparison of VAG-FE and HFV on hexahedral and
tetrahedral meshes.
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Heterogeneous Permeability: VAG
Hexahedral Meshes
Key Iter CPU errsol errgrad errjump αsol αgrad αjump

1 8 1.34E-2 5.78E-3 1.74E-2 8.99E-3 1.92 1.97 1.83
2 12 0.11 1.53E-3 4.44E-3 2.53E-3 1.92 1.97 1.83
3 22 0.98 3.92E-4 1.14E-3 6.72E-4 1.97 1.96 1.91
4 41 8.86 9.89E-5 2.91E-4 1.73E-4 1.99 1.97 1.96
5 79 87.91 2.48E-5 7.40E-5 4.40E-5 1.99 1.98 1.98

Tetrahedral Meshes
6 7 5.82E-3 2.01E-2 0.14 2.25E-2 1.80 0.94 1.68
7 10 3.73E-2 5.78E-3 7.09E-2 7.03E-3 1.80 0.94 1.68
8 20 0.41 1.44E-3 3.52E-2 1.81E-3 1.86 0.94 1.82
9 26 1.00 8.11E-4 2.71E-2 1.06E-3 2.20 1.01 2.06
10 32 2.11 5.60E-4 2.19E-2 7.36E-4 1.67 0.95 1.62
11 53 12.92 1.92E-4 1.31E-2 2.58E-4 2.07 1.00 2.03

Heterogeneous Permeability: HFV
Hexahedral Meshes
Key Iter CPU errsol errgrad errjump αsol αgrad αjump

1 11 1.18E-2 1.34E-2 4.3E-2 2.15E-2 1.94 1.80 1.98
2 19 0.13 3.49E-3 1.24E-2 5.44E-3 1.94 1.80 1.98
3 35 1.45 8.91E-4 3.41E-3 1.38E-3 1.97 1.86 1.98
4 73 20.36 2.25E-4 9.15E-4 3.47E-4 1.99 1.90 1.99
5 141 315.38 5.65E-5 2.42E-4 8.69E-5 1.99 1.92 2.00

Tetrahedral Meshes
6 12 1.56E-2 1.01E-2 0.11 1.74E-2 1.88 0.96 1.73
7 21 0.22 2.74E-3 5.87E-2 5.24E-3 1.88 0.96 1.73
8 43 3.75 6.07E-4 2.75E-2 1.17E-3 2.02 1.02 2.00
9 60 10.51 3.38E-4 2.07E-2 6.62E-4 2.25 1.08 2.20
10 73 23.52 2.22E-4 1.68E-2 4.37E-4 1.90 0.94 1.87
11 119 166.46 7.73E-5 9.87E-3 1.58E-4 2.03 1.02 1.96

Table 2: Isotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errsol, errgrad, errjump are
the respective L2-errors as defined above; αsol, αgrad, αjump are the orders of convergence of the
solution, of the gradient and of the jump, respectively.
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Anisotropic Permeability: VAG
Hexahedral Meshes
Key Iter CPU errsol errgrad errjump αsol αgrad αjump

1 7 6.32E-3 8.78E-3 1.98E-2 8.69E-3 1.89 1.99 1.89
2 9 5.56E-2 2.37E-3 4.97E-3 2.34E-3 1.89 1.99 1.89
3 14 0.67 6.15E-4 1.24E-3 6.06E-4 1.95 2.00 1.95
4 26 6.35 2.28E-4 1.57E-4 3.11E-4 1.97 2.00 1.97
5 47 62.65 3.95E-5 7.78E-5 3.89E-5 1.99 2.00 1.99

Tetrahedral Meshes
6 7 1.95E-3 2.73E-2 0.13 2.70E-2 1.95 0.99 1.95
7 8 2.14E-2 7.05E-3 6.76E-2 6.98E-3 1.95 0.99 1.95
8 15 0.38 2.56E-3 3.92E-2 2.53E-3 1.35 0.73 1.36
9 21 1.02 1.34E-3 2.84E-2 1.32E-3 2.49 1.24 2.49
10 25 2.24 9.26E-4 2.22E-2 9.14E-4 1.66 1.10 1.67
11 41 13.78 3.10E-4 1.36E-2 3.07E-4 2.11 0.95 2.11

Anisotropic Permeability: HFV
Hexahedral Meshes
Key Iter CPU errsol errgrad errjump αsol αgrad αjump

1 9 6.02E-3 2.64E-2 4.89E-2 3.35E-2 1.91 1.78 2.01
2 16 8.48E-2 7.02E-3 1.43E-2 8.30E-3 1.91 1.78 2.01
3 29 1.13 1.81E-3 3.96E-3 2.07E-3 1.95 1.85 2.00
4 55 16.55 4.60E-4 1.07E-3 5.19E-4 1.98 1.89 2.00
5 108 248.20 1.16E-4 2.86E-4 1.30E-4 1.99 1.91 2.00

Tetrahedral Meshes
6 10 1.41E-2 1.77E-2 0.14 1.79E-2 1.86 0.98 1.91
7 19 0.26 4.86E-3 7.13E-2 4.75E-3 1.86 0.98 1.91
8 37 4.56 1.28E-3 3.63E-2 1.21E-3 1.79 0.90 1.83
9 47 12.16 6.92E-4 2.62E-2 6.66E-4 2.35 1.25 2.28
10 63 27.96 4.75E-4 2.16E-2 4.68E-4 1.69 0.88 1.59
11 105 189.66 1.65E-4 1.28E-2 1.58E-4 2.04 1.00 2.09

Anisotropic Permeability: VAG Lump
Hexahedral Meshes
Key Iter CPU errsol errgrad errjump αsol αgrad αjump

1 7 3.90E-3 9.09E-3 2.01E-2 9.06E-3 1.89 1.99 1.89
2 9 5.15E-2 2.46E-3 5.06E-3 2.44E-3 1.89 1.99 1.89
3 15 0.66 6.37E-4 1.27E-3 6.34E-4 1.95 2.00 1.95
4 26 6.39 1.62E-4 3.17E-4 1.61E-4 1.97 2.00 1.97
5 47 62.19 4.09E-5 7.93E-5 4.07E-5 1.99 2.00 1.99

Tetrahedral Meshes
6 7 2.11E-3 2.75E-2 0.13 2.73E-2 1.95 0.99 1.94
7 8 2.00E-2 7.14E-3 6.76E-2 7.10E-3 1.95 0.99 1.94
8 15 0.38 2.60E-3 3.92E-2 2.58E-3 1.35 0.73 1.35
9 21 1.02 1.36E-3 2.84E-2 1.35E-3 2.48 1.24 2.49
10 25 2.24 9.40E-4 2.22E-2 9.33E-4 1.66 1.10 1.67
11 41 13.91 3.15E-4 1.36E-2 3.13E-4 2.11 0.95 2.11

Table 3: Anisotropic test case. Key refers to the mesh defined in table 1; Iter is the number
of solver iterations; CPU refers to the solver CPU time in seconds; errsol, errgrad, errjump are
the respective L2-errors as defined above; αsol, αgrad, αjump are the orders of convergence w.r.t.

#M− 1
3 of the solution, of the gradient and of the jump, respectively.
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The test case shows that, on cartesian grids, we obtain, as classically expected, convergence
of order 2 for both, the solution and it’s gradient. For tetrahedral grids, we obtain convergence
of order 2 for the solution and convergence of order 1 for it’s gradient. We observe that the
VAG scheme is more efficient then the HFV scheme and this observation gets more obvious
with increasing anisotropy. Comparing the precision of the discrete solution (and it’s gradient)
for VAG and HFV on a given mesh, we see that on hexahedral meshes, the advantage is on the
side of VAG, whereas on tetrahedral meshes HFV is more precise (but much more expensive).
On a given mesh, HFV is usually (see [19]) more accurate than VAG both for tetrahedral and
hexahedral meshes. This is not the case for our test cases on Cartesian meshes maybe due to
the higher number for VAG than for HFV of d.o.f. at the interfaces Γα on the matrix side. It
is also important to notice that there is literally no difference between VAG with finite element
respectively lumped mf -fluxes concerning accuracy and convergence rate.

6 Conclusion

In this work, we extended the framework of gradient schemes (see [7]) to the model problem (4)
of stationary Darcy flow through fractured porous media and gave numerical analysis results
for this general framework.

The model problem (an extension to a network of fractures of a PDE model presented in
[10], [12] and [3]) takes heterogeneities and anisotropy of the porous medium into account and
involves a complex network of planar fractures, which might act either as barriers or as drains.

We also extended the VAG and HFV schemes to our model, where fractures acting as
barriers force us to allow for pressure jumps across the fracture network. We developed two
versions of VAG schemes, the conforming finite element version and the non-conforming control
volume version, the latter particularly adapted for the treatment of material interfaces (cf. [9]).
We showed, furthermore, that both versions of VAG schemes, as well as the proposed non-
conforming HFV schemes, are incorporated by the gradient scheme’s framework. Then, we
applied the results for gradient schemes on VAG and HFV to obtain convergence, and, in
particular, convergence of order 1 for ”piecewise regular” solutions.

For implementation purposes and in view of the application to multi-phase flow, we also
proposed a uniform Finite Volume formulation for VAG and HFV schemes. The numerical
experiments on a family of analytical solutions show that the VAG scheme offers a better
compromise between accuracy and CPU time than the HFV scheme especially for anisotropic
problems.
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