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∗CMLA - Centre de Mathématiques et de Leurs Applications, ENS Cachan
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Abstract—Numerical accuracy of floating point computation is
a well studied topic, but which has not made its way to the
end-user in scientific computing. With the recent requirements
for code modernization to exploit new highly parallel hardware
and perform higher resolution computation, this has become
one of the critical issues to address. To democratize numerical
accuracy analysis, it is important to propose tools and method-
ologies to study large use cases in a reliable and automatic way.
In this paper, we propose verificarlo, an extension to the LLVM
compiler to automatically use Monte Carlo Arithmetic in a
transparent way for the end-user. It supports all the major
languages including C, C++ and Fortran. We also illustrate
the fact that unlike source-to-source approaches, our imple-
mentation captures the influence of compiler optimizations
on the numerical accuracy. Finally, we illustrate on various
use cases how Monte Carlo Arithmetic using the verificarlo
tool outperforms the existing approaches and is a step toward
automatic numerical analysis of large scientific applications.

1. Introduction

This paper presents a new compiler tool to assess
the uncertainties on a scientific code due to the floating
point (FP) arithmetic. It builds upon the extensive work
of Parker [Par97] and Frechtling [FL15] on Monte Carlo
Arithmetic (MCA) for floating point accuracy verification.
Floating point computations are a model of real number
computation where a real number is rounded towards a
floating point number, and some arithmetical properties,
such as the associativity of the sum, are lost. Consequently,
the computer numerical results are sensitive to the evalua-
tion order of the floating point arithmetical operations, the
floating point precision, and the rounding mode.

The quantification of the floating point uncertainties
is important. In the next decade, exascale supercomputers
will provide the computational power required to perform
very large scale simulations. For certain applications the
results of exascale simulations will be of such high reso-
lution that experimental measurements will be insufficient
for validation purposes. As floating point approximations of
numeric expressions are neither associative nor distributive,

the results of a numerical simulation can differ between
executions. As reported by Duff [Duf11], “Getting different
results for different runs of the same computation can be
disconcerting for users even if, in a sense, both results are
correct”, there is a need to have an automatic and global
approach giving a confidence interval on the results taking
into account the floating point arithmetic effect.

Numerical verification is a procedure to estimate the
effect of the floating point model on the accuracy of the
computed results. It is the first step of a rigorous Verification
and Validation (V&V) procedure. Several methods exist
to perform a numerical verification on a numerical code.
Kahan, the primary architect of the IEEE-754 standard for
floating point computation, argues in [Kah06] that using
extendable precision interval arithmetic is almost foolproof.
The interval arithmetic is an arithmetic defined on sets
of guaranteed intervals rather than on sets of IEEE-754
numbers. The numerical verification on a scientific code
using IEEE-754 floating point numbers consists of com-
paring the results with those obtained on a shadow code
using interval arithmetic. It requires that the results intervals
are sufficiently small. If not, the computation needs to be
performed again by extending the precision of the interval
arithmetic. Unfortunately, even if the result is guaranteed,
the interval arithmetic typically produces overly pessimistic
bounds as it does not take into account the round-off error
compensation when using the rounding mode to the nearest.
Some numerical algorithms need to be also modified when
using interval arithmetic. For example, the Newton-Raphson
method needs to be modified in order to obtain convergence
under interval arithmetic [Rev03]. Consequently, from an
industrial point of view, it is only possible to use extendable
precision interval arithmetic on specific numerical algo-
rithms and not on a whole scientific code.

An alternative is to obtain confidence interval on the
results by applying random perturbation on the numerical
code. For example, the Discrete Stochastic Arithmetic im-
plemented in the CADNA library perturbates the computing
by randomly changing the rounding mode. Discrete Stochas-
tic Arithmetic is based on CESTAC developed by Vignes in
1974. It is a powerful numerical debugger tool which has
been used to solve real problems. Nevertheless, both for



methodological and technical aspects, it could not been used
to automatically perform numerical verification on a whole
scientific code unlike the Monte Carlo Arithmetic (MCA)
as discussed in this paper.

We propose the following contributions:

• Verificarlo, a new LLVM compiler tool to automati-
cally use the Monte Carlo arithmetic in place of the
IEEE-754 FP.

• A set of experiments to validate the automatic MCA
approach using verificarlo and compare it to the
state-of-the-art MCA approach using CIL [FL15]
and CESTAC approach using CADNA [Vig04].

This paper is organized as follows. Section 2 presents
stochastic arithmetic for numerical verification of applica-
tion. Section 3 introduces the verificarlo tool and discusses
the pros and cons and compares to other approaches. Finally
we propose in section 4 a set of experiments to validate our
tool and demonstrate its capabilities.

2. Probabilistic methods to check the floating
point accuracy

The aim of this section is to briefly present two prob-
abilistic methods used to check the floating point accu-
racy: the Monte Carlo Arithmetic (MCA) and the Discrete
Stochastic Arithmetic (DSA).

2.1. Monte Carlo Arithmetic (MCA)

Monte Carlo Arithmetic (MCA) tracks rounding and
catastrophic cancellation errors at a given virtual precision
t by applying randomization to input and output operands.
MCA makes no assumption about the round-off error dis-
tribution and produces unbiased random round-off errors.

It forces the results of floating point operations to behave
like random variables. This turns executions into trials of a
Monte Carlo simulation allowing statistics on the effects of
rounding error to be obtained over a number of executions.
This section succintly summarizes MCA, for a full presen-
tation see [Par97].

To model errors on a FP value x at virtual precision t,
Parker proposes the following function:

inexact(x) = x+ 2ex−tξ, (1)

where ex is the exponent of the FP value x and ξ is a
uniformly distributed random variable in the range [− 1

2 ,
1
2 ].

Each floating point operation x ◦ y is transformed into a
MCA FP operation using one of the following modes:

• RR: Random Rounding, which tracks rounding er-
rors by introducing an error in the outbound value,

x ◦ y → round(inexact(x ◦ y))
• PB: Precision Bounding, which tracks catastrophic

cancellations by introducing errors in the inbound
values,

x ◦ y → round(inexact(x) ◦ inexact(y))

• Full MCA: Monte Carlo Arithmetic with inbound
and outbound errors,

x ◦ y → round(inexact(inexact(x) ◦ inexact(y)))

When the exact solution x of a problem is known, we
can measure the number of significant digits s in base β
by computing the magnitude of the relative error between
the approximated value x̂ and the exact value x using the
following formula

s = − logβ

∣∣∣∣ x̂− xx
∣∣∣∣ (2)

Parker extends this definition to MCA and shows [Par97,
p. 23] that the total significant digits for a set of MCA results
at virtual precision t is given by the magnitude of the relative
standard deviation

s′ = − logβ
σ

µ
(3)

In this formula, µ and σ are the mean and the standard
deviation of the result distribution. Unfortunately, the exact
distribution of results is unknown, but it can be empirically
estimated by using a large number of Monte Carlo trials.
Indeed for a large number of trials, s′ ≈ − logβ

σ̂
µ̂ , where µ̂

and σ̂ are the sample mean and sample standard deviation.
The metrics given by equations 2 and 3 will be used

in section 4 to evaluate our outputs and compare to other
approaches.

2.2. Discrete Stochastic Arithmetic (DSA)

Discrete Stochastic Arithmetic (DSA) is based on the
CESTAC method. The CESTAC method is a pioneer work
in the domain of the random computer arithmetic [VLP74].
The ingenious idea is to randomly change the rounding
mode of a floating point (FP) computation to estimate its
accuracy. For debugging purposes, DSA has made the choice
to carry out a single program in which each FP operation
is performed N times with a rounding mode towards plus
or minus infinity. For each sample, the rounding mode is
randomly chosen. There is thus a probability PN = 21−N

that all the N samples compute a FP operation with the
same rounding mode. The number of significant digits is
computed after each FP computation by using the Student
distribution. DSA also redefines relational operators. A full
review of DSA is provided in [Vig04].

The CADNA library is an implementation of Discrete
Stochastic Arithmetic (DSA) with N = 3 samples. The
first two samples compute each FP operation with a random
rounding mode whereas the last one uses the rounding mode
not used by the second sample.

The validation of CESTAC method and DSA is based on
a probabilistic first order model. It has been established by
considering that elementary round-off errors of the FP arith-
metic operations are random independent, centered and uni-
formly distributed variables. Kahan has formulated strong
objections to this assumption by proposing in [Kah96] the
following case study:



Khx(dx) = cf(x+ dx)− rp(x) (4)

cf(x) = 4− 3(x− 2.0) ∗ ((x− 5.0)2 + 4)

x+ (x− 2.0)2((x− 5.0)2 + 3.0)
(5)

rp(x) =
622.0− x(751.0− x(324− x(59.0− 4.0x)))

112− x(151.0− x(72.0− x(14.0− x)))
(6)

with :

• x = 1.60631924
• dx = iε, i varying from 1 to 300 with step 1, ε =

2−53

Figure 1 presents the evaluation of equation 4 by using
IEEE-754 double precision floating point numbers. On one
hand, the stripped patterns in figures 1 and 2 show that
IEEE-754 and CADNA results are not uniformly distributed
random variables. On the other hand, the Monte Carlo
Arithmetic introduced in section 2.1 permits to obtain an
independent and identically distributed (iid) centered uni-
form sample as shown in figure 3.

Chesneaux and Vignes argue in [CV88] that even if
the independent, centered, and uniform assumption is not
satisfied, the CESTAC method is able to correctly estimate
the number of significant digits with a probability of 95%.
Nevertheless, Chatelin [Cha88] indicates that CESTAC’s
confidence cannot be greater than 5% under various con-
ditions which are shown to be often met in practice and
Parker [Par97] explains how MCA can overcome these
limitations.

It is important to notice that DSA and MCA also differ
from a methodological point of view. DSA uses a syn-
chronous approach where the user incrementally fixes the
numerical instabilities reported by CADNA. DSA is based
on a first order model: some operations such as unstable
division or unstable multiplication may invalidate the model.
The user must correct these unstable FP operations before
CADNA can estimate accurately the number of significant
digits. Therefore DSA is well suited to perform numer-
ical debugging to correct numerical instabilities as done
in [SJDC07].

3. Verificarlo: A software for automatic Monte
Carlo Arithmetic analysis

As previously discussed in section 2.1, Monte Carlo
Arithmetic is a powerful framework to understand the nu-
merical stability of a function or program. To encourage
its wide adoption by the community we have developed
verificarlo, a tool for automatic MCA analysis of C, C++
and Fortran programs. Verificarlo builds upon the LLVM
Compiler [LA04] project and the MCALIB [FL15]. It takes
as input a source code project and compiles it with a
special instrumentation pass that replaces all floating point
operations by their MCA counterpart in MCALIB. The
instrumentation can be applied to the whole program or only
to a function of interest.

Two previous approaches for automatic MCA simula-
tion have been proposed. Yeung et al. [YYL11] implement
MCA at the hardware level through specialized FPGA co-
processors. While providing low overhead, this approach
is impractical because it requires specialised hardware not
available to the practitioner.

Frechtling et al. [FL15] leverage source-to-source rewrit-
ing of floating point operations through the CIL tool for
program transformation [NMRW02]. The first drawback of
using CIL is that analysis is limited to C programs. The
second and main drawback with source-to-source rewriting
is that the instrumentation happens before and may hinder
the compiler optimizations. That means that the floating
point operations in the MCA binary and in the original
binary may be different. What is tested is not always what
will be executed because CIL cannot capture the effect of
compiler optimizations on numerical errors.

To tackle these issues, verificarlo instruments the floating
point at the optimized Intermediate Representation level
(IR). First, because the IR representation is independent of
the source language used, verificarlo can operate on any
source language supported by LLVM that includes C and
C++ through clang and Fortran through dragonegg. Second,
the instrumentation pass is done after all the other front-
end and middle-end optimization passes (which include all
the floating point optimizations such as -ffast-math or
-freciprocal-math).

Verificarlo is available at http://www.github.com/
verificarlo/verificarlo under an open source licence.
Verificarlo computes Monte Carlo arithmetic using a
modified version of MCALIB. One notable difference is
that our version of MCALIB replaces the standard libc
pseudo-random generator with Mersenne Twister [MN98b].
This provides two benefits: first for user programs using
the libc rand function, having a separate generator avoids
seeding collisions. Second, Mersenne Twister is a robust
random number generation in the context of Monte Carlo
simulations [MN98a].

One disadvantage of MCA is that it requires a large
number of samples compared to DSA and is therefore more
costly. Table 1 compares the cost of running a numerical
analysis with CADNA, MCALIB and verificarlo. Verificarlo
and MCALIB are significantly slower than CADNA. The
first reason is that to be accurate they require a higher
number of samples. The second reason is that both MCALIB
and verificarlo use the MPFR [FHL+07] library to compute
MCA samples. Performing high precision computations with
MPFR is more costly than changing the rounding mode.

Fortunately, verificarlo supports massively parallel exe-
cution out of the box. The high overhead can be mitigated by
concurrently measuring the MCA samples. Our tests show
an ideal scalability thanks to the embarrassingly parallel
nature of Monte Carlo.

4. Experimental results

This section presents four case studies to illustrate float-
ing point accuracy verification using verificarlo and its ben-
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Figure 1: Eq. 4 using IEEE-754 DP
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Figure 2: Eq. 4 using CADNA
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Figure 3: Eq. 4 using verificarlo

version samples total time (s) time/sample (s)

original program 1 .056 .056
CADNA 3 2.93 .097
MCALIB 128 1184.02 9.25
verificarlo 128 834.57 6.52
verificarlo 16 threads 128 54.39 .42

TABLE 1: Performance in seconds for the numerical analy-
sis of the compensated sum algorithm detailed in section 4.1
on an array of size 1000000. All the binaries were compiled
using -O0. The experiment was performed on a 16-core 2-
socket Xeon E5@2.70GHz with 20Mb L3 cache per socket
and 64Gb of RAM.

efit compare to state-of-the-art approaches.
The first case study evaluates the numerical error in a

compensated sum algorithm using CADNA, CIL+MCALIB,
and verificarlo. Among the three tools, only verificarlo is
able to capture the effect of compiler flags on numerical
errors.

The second case study deals with the solving of a linear
system Ax = b proposed by Kahan in [Kah66]. The matrix
A is ill-conditioned which can reduce the number of sig-
nificant digits. This case study demonstrates how verificarlo
using MCA can estimate the number of significant digits.
The resolution is done by using the sophisticated LAPACK
routines. It has not been possible to use CADNA as it
requires to manually change the source code of the LAPACK
library. Verificarlo gives an estimation of the number of
significant digits close to the number of significant digits
between the IEEE-754 computing and the exact solution.

The third case study deals with unstable branching. In
this case, CADNA is too pessimistic as it estimates that the
numerical result has no accurate digits whereas verificarlo
finds a number of significant digits close to the number of
accurate significant digits between the IEEE-754 computing
and the exact value.

The fourth case study deals with the management of
a counter. The comparison between the IEEE-754 double
precision computing and the exact solution shows that the
numerical result is a numerical noise having no significant
digits. Unfortunately for this case, CADNA is too optimistic
as it over-estimates the result significant digits whereas
verificarlo succeeds to estimate that the IEEE-754 DP result

1 float sum = f[0];
2 float c = 0.0, y, t;
3
4 for (int i=1;i<n;i++) {
5 y = f[i] - c;
6 t = sum + y;
7 c = (t - sum) - y;
8 sum = t;
9 }

10
11 return sum;

Figure 4: Kahan compensated summation: with -O3
-ffast-math flags the compiler simplifies and removes
the computation of the compensation term c.

is a numerical noise.

4.1. Case study 1: Compensated Summation

In the following, we demonstrate the importance of
capturing compiler effects on a standard use case: Kahan’s
compensated summation algorithm [Hig02, p. 83] shown
on figure 4. The C implementation is particularly sensible
to compiler optimizations when floating point associativity
rules are relaxed with -ffast-math -O3. The compiler
uses simple common subexpression elimination and rewrites
line 9 as sum = sum + f[i] which is the naive non-
compensated summation.

Using verificarlo and CIL+MCALIB [FL15] we mea-
sured 1000 sample executions of the Kahan summation code
compiled with -O3 -ffastmath and -O0. The input
array contains 1000 random single precision floats in the
interval [0, 1] and therefore has a condition number of 1.
Only Random Rounding MCA errors were considered in
this study.

Figure 5 compares the results between verificarlo and
CIL+MCALIB. On one hand, CIL+MCALIB is unable
to detect any difference between the two versions. Ta-
ble 2 shows the number of significant digits predicted by
CADNA, CIL+MCALIB and verificarlo for an array of
100000 floats. Again, CADNA and CIL+MCALIB are blind
to compiler optimizations because they operate at source
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Figure 5: One thousand MCA RR samples of Kahan summa-
tion: CIL+MCALIB is unable to capture the compiler effect
on Kahan’s summation because it operates at the source
level. On the other hand verificarlo operates after compiler
optimizations and correctly shows that the -O0 version is
more precise than the -O3 -ffast-math version thanks
to the compensation term c.

-O0 -O3 -ffast-math

CADNA 7 7
CIL+MCALIB 7.3 7.3
verificarlo 7.3 5.8

TABLE 2: Number of significant digits estimated with size
n = 100000. Verificarlo is the only tool that detects that
-O3 -ffast-math introduces a loss of accuracy.
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Figure 6: Relative Standard Deviation (σµ ) of Kahan’s com-
pensated sum computed on 1000 verificarlo samples. The
compensated -OO version has a constant error while the
-O3 -fast-math error increases as O(ε

√
n).

level. On the other hand, verificarlo correctly shows the loss
of accuracy in the -O3 -ffast-math version.

In figure 6 we plot the relative standard deviation of veri-
ficarlo’s samples with different input sizes. Theoretical error
analysis [Hig02, p. 85] shows that Kahan’s compensated
sum relative error is bounded by 2ε + O(nε2) where n is
the input size and ε the computation’s precision. So Kahan’s
sum relative error is constant for inputs satisfying nε < 1.
However the relative error of a naive sum grows as O(ε

√
n)

when floating point errors are iid with zero mean. We see
that verificarlo stochastic error analysis closely matches the
theoretical error bounds.

This experiment demonstrates how the late instrumenta-
tion in verificarlo helps evaluating the impact of compiler
optimizations on numerical stability.

4.2. Case study 2: Resolution of a linear system

Kahan [Kah66] proposes the following linear system
with a large condition number:(

0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
(7)

The exact solution of equation 7 is:

x =

(
2
−2

)
(8)

In the context of this case study, we solve equation 7
using the LAPACK numerical library. LAPACK is written
in Fortran 90 and provides sophisticated routines for solving
systems of simultaneous linear equations, least-squares so-
lutions of linear systems of equations, eigenvalue problems,
and singular value problems. Table 3 reports the results
of the resolution using the IEEE-754 single precision and
double precision arithmetic with a rounding mode to the
nearest.

Unfortunately, it has not been possible to use CADNA as
it requires to modify the source code which is difficult and
costly to do in a whole numerical library such as LAPACK.
For example, Montan [MDCL13] has developed a modified
version of the LAPACK DGEMM routine (matrix multipli-
cation) to efficiently use CADNA. In contrast, the use of
verificarlo has permitted to implement automatically MCA
on the whole LAPACK library. The number of samples used
by MCA in this experiment is set to 1000. Table 4 reports
the results of the resolution by using the MCA single and
double precision floating point arithmetic.

In this example, the estimator given in section 2.1 accu-
rately computes the number of significant digits. Moreover,
this estimation does not require knowing beforehand the
exact solution of the system.

4.3. Case study 3: Unstable branching

This section presents the differences between MCA and
DSA when dealing with branches testing a FP value. The
following C program is used in this case study:



FP arithmetic Mean value Standard deviation s’

MCA single precision x̄(1) = 1.02463705 σ(x(1)) = 6.46717332 0.0
x̄(2) = 6.46717332 σ(x(2)) = 9.69851698 0.0

MCA double precision x̄(1) = 1.9999999992 σ(x(1)) = 8.4541287415× 10−9 8.3
x̄(2) = −1.9999999988 σ(x(2)) = 1.26782603316× 10−8 8.2

TABLE 4: Resolution of equation 7 by using the MCA single and double precision floating point arithmetic

FP arithmetic Result s

IEEE-754 single precision x(1) = 1.33317912 0
(default rounding) x(2) = −1.00000000 0

IEEE-754 double precision x(1) = 2.00000000240030218 9
(default rounding) x(2) = 2.00000000359962060 9

TABLE 3: Resolution of equation 7 by using the IEEE-754
single and double precision floating point arithmetic and
comparison to the exact solution

1 double a,b,c,d;
2 a=(2.0*sqrt(3.0))/3.0;
3 b=4.0/3.0;
4 c=a*a-b*b;
5 if (c>=0)
6 d=sqrt(c)+10.0;
7 else
8 d=sqrt(-c)+10.0;
9 return d;

The test on c at line 5 is to prevent the square root com-
putation of a negative number. In the IEEE-754 standard,
the square root of a negative number returns NaN (Not A
Number).

Table 5 compares the exact value of d, its numerical
evaluation by using IEEE-754 double precision with the
rounding mode to the nearest and the numerical verification
done both by CADNA and verificarlo.

The estimation of the number of significant digits (4.66
decimal digits) given by verificarlo is close to the number
of accurate significant digits in IEEE-754 (4 decimal digits).
On the other hand, the numerical verification performed
by CADNA indicates that the result d is a numerical
noise having no significant digit. CADNA, unlike verifi-
carlo, works in a synchronous mode. Each floating point
operation is computed three times with a random rounding
mode towards plus or minus infinity, then the number of
significant digits is computed using the Student law under
a normality assumption. In the case of an if test, CADNA
follows the branch which satisfies at least two out of the
three samples. For the test at line 5, the three samples of
c are c1 = 6.661339 × 10−16, c2 = −2.220446 × 10−16

and c3 = −2.220446 × 10−16. Therefore CADNA decides
that the test is false as two samples of c are negative.
Unfortunately, the square root evaluation on the third sample
produces an invalid NaN value. This case study shows that
CADNA can produce invalid results on branch programs.
Using CADNA on large code bases requires the help of an
expert to detect invalid results due to branching. In contrast,
MCA uses independent computing on these samples so no

FP arithmetic Result s

Exact solution c = −50.0 -

IEEE-754 double precision
rounded to the nearest c = −0.02460... 0
rounded towards −∞ c = −2073773.08... 0
rounded towards +∞ c = −0.008202... 0
rounded towards 0 c = −0.008202... 0

TABLE 6: Comparison between the exact value of c and its
numerical evaluation by using IEEE-754 double precision
with the rounding mode to the nearest, towards −∞ and
towards +∞

invalid computation is performed during this case study.

4.4. Case study 4: Alternating counter

In the C code below, a counter c is initialized to 5×1013.
The counter is updated iteratively N times, with N = 108.
For each update, c is incremented or decremented by 10−6

depending on the parity of the iteration number.

1 unsigned int i;
2 double c=-5e13;
3 for (i=0;i<100000000;i++) {
4 if (i%2==0)
5 c=c+1.e6;
6 else
7 c=c-1.e-6;
8 }
9 return c;

Assuming infinite precision, at the end of this process
the expected exact value of c should be:

c = −5× 1013 +
1

2
108106 − 1

2
10810−6 = −50 (9)

Table 6 compares the exact value of c to its numerical
evaluation when using IEEE-754 double precision with the
rounding mode to the nearest, towards −∞ and towards
+∞.

The IEEE-754 arithmetic provides results having no
significant digits whatever the rounding mode used: there
is then a strong numerical problem. Table 7 reports the
results of the numerical verification performed by CADNA
and verificarlo and figure 7 the evolution of the number
of significant bits in the result estimated by verficarlo and
CADNA.

CADNA in this case study overestimates the number
of significant digits of the result. Indeed, the result is
a numerical noise with no significant digit. Furthermore,



FP arithmetic Result s s’

Exact solution d = 10. - -
IEEE-754 double precision d = 10.00035... - 5

CADNA double precision d = @.0 0 NA: CADNA returns NaN

verificarlo d̄ = 10.000521 4.66 4
100 samples σ(d) = 0.0002170856

TABLE 5: Comparison between the exact value of d, its numerical evaluation by using IEEE-754 double precision with the
rounding mode to the nearest and the numerical verification done both by CADNA and verificarlo. @.0 means that CADNA
found that the result has no significant digits.

FP arithmetic Result s’ s

CADNA DP c = −0.103× 106 3 0
CADNA detects no instabilities, only estimated significant digits are printed

verificarlo DP c̄ = −45.101042 0 0
(1000 samples ) σ(c) = 44.33

TABLE 7: Numerical verification of the computation of c performed both with CADNA and MCA
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Figure 7: Evolution of the estimated significant number of
bits with the iteration number

CADNA overestimates the number of significant for all the
program iterations. The overestimation is not due to the
small number of samples (N=3) used by CADNA. The issue
here is that each CADNA sample performs the arithmetical
operations with a rounding mode towards +∞ or −∞ with a
probability equal to 1

2 . As this case study is a linear problem,
the expected CADNA result should be the mean value of
the c values computed with IEEE-754 rounding to +∞ or
−∞ that is to say:

E(ccadna) ' −2073773.08...−0.008202...
2

' −103686 ' −0.103× 106

In contrast, the numerical verification performed with
verificarlo shows that standard deviation is greater than the

mean value of the MCA samples. It correctly indicates that
the result computed using IEEE-754 floating point numbers
is a numerical noise.

5. Limitations and future work

Verificarlo is a fully automatic tool to instrument an
application for numerical precision analysis. The current
version is stable and has been successfully used to analyse
small and large code bases, yet it is limited in some respects.

As shown in section 3, the verificarlo runtime overhead
is high. This is due to MCA inexact computations being
performed with MPFR. When the desired virtual precision
is low and known in advance, the overhead can be reduced
by performing computations using a fixed precision im-
plementation (e.g. double, quads) and avoiding the MPFR
abstraction. This improvement is scheduled for the next
version of verificarlo.

Unlike CADNA, verificarlo does not support numerical
debugging out of the box. In the future we would like to
include a mode that allows pinpointing the exact operation
or routine that is to blame for a precision loss. We would
also like to include a statistical post-treatment toolbox to go
beyond the standard deviation analysis. This toolbox could
help non-experts understand and interpret the output of the
MCA analysis.

Finally, it is important to test the robustness of the MCA
approach on different classes of numerical algorithms such
as linear algebra or compensated algorithms and also full-
scale real-life applications.

6. Conclusion

The control of the numerical accuracy of scientific codes
becomes crucial in particular when using HPC ressources.
It is also necessary to control the floating point computa-
tion when porting a scientific code on another programing



language or on different computing ressources. These tasks
raise the need for a tool that automatically estimates, without
the assistance of an expert, the interval of confidence of
computed results. Verificarlo is the first step toward a fully
automatic tool. It is based on the Monte-Carlo Arithmetic
and uses a compiler approach to easily instrument the code
that is executed.

Our case studies illustrate the advantages of using ver-
ificarlo for numerical analysis on scientific codes. They
show that verificarlo overcomes some methodological and
technical limitations of the CADNA library to estimate the
numerical accuracy. Verificarlo is the first tool to implement
MCA arithmetic at the intermediate representation level.
Unlike CADNA or MCALIB+CIL, this allows to capture
the effect of compiler optimizations on numerical accuracy.

Verificarlo is available at http://www.github.com/
verificarlo/verificarlo under an open source licence.
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