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During rotational molding, a loosely packed, low-den-
sity powder compact transforms into a fully densified
polymer part. This transformation is a consequence of
particles sintering. Powder compact density evolution
of the polymer powder is measured experimentally.
Obtained results show that the powder densification
process consists of two stages, and its mechanism
during these two stages is not the same. During the
first stage, densification occurs by grains coalescence,
and air between the grains escape by open pores
between particles. These open pores close in time by
particles coalescence progress, and remaining air
entrapped in polymer melt becomes air bubbles. Sur-
face tension, viscosity, grains size, and temperature
are the controlling parameters during first stage. A
three-dimensional model is proposed for the densifica-
tion of polymer powder during first stage. Second
stage starts after bubble forming. Diffusion is the con-
trolling phenomena during this stage. A diffusion-
based model is used for the second stage of densifica-
tion. By comparing with the other models, proposed
model exhibits several advantages: it is proposed in
three-dimensional and takes into account the nature of
layer-by-layer powder densification. Model verification
by experimental data obtained for densification of two
different polymers shows a close agreement between
model prediction and experiments. POLYM. ENG. SCI.,
52:2033–2040, 2012. ª 2012 Society of Plastics Engineers

INTRODUCTION

Rotational molding is a relatively inexpensive method

used originally for manufacturing of hollow parts like toys,

storage drums, and other products. The major difficulty

faced during its application for the manufacturing of indus-

trial parts with complicated geometry was to control their

thickness and surface quality and also the presence of air

bubbles in the material. The work done by research com-

munity, during past many years, has improved the process

capacity, and still a lot of work is being done to understand

the material behavior during actual molding process.

In rotational molding, polymer is introduced in powder

form into a mold, which rotates biaxially. This powder is

then heated, and once it reaches the melting point tempera-

ture, the grains start to melt and stick to the mold surface

and to each other. As the melting process continues, the

grains start to fuse, and this process is called coalescence.

Interspace distance between the grains reduces due to their

coalescence. The result is the change of density, and this

phenomenon is called densification of powder. ‘‘Sintering’’

is the term accepted in the material science literature for

the combined action of coalescence and densification.

Polymer is used in powder form in many industries like

rotational molding. In this case, the bulk density of poly-

mer powder is low due to the very high quantity of air

between the grains. During rotational molding, powder

melts freely, and there is not any external force except

gravity to allow the release of air between the grains. The

remaining air that becomes air bubbles reduces the me-

chanical properties and the surface quality of the final

product part. So, sintering is not only inherent in rotational

molding process but also is the controlling phenomenon.

Densification mechanism changes during rotational

molding process. The air between the powder particles

exits in two steps during sintering of grains:

When the grains adhere to each other during sintering,

the free spaces between the grains reduce, and the air

between the grains exits by the free spaces between them.

Once these free spaces are closed, the remaining air is

trapped in the polymer melt (air bubbles formation). After

bubble formation, densification occurs by gas diffusion

into polymer.

The effect of different parameters, like temperature,

viscosity, and powder characterization on the powder den-

sification has been studied. But the approach has primar-

ily been experimental. There are not many models
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describing powder densification during rotational molding,

and the few existing models permit only a partial analysis

of phenomena.

During rotational molding, coalescence and densifica-

tion of powder are done in a three-dimensional network.

So, a three-dimensional model is needed to describe this

phenomenon. This model must take into account the melt-

ing of polymer and the migration of gas in molten poly-

mer with time during processes.

In this work, using the grains sintering model, a three-

dimensional model was proposed for powder compact

densification. This model is then verified by densification

experimental results obtained for two different polymers.

BACKGROUND

Air bubble presence in the viscous materials has been

first recognized in the glasses [1]. Even this problem is

not limited to glass and ceramics industries, but is not a

common problem of polymer industries. So, there are not

many studies done on polymer densification and air bub-

bles formation and removal in polymers.

There are different hypotheses about bubbles formation

during powder densification. Rao and Throne [2] have

affected the first study on the polymer powder densifica-

tion. They considered that the formation of a homogene-

ous polymer melt from powder grains was done in two

stages: first, the grains fuse to each other and with the

growth of the interface between them, a three-dimensional

network forms between them. In the second step, this

three-dimensional network collapses, and the polymer

melt fills the free spaces between the grains. At a slow

sintering rate, air bubbles have enough time to move to-

ward the polymer-free surface; otherwise, they remain in

the polymer melt layer. Concerning the bubbles, Kelly [3]

observed that, once they are formed in the melt, they

remain stationary and do not move.

Later, Kontopoulou and Vlachopoulos [4] proposed a

model for three-dimensional densification of powders

based on the formulation proposed by Scherer [5]. Their

model is proposed for isothermal conditions. During their

studies, Kontopoulou and Vlachopoulos [4] observed that

the densification of polymer powder occurs layer by layer.

But, in their proposed model, they considered that the sin-

tering of all the grains happens simultaneously. This is far

from real condition of rotational molding.

To take into account the layer-after-layer densification

reality, Bellehumeur and Tiang [6] proposed another

model. They considered thickness of each layer equal to

average diameter of the powder particles. Heat transfer

model was used to predict the rate at which each layer of

powder deposits on the mold surface. In their model, they

considered two idealized arrangements of equal size par-

ticles (simple cubic and face-centered cubic) in two

dimensions. In this model, the sintering time for a particle

of the nth layer was defined as the time required for the

melt deposition front to go from the nth layer up to (n þ

1/2)th melt layer (Fig. 1) [6]. This time corresponds to the

time during with the particles of nth layer coalesce to each

other, and so the free spaces between the grains of two

layers decrease. These spaces correspond to the cavities

between the particles, and their surface changes with parti-

cle sintering resulting in changes of the powder density.

Using sintering model, they calculated the initial area

of cavity formed between two layers of particles. This

area changes with time until next layer reached melting

point. At this moment, it remains constant. This fixed area

corresponds to the formation of first bubble surface

between the grains. According to this hypothesis, the level

of coalescence between particles, the size of the particles,

and the packing arrangement dictate the size of the air

cavities. First size of air cavities corresponds to the initial

size of air bubbles. As this model was proposed in two

dimensional, compared to the real three-dimensional pow-

der densification, application of this model can introduce

the errors into the calculation. It is not able to explain the

mechanism of air bubbles formation in three-dimensional

powder bulks.

Bubbles’ size changes by gas diffusion into polymer

melts after their formations [7–9]. By balancing three

forces acting on the bubble, Gogos [10] calculated the ter-

minal velocity of a rising bubble. Different studies show

that bubble rising velocity in rotational molding for an

average size bubble is negligible [3, 8, 11], and it can be

considered stationary in a polymer melt.

Cell model [4] is one of the used methods for the pre-

diction of a single bubble life in a polymer melt. This

model considers that each bubble is contained within a

spherical fluid cell of radius Rcell (see Fig. 2). Using this

model and by solving the diffusion, conservation of

momentum, and continuity equations simultaneously, Konto-

poulou and Vlachopoulos [7] proposed a model (Eq. 1) for
bubble diameter changes by time. In this model, the force

balance around the bubble has been taken into account.

R3
cell;0 � R3

0 ¼ ½RðtÞ�3cell � ½RðtÞ�3 (1)

where R and Rcell are the gas bubble radius and cell

radius, respectively (see Fig. 2). Rcell and Rcell,0 are new

values of R and Rcell after every time step. By comparing

this model with experimental results, Kontopoulou and

Vlachopoulos observed a significant difference between

model’s prediction and experiments. According to them,

this is because they did not consider the fact that polymer

densification occurs layer by layer.

FIG. 1. (a) Schematic representation of melt deposition and (b) bubble

formation.



Another model for modeling the second step of densifi-

cation is proposed by Gogos [10]. According to Gogos,

bubble life time in a polymer depends on the melt satura-

tion level and surface tension of polymer. Considering the

effect of these parameters on the gas diffusion rate into the

polymer melt, they proposed a model for bubble shrinkage

with time, and they calculated the bubble life time (Eq. 2).

tb ¼
r1

8D cs;p1 � c1
� �R2

0

þ tR0

3D cs;p1 � c1
� � 1� 3

2

cs;p1
cs;p1 � c1
� �

!

� 2t2cs;p1
3Dr1 cs;p1 � c1

� � ð1� 3

2

cs;p1
cs;p1 � c1
� �Þ

ln 1þ
r1 cs;p1 � c1
� �

R0

2tcs;p1

� �
(2)

where R0 is the bubble initial diameter and D is the diffu-

sion coefficient (m2/s) of gas in the polymer. C! and

Cs,P! are the dissolved gas concentration in the melt

when partially saturated and saturated for zero-surface

tension. t is surface tension coefficient of polymer and

r! is the pressure in the bulk of the melt.

By verifying Gogos’s model, Kontopoulou and Vlacho-

poulos [7] have shown that the effect of viscosity is negli-

gible when compared with the surface tension. Comparing

Gogos’s model with the experimental results, Bellehu-

meur and Tiang [6] observed a good accord.

MATERIALS AND METHODS

Two different polymers were used during this work:

polypropylene (PP), supplied by ICO POLYMERS, and

polyvinylidene fluoride (PVDF), supplied by Solvay com-

pany. Both of them were used in powder form comprising

spherical particles (Fig. 3). The sizes of PP and PVDF

grains range from 100 to 600 lm and 20 to 100 lm,

respectively. Dynamic viscosities of these polymers were

measured by an ARES rheometer (from TA Instruments

Company) using parallel plates with a gap of 1 mm under

nitrogen to avoid degradation. Thermal properties were

determined by differential scanning calorimetry Q10 from

TA instrument�.

Surface tensions of these polymers were measured at

different temperatures by using a drop-shape analysis sys-

tem DSA100 from KRÜSS�.

To monitoring the density evolution of a powder com-

pact, aluminum capsules with specific dimensions (Fig. 4)

are used to prepare the samples. Once the capsule is full,

the excess powder is scraped off. The mass of powder is

dried and then weighted by using a METTLER AT 261

balance.

Bulk density of powder is the mass of powder in a

given volume without being packed. By comparing bulk

density of powder with real density of polymer, air vol-

ume fractions of prepared samples were calculated.

Prepared samples are introduced in a preheated oven.

Oven temperature was maintained at a constant tempera-

ture during densification experiments. Heated capsules

were removed one by one at different times and quenched

in cold water. Quenched samples were dried at 408C for

10 h. Using METTLER xs203s electronic densimeter,

density of dried samples was measured. Density of each

sample was measured five times, and reported values are

their average. The same experiment was repeated at dif-

ferent temperatures (Tf þ 5, þ15, þ25, and þ358C,
where Tf is melting temperature). Densification experi-

ments were repeated three times for each temperature,

and average of obtained values is reported during this

work.

FIG. 2. Schematic of a gas bubble contained within a spherical cell of

radius Rcell.

FIG. 3. Powder particles of (a) PP and (b) PVDF.



Modeling of Densification

In fact, another parameter that must be taken into con-

sideration is the presence of air between the grains. As

explained previously, in rotational molding, the polymer

is used in powder form. The diagram temperature–time

(Fig. 5 [12]) gives information about the evolution of

physical state of polymer during rotational molding.

On this diagram, the change of slope of the curve at point

A corresponds to the melting of polymer and formation of

polymer layer on internal surface of the mold. During this pro-

cess, one can distinguish two following phenomena: succes-

sive formation of polymer layers one after other (Fig. 6) and

coalescence of the grains. In Fig. 6, once one starts to heat the

grains (steps 1 and 2), they start to melt and coalescence to

each other, and the melted polymer layers form the support

one after the other (steps 3 and 4). During these steps, air

imprisons in the melted polymer until melting the last grain.

During the next step (step 5), the air inside the bubbles diffuses

into the polymer until their complete disappearance (step 6).

Segment AB represents the period during which all the

grains of powder are transformed to the successive layers on

internal surface of the mold. Coalescence is one the predomi-

nant phenomena of this period. Part AB corresponds to the

first step of densification (coalescence of grains and powder

volume changes). From point B to C (temperature max) and

then from point C to D (beginning of crystallization), the

polymer is in molten state. This period corresponds to sec-

ond step of densification (diffusion and migration of gas).

Present work considers the deposition of equal-sized

spherical particles arranged in a three-dimensional packed

configuration. Powder characterization and particle

arrangement affect the bulk density of powder. Compar-

ing the bulk density of used powders with arrangement

models [FCC (face centered cubic, HCP (hexagonal

FIG. 4. Polymer densification samples.

FIG. 5. Temperature-time diagram during rotational molding.

FIG. 6. Schematic of layer-by-layer densification of powder of polymer.



close-packed), BCC (body-centered cubic) . . .] show that

the packing of these powders is better presented by BCC

and BCT (body-centered tetragonal) arrangements. BCT

model is chosen to present the particles arrangement dur-

ing this work. Figure 7 presents the BCT arrangement of

equal-size grains. The unit cells like Fig. 7b can be

detected in a BCT arrangement between grains.

Densification of this unit cell was studied during this

work. Once the grains reach at melting point, they started to

fuse to each other, and the free space inside the unit reduces.

This reduction is due to air exiting by free spaces between

the grains on the surface of unit cell in consequence of grains

sintering. These free spaces between the grains of the unit’s

surfaces reduce in time with sintering progress. Figure 8

shows the different sections of a unit cell. The configuration

of the grains on a surface of unit cell is presented in Fig. 8b.

The pits on the surface (between three grains) close earlier

comparing with free spaces on the diagonal of unit cell

(between four grains Fig. 8a). Once the pits on the surfaces

are closed, the air between the grains of unit cell cannot

escape anymore. This moment corresponds to the imprison-

ment of the rest of the air inside the unit cell. This phenom-

enon can explain the formation of the first air bubble between

the grains. Using sintering laws and geometrical parameters,

the volume change of unit cell is calculated with time.

Proposed Model

Heat Transfer in Powder. During rotational-molding

process, the heating cycle can be divided into three

regimes. First, the mold should be heated until melting

point of polymer. At this time, polymer particles that are

in contact with mold start to melt. During second phase,

powder particles melt layer after layer, and this phase

ends when there is no powder particle left. Melted poly-

mer’s temperature increases during third phase. Powder

densification occurs during second and third phase.

Densification of powder occurs by adhesion of grains

and exiting of air between them. Powder grains should

reach to melting temperature to fuse to each other.

According to heat-transfer laws, the temperature of the

polymer melt at the melt/powder interface is equal to the

melting temperature [6]. Except for the first powder layer

that is directly in contact with the mold, other layers are

in contact with a melted polymer layer during their sinter-

ing. The temperature of this melted layer is equal to melt-

ing temperature. In this work, it is considered that the

time needed for sintering of nth layer corresponds to time

needed for melting of the particles of n þ 1th layer. Com-

parison of heat transfer calculation and experimental

results of layer-by-layer polymer powder densification

show that this hypothesis does not introduce considerable

errors in densification calculations.

Volume Changes. Using geometrical calculations in

2D, surface change between four grains (Fig. 9) was cal-

culated as a function of time. Obtained equation for

FIG. 7. (a) BCT arrangement and (b) unit cell formed between the

grains in the BCT arrangement.

FIG. 8. Different sections of a unit cell.

FIG. 9. Surface changes between four grains during sintering.



changes in this area used to calculate the changes in vol-

ume of unit cell with time.

Unit-cell volume changes are calculated as follows:

VðtÞ ¼ S3 � 2S2 r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � S=2

� �2r !" #
(3)

where

SðtÞ ¼ 2 sin y0 (4)

y0 ¼ ðp
4
� yÞ (5)

y ¼ arcsinð a� Xð Þ
a

Þ (6)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ða� XÞ2

q
(7)

where t is sintering time, X is the half of diagonal of the

area between the grains, a is particle radius, and S (t) is

surface between four grains at t. X is calculated using

Bellehumeur sintering model [13]:

8ðatK1y
0Þ2 þ 2atK1 þ

Za0
G

K2
1

K2

� �
y0 � 1 ¼ 0 (8)

where

K1 ¼
sinðyÞ

1þ cos yð Þð Þ 2� cos yð Þð Þ (9)

K2 ¼
2�5=3 cos yð Þ sin yð Þ

1þ cos yð Þð Þ4=3 2� cos yð Þð Þ5=3
(10)

where a0 is the initial radius of grains, Z the viscosity, G
the surface tension, and y the coalescence angle.

Considering that densification of powder in the rota-

tional molding occurs layer by layer, obtained model for

the densification of unit cell can be extended to the bulk

of powder. The thickness of each layer is taken to be

equal to the height of the unit cell. Sintering condition is

considered to be isotherm during this work.

According to the proposed model, the initial bubble di-

ameter is determined on the basis of the volume of the

closed space inside the unit cells. This volume depends

on the powder grain size and their arrangement in the

mold. In this model, the grains have been considered

equal-sized spheres.

As the free spaces inside the unit cells close (with pro-

gress of sintering), air gets entrapped in the polymer melt

by diffusion. Closed spaces between grains obtain circular

form due to the action of surface tension. Densification

mechanism changes after bubble formation, and this phe-

nomenon continues by gas diffusion from air bubble into

the polymer. The relative density of unit cell is defined as

the ratio of the density of the unit cell (contained closed

air space inside it) to that of the polymer melt.

The model used for second step of densification (after

bubble formation) is based on the analytical solution pre-

sented by Gogos [10]:

R2
0 � R2 þ 2 a2 � a3ð Þ R0 � Rð Þ

þ2a3 a2 � a3ð Þ ln Rþ a3
R0 þ a3

¼ 2a1t (11)

where

a1 ¼
D Cs;P1 � C1
� �

r1
(12)

a2 ¼
2t
3r1

(13)

a3 ¼
tCs;P1

r1 Cs;P1 � C1
� � (14)

where R and R0 are the bubble radius at time interval t
and the initial bubble radius, and D is the diffusion coeffi-

cient (m2/s) of gas in the polymer. C! and Cs,P! are the

dissolved gas concentration in the melt when partially sat-

urated and saturated for zero-surface tension. t is surface

tension coefficient of polymer and r! is the pressure in

the bulk of the melt.

Surface tension and degree of saturation of polymer

are the controlling parameters of gas diffusion into

polymer, and so bubble life time in polymer melt

depends on these parameters [10]. Once a bubble is

formed, air pressure inside the bubble becomes higher

than the ambient pressure, due to the surface tension of

polymer in the bubble/melt interface. Difference in

pressures causes the gas to get dissolved into the poly-

mer. Gas concentration in polymer increases with time,

and the degree of saturation in the melt changes. In the

undersaturated condition, the surface tension effect is

negligible, and the dissolved gas concentration at the

bubble/polymer melt interface can be approximated as

a saturated solution.

RESULTS AND DISCUSSION

The surface changes between these grains and the dis-

tance between the contacts (X in Fig. 9) were measured

in time for the coalescence o four grains (Fig. 10).

Obtained results were compared to model predictions in

Figs. 11 and 12. The surface change in the Fig. 11 is nor-

malized by the initial surface between four grains. Using

these experimental results, the volume changes of a unit

cell were calculated and compared to the model predic-

tions. Figure 13 shows that the model prediction is com-

patible with the results obtained from experimental mea-

sures. Obtained results confirm that geometric calculations



for first part of densification are done correctly in the pro-

posed model.

In another part of this work, the model predictions are

validated by comparing them with data obtained from den-

sification tests done according to the method explained pre-

viously. Density evolution for PP powder is presented in

Fig. 14. Comparison of the experimental results and model

prediction shows that in the first stage of densification,

there is a considerable gap between experimental results

and model prediction. These differences can be introduced

by experimental method used to density measures. The first

samples exited from oven have lots of porous. Entered

water into these porous during density measurements can

introduce errors in obtained data. One can see in Fig. 14

that, except the first stages, the BCT model predictions are

in agreement with the experiment measures.

BCT model is only valid until bubble air formations

(x/r ¼ 0.57). As the mechanism of densification before

and after bubble formation changes, one model cannot

describe both these mechanisms, and two different models

are needed to model the complete processes. The BCT

model that describes the densification of a powder com-

pact cannot describe the densification of polymer after

bubble formation. As discussed previously, diffusion-

based model was used to describe the density evolution of

the polymer-containing air bubbles. The BCT model can be

used only before bubbles formation (x/r ¼ 0.57; Fig. 8).

The initial bubble size corresponds to the volume of the

free space inside a unit cell at this point and was calculated

using BCT model and was used in the diffusion model.

Gogos’s proposed equation for gas diffusion into poly-

mer is solved (using numerical methods) to study the bub-

ble size evolution in time and different material properties

effects on the bubbles life time. The degree of saturation

of polymers was estimated by numerical solution of the

model and curve fitting. Using ideal gas law, the density

of nitrogen (q!) at these ambient conditions is calculated

to be 0.739 kg/m3. The ambient mass concentration c!
was set to zero. The mass diffusion coefficient of used

polymers was obtained from polymer’s handbook [14]. As

explained previously, initial bubble size controlled by

powder grains size and packing arrangement. Powder

characteristics such as particle size distribution and their

form are packing arrangement controlling parameters. Fig-

ure 15 shows the dissolution rate of three air bubbles in

molten PP. The only different parameter between these

three bubbles is their initial size, and other conditions are

FIG. 10. Coalescence of four grains of PP at 1908C.

FIG. 11. Surface changes between four grains of PP during their sinter-

ing as function of time.

FIG. 12. Change of distance between the contacts in function of time

during sintering of four PP grains.

FIG. 13. Change of a PP unit cell density with time.



the same for all of them. Bubbles initial sizes greatly

affect their life time and their dissolution rate.

Diffusion model prediction was compared to the

obtained experimental data in Fig. 14. One can see that

model predictions are in good agreement with the experi-

mental data. Proposed model was verified by PVDF pow-

der. Obtained results are shown in Fig. 16. These results

confirm that proposed model can be used to predict the

densification of a bulk of powder in function of time.

Using this model, one can calculate the initiation size of

the formed bubbles to introduce into the diffusion model.

CONCLUSION

A three-dimensional model is proposed for the densifi-

cation of a powder compact during rotational molding.

This model is able to describe the formation and evolu-

tion of bubbles in polymer melt during densification. A

diffusion-based model was used to allow predictions of

density versus time and used successfully to make predic-

tion of the densification process, starting from the point

where closed pores form. Proposed models were verified

by using two different polymers powder-containing spher-

ical particles. Obtained results show a good agreement

between models prediction and experiments. According to

BCT model, powder particle size and packing arrange-

ment are the controlling parameters of initial bubble size.

The polymer properties as surface tension and viscosity

are the parameters that affect the densification rate, but

their role on the initial bubble size is negligible. Molding

condition (temperature) and polymer properties (viscosity,

surface tension) are the parameters affecting bubble life

time in the polymer. High-surface tension and temperature

increase the diffusivity of gas into the polymer and

decrease bubble life time. Proposed model considers the

layer-by-layer nature of polymer powder densification.

This model also related the powder bulk densification rate

into the particles coalescence rate. As particle coalescence

rate depends on material rheological properties and pow-

der characterization, so this model relate powder densifi-

cation rate to material rheological properties and powder

characterization.
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