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ABSTRACT: The research addressed here concerns the genesbteismic accelerograms compatible
with a given response spectrum and with other design spatiifits. The time sampling of the
stochastic accelerogram yields a time series represegtaddndom vector in high dimension. The
probability density function (pdf) of this random vectorcisnstructed using the Maximum Entropy
(MaxEnt) principle under constraints defined by the avédaiformation. In this paper, a new
algorithm, adapted to the high stochastic dimension, ip@sed to identify the Lagrange multipliers
introduced in the MaxEnt principle to take into account tbastraints. This novel algorithm is based on
(1) the minimization of an appropriate convex functionad §2) the construction of the probability
distribution defined as the invariant measure of an 1t6 Ststit Differential Equation in order to
estimate the integrals in high dimension of the problem.

1. INTRODUCTION value of the Velocity Response Spectrum (VRS).
This paper is devoted to the generation of seiBre objective of this paper is to take into account
mic accelerograms that are compatible with soradditional constraints related to some design spec-
design specifications such as the Velocity Respoiifgeations. To achieve this objective, the methodol-

Spectrum, the Peak Ground Acceleration (PGA)gy proposed irSoize (2010 is extended to take
etc. The Maximum Entropy (MaxEnt) principlénto account constraints relative to statistics on (1)
introduced byJaynes(1957ab) in the framework the end values for the velocity and the displace-
of Information Theory constructed b.Shannon ment, (2) the PGA, (3) the Peak Ground Velocity
(1948 is a powerful method which allows ugPGV), (4) the envelop of the random VRS and
to construct a probability distribution of a ran(5) the Cumulative Absolute Velocity (CAV). The
dom vector under some constraints defined by thlaxEnt pdf is constructed and a generator of inde-
available information. This method has recentpendent realizations adapted to the high-stochastic
been applied irBoize(2010 for the generation ofdimension of an accelerogram is proposed. Fur-
spectrum-compatible accelerograms as trajectotiesrmore an adapted method (€etou and Soize
of a non-Gaussian non-stationary centered rand{®014) for the identification of the Lagrange mul-
process represented by a high-dimension randtipiiers is developed. In Section 2 the MaxEnt prin-
vector for which the probability density functiortiple is used to construct the pdf of the accelera-
(pdf) is constructed using the MaxEnt principle union random vector under constraints defined by the
der constraints relative to (1) the mean value, @ailable information. Finally, Section 3 is devoted
the variance of the components and (3) the mean
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to an application of the methodology for which the&here log is the natural logarithm. L&t be the set
target VRS is constructed following the Eurocoded all the pdf defined ofRN with values inR*, ver-
(seeCEN (2003). ifying the constraints defined by Eq®)(@and @).
Then the MaxEnt principle consists in construct-
2. CONSTRUCTION OF THE PROBABIL- ing the probability density functioa — pa(a) as
ITY DISTRIBUTION the unique pdf irg” which maximizes the entropy
The MaxEnt principle is used to construct th§ pa). Then by introducing a Lagrange multiplier
probability distribution of the random vector asz associated with Eq2j and belonging to an ad-
sociated with a sampled stochastic process unggssible open subse¥), of R¥, it can be shown
some constraints defined by the available informtiat the MaxEnt solution, if it exists, is defined by
tion.
The random acceleration of the soil is mod-  Pa(a) = Co(A%®) exp(—(A%%, g(a))), (5)

eled by a second-order centered stochastic pro- . _ o
cess{A(t),t € [0,T]}. A time sampling of this IN Which A*®is such that Eq.2) is satisfied and

stochastic process is introduced with a sampliffereco(A) is the normalization constant defined
time stepAt such thafl = NAt, yielding a time se- by

ries{Aq,...,An} for which theRN-valued random 1
vectorA.: (.Al,....,.AN) is associated with. The ¢ (A) = {/ exp(—(A,g(a)})da} ) (6)
probability distribution of the random vectér has RN

to be constructed. _ .
2.2. Calculation of the Lagrange multipliers

2.1.  Maximum entropy principle In this section, we propose a general methodol-

The objective of this section is to construct tHdY for the calculation of the Lagrange multipliers
SO

pdf a — pa(a) of the random vectoA using the A

MaxEnt principle under the constraints defined %x’/ o :
the available information relative to random vect 2.1. Objective function and methododology

A. The support of the pdf is assumed tolbké. Let  YSing Egs. 2) and ©), vectorA SOIIiS the solution
E{.} be the mathematical expectation. The avaift A of the following set ofy nonlinear algebraic
able information is assumed to be written as ~~ €quations

E{g(A)} =T, [ e@cR)e-Ag@)=f. @

- . - . . N .
|nuwh|cha»—>g(§) is a given function fronR _|nLo A more convenient way to calculate vectdF®
R and wher is a given (or target) vector R¥.  ;qnqjsts in solving the following optimization prob-

Equation () can be rewritten as lem (seeGolan et al(1996),
a)pa(a)da="f. 2 ASo— in (A 8
o 9(@)PA(3) ) arg, _min., (A), 8)

An additional constraint related to the normalizg; which the objective functioff is written as
tion of the pdfpa(a) is introduced such that

M(A)=(A.f) —log(co(A))- (9)

Let {A),A € %} be a family ofRN-valued ran-
dom variables for which the pdf is defined, for All
in.Z,, by

| Pal@da=1. 3)
R

The entropy of the pdh+— pa (@) is defined by

S(pa) = - /R . Pa(@)log(pa(a))da, (4) Pa, (8) = co(A) exp(—(A,g(a))) . (10)
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Then the gradient vectddl' (A) and the Hessianbe introduced in order to rapidly reach the invari-
matrix [H(A)] of functionA — I'(A) are written as ant measure, and (3) there is no need to introduce a
. proposal distribution which can induce difficulties
Or(A) =1=E{gA)}- (11) in high dimension. Below, we directly introduce
B T the generator of independent realizations using a
[HA)]=E{g(Ar)a(Ar) "} ; discretization of the ISDE. Details concerning the
—E{9(Ar)}E{d(Ar)}", (12) construction of this generator can be foun®isize

in whichu is the transpose af. It is assumed that(2008 2019' ) ) ) e
the constraints defined by E)(are algebraically The ISDE is discretized using a semi-implicit inte-

independent. Consequently, the Hessian matri@{?t'gn §chem|g In orderto'av0|dthe LESOIUt'OE,?f ar|1
positive definite and therefore, functidn— I'(A) algebraic nonlinear equation at each step while al-

is strictly convex and reaches its minimum #o® lowing significantly inc_re_ase of the time step_ com-
which is such thaBIr (A) = 0 for A — A% |t can pared to a purely explicit scheme. Concerning the

then be deduced that the minimum of functiops INitial conditions of the ISDE, the more the prob-
[(A) corresponds to the solution of Eq)( The ability distribution of the initial conditions is close

optimization problem defined by EcB)(is solved to the invariant measure, the shorter is the transient
using the Newton iterative method response and then the more efficient is the identi-

_ _ _ _ fication algorithm of the Lagrange multipliers (see
AT =AT—aH@AYtOr@AY, (13) Batou and Soiz¢2014).

in which a belongs tg0, 1] is an under-relaxation
parameter that ensures the convergence towards
solutionA s, In general, for the non-Gaussian case,
the integrals in the right-hand side of Eg¥l)(and , , S
(12) cannot explicitly be calculated and cannot 68{ constructing ns independent  realizations
discretized inRN. In this paper, these integrals ari:----Ay Of random vectoi, representing the
estimated using the Monte Carlo simulation methggceleration of the soil. The mean vaIE{ag(AAT)}
for which independent realizations of the randofid the correlation matrixE{g(A)9(Ar)" }
vectorA, are generated using a specific algorithff® estimated using the Monte Carlo simulation
presented below. method by

ﬁeS' Estimation of the mathematical expecta-
tions
The generator described hereinbefore allows

Ns

2.2.2. Generator of independent realizations ELa(AL)) ~ 1 Al 14
The objective of this section is to provide a gen- {gAa)} = Ns E;g( A (14)

erator of independent realizations of the random

vector A, for all A fixed in .Z,,. A generator Lo

of independent realizations for MaxEnt distribu- Ty = ¢ ONT

tions has been proposed 8vize (2008 2010 in E{o(Ar)9(Ar) ) = n_sglg(AA)gm’\) - (19)
the class of the MCMC algorithms. This method-

ology consists in constructing the pdf of rando®. APPLICATIONS

vectorA, as the density of the invariant measure The acceleration stochastic process is sampled
Pa, (2)da, associated with the stationary solution gluch that the final tim& = 20 s. The time step is
a second-order nonlinear 1td Stochastic differenti® = 0.0125 s. We then hawd = 1600 (we assume
equation (ISDE). The advantages of this generafg0) = 0 ms2 almost surely).

compared to the other MCMC generators such as

the Metropolis-Hastings (sedastings(1970) al- 3.1. Available information

gorithm are: (1) The mathematical results concern-The available information related to random vec-
ing the existence and the uniqueness of an invddr A is defined by:

ant measure can be used, (2) a damping matrix cafil) The random vectoh is centered.
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Figure 1: Target for the standard deviations of the contigure 2: Target of the mean VRS.
ponents of random vectek.

simulations are carried out. The methodology de-

(2) The standard deviation of each component\§tloped in Sectior2.2.1is applied using 30 itera-
random vectoA is imposed. The target values arons. The under-relaxation parametemis= 0.3.
plotted in Fig.1. Figure3 shows two independent realizations of the

(3) The variance of the end-velocity (resultinRndom Vvector, . which is generated using a
from a numerical integration of random vectay classical generator for Gaussian random variable
is zero. and which are representative of two independent re-

(4) The variance of the end-displacement (resiffizations of the random accelerogram. The corre-
ing from two successive numerical integrations §P0nding trajectories of the velocity times sefies
random vectoR) is zero. and of the displacement times serigsgesult from

(5) The target for the mean VRS (seENO successive numerical integrations of each real-
Clough and Penzien (1975) is constructed ization of the random accelerogram and are plotted
following the Eurocode 8 for a A-type soil and §' FigS. 4 ands. As expected, it can be seen that
PGA equal to 5 ms2. It is defined for a dampingthe end velocity and the end displacements are both
ratio & — 0.05 and for 20 frequencies that are (ifdua! to zéro. Figuré displays a comparison of
rad/s) 104, 134, 173, 223, 286, 369, 474, 611 the estimated standard deviation of the components
786. 1011. 1301. 1674. 2153 2770. 3564 With the target values. Figuréshows a compari-
45.86. 5900 7591 9767 and 1256. The targét son of the mean VRS with its target. The Fig@re
of the mean VRS is plotted in Fig. shows 100 trajectories of the random VRS and the

(6) Let S be the lower envelop defined b)?nvelopssIOW ands'P. It can be seen in Figé.to 8
dow _ 0.5 % sandsP be the upper envelop define good matching between the estimated values and
by %P — 1.5 . The probability for random vector '€ target values. Concerning the PGA, the PGV
A of being inside the region delimited by the twg"d the CAV, the results are summarized in Table

envelops is ®9 1. It can be seen a good matching of the estimated
(7) The meaﬁ PGA s 5 m2 mean values for the PGA, the PGV and the CAV
(8) The mean PGV is.@5 ms L. with the target values.
(9) The mean CAV is 13 ms. 4. CONCLUSIONS

A new methodology has been presented for the

3.2. Results generation of accelerograms compatible with a
For the ISDE, the number of integration steps ggsven VRS and other properties. If necessary, addi-
M = 600. At each iteratioms = 900 Monte Carlo tional constraints could easily be taken into account
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Figure 3: Two independent realizations of the randomF'9Ure 4: Two independent realizations of the random

accelerogram. velocity.
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