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ABSTRACT: The research addressed here concerns the generation of seismic accelerograms compatible
with a given response spectrum and with other design specifications. The time sampling of the
stochastic accelerogram yields a time series represented by a random vector in high dimension. The
probability density function (pdf) of this random vector isconstructed using the Maximum Entropy
(MaxEnt) principle under constraints defined by the available information. In this paper, a new
algorithm, adapted to the high stochastic dimension, is proposed to identify the Lagrange multipliers
introduced in the MaxEnt principle to take into account the constraints. This novel algorithm is based on
(1) the minimization of an appropriate convex functional and (2) the construction of the probability
distribution defined as the invariant measure of an Itô Stochastic Differential Equation in order to
estimate the integrals in high dimension of the problem.

1. INTRODUCTION
This paper is devoted to the generation of seis-

mic accelerograms that are compatible with some
design specifications such as the Velocity Response
Spectrum, the Peak Ground Acceleration (PGA),
etc. The Maximum Entropy (MaxEnt) principle
introduced byJaynes(1957a,b) in the framework
of Information Theory constructed byE.Shannon
(1948) is a powerful method which allows us
to construct a probability distribution of a ran-
dom vector under some constraints defined by the
available information. This method has recently
been applied inSoize(2010) for the generation of
spectrum-compatible accelerograms as trajectories
of a non-Gaussian non-stationary centered random
process represented by a high-dimension random
vector for which the probability density function
(pdf) is constructed using the MaxEnt principle un-
der constraints relative to (1) the mean value, (2)
the variance of the components and (3) the mean

value of the Velocity Response Spectrum (VRS).
The objective of this paper is to take into account
additional constraints related to some design spec-
ifications. To achieve this objective, the methodol-
ogy proposed inSoize(2010) is extended to take
into account constraints relative to statistics on (1)
the end values for the velocity and the displace-
ment, (2) the PGA, (3) the Peak Ground Velocity
(PGV), (4) the envelop of the random VRS and
(5) the Cumulative Absolute Velocity (CAV). The
MaxEnt pdf is constructed and a generator of inde-
pendent realizations adapted to the high-stochastic
dimension of an accelerogram is proposed. Fur-
thermore an adapted method (seeBatou and Soize
(2014)) for the identification of the Lagrange mul-
tipliers is developed. In Section 2 the MaxEnt prin-
ciple is used to construct the pdf of the accelera-
tion random vector under constraints defined by the
available information. Finally, Section 3 is devoted
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to an application of the methodology for which the
target VRS is constructed following the Eurocode 8
(seeCEN (2003)).

2. CONSTRUCTION OF THE PROBABIL-
ITY DISTRIBUTION

The MaxEnt principle is used to construct the
probability distribution of the random vector as-
sociated with a sampled stochastic process under
some constraints defined by the available informa-
tion.

The random acceleration of the soil is mod-
eled by a second-order centered stochastic pro-
cess{A(t), t ∈ [0,T]}. A time sampling of this
stochastic process is introduced with a sampling
time step∆t such thatT = N∆t, yielding a time se-
ries{A1, . . . ,AN} for which theRN-valued random
vector A = (A1, . . . ,AN) is associated with. The
probability distribution of the random vectorA has
to be constructed.

2.1. Maximum entropy principle
The objective of this section is to construct the

pdf a 7→ pA(a) of the random vectorA using the
MaxEnt principle under the constraints defined by
the available information relative to random vector
A. The support of the pdf is assumed to beR

N. Let
E{.} be the mathematical expectation. The avail-
able information is assumed to be written as

E{g(A)}= f , (1)

in whicha 7→ g(a) is a given function fromRN into
R

µ and wheref is a given (or target) vector inRµ .
Equation (1) can be rewritten as

∫

RN
g(a)pA(a)da = f . (2)

An additional constraint related to the normaliza-
tion of the pdfpA(a) is introduced such that

∫

RN
pA(a)da = 1. (3)

The entropy of the pdfa 7→ pA(a) is defined by

S(pA) =−
∫

RN
pA(a) log(pA(a))da , (4)

where log is the natural logarithm. LetC be the set
of all the pdf defined onRN with values inR+, ver-
ifying the constraints defined by Eqs. (2) and (3).
Then the MaxEnt principle consists in construct-
ing the probability density functiona 7→ pA(a) as
the unique pdf inC which maximizes the entropy
S(pA). Then by introducing a Lagrange multiplier
λλλ associated with Eq. (2) and belonging to an ad-
missible open subsetLµ of Rµ , it can be shown
that the MaxEnt solution, if it exists, is defined by

pA(a) = c0(λλλ sol)exp(−〈λλλ sol,g(a)〉) , (5)

in which λλλ sol is such that Eq. (2) is satisfied and
wherec0(λλλ) is the normalization constant defined
by

c0(λλλ ) =
{

∫

RN
exp(−〈λλλ ,g(a)〉)da

}−1

. (6)

2.2. Calculation of the Lagrange multipliers
In this section, we propose a general methodol-

ogy for the calculation of the Lagrange multipliers
λλλ sol.

2.2.1. Objective function and methododology
Using Eqs. (2) and (5), vectorλλλ sol is the solution

in λλλ of the following set ofµ nonlinear algebraic
equations

∫

RN
g(a)c0(λλλ )exp(−〈λλλ ,g(a)〉) = f . (7)

A more convenient way to calculate vectorλλλ sol

consists in solving the following optimization prob-
lem (seeGolan et al.(1996)),

λλλ sol = arg min
λλλ∈Lµ⊂Rµ

Γ(λλλ ) , (8)

in which the objective functionΓ is written as

Γ(λλλ ) = 〈λλλ , f〉− log(c0(λλλ )) . (9)

Let {Aλλλ , λλλ ∈ Lµ} be a family ofRN-valued ran-
dom variables for which the pdf is defined, for allλλλ
in Lµ , by

pAλλλ (a) = c0(λλλ)exp(−〈λλλ ,g(a)〉) . (10)
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Then the gradient vector∇∇∇Γ(λλλ ) and the Hessian
matrix [H(λλλ)] of functionλλλ 7→ Γ(λλλ) are written as

∇∇∇Γ(λλλ) = f−E{g(Aλλλ )} . (11)

[H(λλλ)] = E{g(Aλλλ )g(Aλλλ )
T}

−E{g(Aλλλ )}E{g(Aλλλ )}
T , (12)

in whichuT is the transpose ofu. It is assumed that
the constraints defined by Eq. (2) are algebraically
independent. Consequently, the Hessian matrix is
positive definite and therefore, functionλλλ 7→ Γ(λλλ )
is strictly convex and reaches its minimum forλλλ sol

which is such that∇∇∇Γ(λλλ) = 0 for λλλ = λλλ sol. It can
then be deduced that the minimum of functionλλλ 7→
Γ(λλλ) corresponds to the solution of Eq. (7). The
optimization problem defined by Eq. (8) is solved
using the Newton iterative method

λλλ i+1 = λλλ i −α [H(λλλ i)]−1∇∇∇Γ(λλλ i) , (13)

in which α belongs to]0,1] is an under-relaxation
parameter that ensures the convergence towards the
solutionλλλ sol. In general, for the non-Gaussian case,
the integrals in the right-hand side of Eqs. (11) and
(12) cannot explicitly be calculated and cannot be
discretized inRN. In this paper, these integrals are
estimated using the Monte Carlo simulation method
for which independent realizations of the random
vectorAλλλ are generated using a specific algorithm
presented below.

2.2.2. Generator of independent realizations
The objective of this section is to provide a gen-

erator of independent realizations of the random
vector Aλλλ for all λλλ fixed in Lµ . A generator
of independent realizations for MaxEnt distribu-
tions has been proposed inSoize(2008, 2010) in
the class of the MCMC algorithms. This method-
ology consists in constructing the pdf of random
vectorAλλλ as the density of the invariant measure
pAλλλ (a)da, associated with the stationary solution of
a second-order nonlinear Itô Stochastic differential
equation (ISDE). The advantages of this generator
compared to the other MCMC generators such as
the Metropolis-Hastings (seeHastings(1970)) al-
gorithm are: (1) The mathematical results concern-
ing the existence and the uniqueness of an invari-
ant measure can be used, (2) a damping matrix can

be introduced in order to rapidly reach the invari-
ant measure, and (3) there is no need to introduce a
proposal distribution which can induce difficulties
in high dimension. Below, we directly introduce
the generator of independent realizations using a
discretization of the ISDE. Details concerning the
construction of this generator can be found inSoize
(2008, 2010).
The ISDE is discretized using a semi-implicit inte-
gration scheme in order to avoid the resolution of an
algebraic nonlinear equation at each step while al-
lowing significantly increase of the time step com-
pared to a purely explicit scheme. Concerning the
initial conditions of the ISDE, the more the prob-
ability distribution of the initial conditions is close
to the invariant measure, the shorter is the transient
response and then the more efficient is the identi-
fication algorithm of the Lagrange multipliers (see
Batou and Soize(2014)).

2.2.3. Estimation of the mathematical expecta-
tions

The generator described hereinbefore allows
for constructing ns independent realizations
A1

λλλ , . . . ,A
ns
λλλ of random vectorAλλλ representing the

acceleration of the soil. The mean valueE{g(Aλλλ )}
and the correlation matrixE{g(Aλλλ )g(Aλλλ )

T}
are estimated using the Monte Carlo simulation
method by

E{g(Aλλλ )} ≃
1
ns

ns

∑
ℓ=1

g(Aℓ
λλλ ) , (14)

E{g(Aλλλ )g(Aλλλ )
T} ≃

1
ns

ns

∑
ℓ=1

g(Aℓ
λλλ )g(A

ℓ
λλλ )

T . (15)

3. APPLICATIONS
The acceleration stochastic process is sampled

such that the final timeT = 20 s. The time step is
∆t = 0.0125 s. We then haveN = 1600 (we assume
A(0) = 0 ms−2 almost surely).

3.1. Available information
The available information related to random vec-

tor A is defined by:
(1) The random vectorA is centered.
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Figure 1: Target for the standard deviations of the com-
ponents of random vectorA.

(2) The standard deviation of each component of
random vectorA is imposed. The target values are
plotted in Fig.1.

(3) The variance of the end-velocity (resulting
from a numerical integration of random vectorA)
is zero.

(4) The variance of the end-displacement (result-
ing from two successive numerical integrations of
random vectorA) is zero.

(5) The target for the mean VRS (see
Clough and Penzien (1975)) is constructed
following the Eurocode 8 for a A-type soil and a
PGA equal to 5 ms−2. It is defined for a damping
ratio ξ = 0.05 and for 20 frequencies that are (in
rad/s) 1.04, 1.34, 1.73, 2.23, 2.86, 3.69, 4.74, 6.11,
7.86, 10.11, 13.01, 16.74, 21.53, 27.70, 35.64,
45.86, 59.00, 75.91, 97.67 and 125.66. The target
of the mean VRS is plotted in Fig.2.

(6) Let slow be the lower envelop defined by
slow = 0.5× s andsup be the upper envelop defined
by sup= 1.5×s. The probability for random vector
A of being inside the region delimited by the two
envelops is 0.99.

(7) The mean PGA is 5 ms−2.
(8) The mean PGV is 0.45 ms−1.
(9) The mean CAV is 13 ms−2.

3.2. Results

For the ISDE, the number of integration steps is
M = 600. At each iteration,ns = 900 Monte Carlo
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Figure 2: Target of the mean VRS.

simulations are carried out. The methodology de-
veloped in Section2.2.1is applied using 30 itera-
tions. The under-relaxation parameter isα = 0.3.
Figure3 shows two independent realizations of the
random vectorAλλλ sol

, which is generated using a
classical generator for Gaussian random variable
and which are representative of two independent re-
alizations of the random accelerogram. The corre-
sponding trajectories of the velocity times seriesV

and of the displacement times seriesD result from
two successive numerical integrations of each real-
ization of the random accelerogram and are plotted
in Figs. 4 and5. As expected, it can be seen that
the end velocity and the end displacements are both
equal to zero. Figure6 displays a comparison of
the estimated standard deviation of the components
with the target values. Figure7 shows a compari-
son of the mean VRS with its target. The Figure8
shows 100 trajectories of the random VRS and the
envelopsslow andsup. It can be seen in Figs.6 to 8
a good matching between the estimated values and
the target values. Concerning the PGA, the PGV
and the CAV, the results are summarized in Table
1. It can be seen a good matching of the estimated
mean values for the PGA, the PGV and the CAV
with the target values.

4. CONCLUSIONS
A new methodology has been presented for the

generation of accelerograms compatible with a
given VRS and other properties. If necessary, addi-
tional constraints could easily be taken into account
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Figure 3: Two independent realizations of the random
accelerogram.

Constraint Estimation Target
Mean PGA (ms−2) 4.98 5
Mean PGV (ms−1) 0.46 0.45
Mean CAV (ms−1) 13.04 13

Table 1: For the PGA, the PGV, the CAV: comparison
of the estimated mean value with the target value.

in addition to those developed in this paper. The
application shows a good matching between the es-
timated values and the target values.
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Figure 4: Two independent realizations of the random
velocity.
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Figure 5: Two independent realizations of the random
displacement.
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Figure 6: Variance: Target (thick dashed line) and esti-
mation (thin solid line).
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Figure 7: Mean VRS: Target (dashed line), estimation
(mixed line).
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Figure 8: Random VRS: 100 trajectories (thin lines),
lower and upper envelop (thick lines).
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