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ABSTRACT: There is a great interest to predict the long-time evolution of the track irregular-
ities for a given track portion of the high-speed train network, in order to be able to anticipate
the start off of the maintenance operations. In this paper, astochastic predictive model is pro-
posed for predicting the long-time evolution of a vector-valued random dynamic indicator related
to the nonlinear dynamic responses of the high-speed train excited by the stochastic track irregu-
larities. The long-time evolution of the vector-valued random indicator is modeled by a discrete
non-Gaussian nonstationary stochastic model (ARMA type model), for which the coefficients are
time-dependent. The quality assessment of the stochastic predictive model is presented, which
validates the proposed stochastic model.

1 INTRODUCTION

The maintenance work on railways tracks is very costly for therailways companies which are
permanently seeking to improve the maintenance strategy. In particular, the prediction of the
long-time evolution of the high-speed train dynamics and ofthe track geometry would help rail-
ways companies to anticipate their maintenance operationsand to improve their planning. Several
approaches for improving the track maintenance strategy have been studied in Andrews et al.
(2014); Chaolong et al. (2012); Mizuno et al. (2008). In thiswork, the long-time evolution of a
given track portion is characterized by the evolution of a vector-valued random dynamic indicator
related to the train dynamic responses. The goal is to build and to identify a stochastic predictive
model of long-time evolution of this vector-valued random dynamic indicator by using experi-
mental data generated at discrete time{τ1, τ2, . . . , τK}, and then to predict the statistics of the
vector-valued random dynamic indicator at long timeτK+1.

Section 2 deals with the construction of the random dynamic indicator, using a stochastic mod-
eling of the track irregularities of the given track portionand the simulation of the train dynamic
response on the track portion. Then, the construction of the stochastic predictive model of the
random dynamic indicator is presented in Section 3. In Section4 the prediction of the random
indicator is computed.



2 STOCHASTIC MODELING OF THE TRAIN DYNAMIC RESPONSE

2.1 Local stochastic modeling of the track irregularities

For the given track portion and for discrete long timesτk, k = 1, . . . ,K, the track irregularities
are measured by a measuring train (K = 12 measures are available for the given track portion).
The spatial sampling of the four track irregularities aroundtheir mean values (the track design)
is measured atNs + 1 sampling points of the curvilinear abscissa of the track portion and the
measures atτk are denoted byxmeas

τk
= (xmeas,1

τk ,x
meas,2
τk ,x

meas,3
τk ,x

meas,4
τk ) in R

4(Ns+1). The track
irregularities vector discretizing the random field is modeled by a non-Gaussian centered random
variableX̃τk = (X̃1

τk
, X̃2

τk
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τk
, X̃4

τk
) with values inR4(Ns+1). As explained in Lestoille et al.

(2014, 2015) and on the base of the works published in Perrin etal. (2012, 2013, 2015), this
local stochastic modeling of the track irregularities vector is constructed using the experimental
measurementsxmeas

τk
with k = 1, . . . ,K and is written as

X̃κ
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ηmeas
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+ δκ,optτ1
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)
, κ = 1, 2, 3, 4 , k = 1, . . . ,K (1)

in which

• [Qκ] is a rectangular((Ns + 1) × Nη) real matrix and is an extraction from the orthogonal
(4(Ns + 1)×Nη) matrix [Q] that contains the vectors of the global stochastic modelingof the
track geometry developed in Perrin et al. (2012, 2013, 2015).

• ηmeas
τk

defined onRNη is the projection of the measurementxmeas
τk

on the basis of the global
stochastic modeling of the track irregularities.

• δoptτ1
= (δ1,optτ1 , δ

2,opt
τ1 , δ

3,opt
τ1 , δ

4,opt
τ1 ) is the optimal value of hyperparameterδτ1 , which is iden-

tified by using the maximum log-likelihood method and the experimental measurements of the
track iregularities, as explained in Lestoille et al. (2015). For this track portion, the optimal
value isδoptτ1

= (0.15, 0.9, 0.85, 0.8).
• G = (G1,G2,G3,G4) is a Gaussian second-order centered random vector defined on the

probability space(Θ,F ,P) with values inR4Nη , for which its covariance matrix is the identity
matrix. This random vector allows to adapt the global stochastic model to the local one for the
given track portion.

2.2 Constructing the vector-valued random dynamic indicator

The vector-valued indicator is defined in order to characterize the high-speed train dynamic
response on a given track portion of lengthS. It is based on criteria related to the high-speed train
dynamic response that are described in norm UIC 518 UIC (2009) for the certification of railway
vehicles and denoted byC with values inRN . The number of components of the vector-valued
indicator isN = 9. Forj = 1, . . . , 9, these components are

• C1: the lateral acceleration of the first bogie in the train.
• C2: the vertical acceleration of the first bogie in the train.
• C3: the lateral acceleration of the third bogie in the train.
• C4: the lateral acceleration of the second coach in the train.
• C5: the sum of lateral forces on the ninth wheelset in the train.
• C6: the sum of vertical forces on the first wheelset in the train.
• C7: the sum of vertical forces of the second wheelset in the train.
• C8: the sum of vertical forces of the tenth wheelset in the train.
• C9: the difference between right-wheel and left-wheel vertical forces of the tenth wheelset in

the train.

The vector-valued random dynamic indicator, denoted byCmod, is constructed by using a train
nonlinear dynamic computational model for which model uncertainties are taken into account in
introducing a non-Gaussian noiseBout defined on the probability space(Θ′,F ′,P ′), which is
statistically independent of random vectorG (see hereinafter). The stochastic solver used is the
Monte-Carlo method which is performed withν = 2000 independent realizations of the stochastic
model. The steps achieved to evaluate the random dynamic indicator are the following:

• ν = 2000 independent realizationsG(θ1), . . . ,G(θν) of G = (G1,G2, G3,G4) are gener-
ated.



• Theseν independent realizations ofG are used for constructing, for eachk = 1, . . . ,K, theν
independent realizations of random vectorX̃τk = (X̃1

τk
, X̃2

τk
, X̃3

τk
, X̃4

τk
) by using Eq. (1). For

each realization of the track irregularitiesX̃τk , the deterministic train dynamic response induced
by this realization of the track irregularities is computedwith a multibody commercial software
(Vampire), and theν corresponding independent realizationsCsim(τk; θ1), . . .C

sim(τk; θν) of
the random vector-valued dynamic indicatorCsim(τk) are computed.

• Then,ν independent realizations of theRN -valued non-Gaussian second-order random vector
Bout = (Bout

1 , . . . , Bout
N ) are generated. Random vectorBout has been beforehand identified in

introducing its polynomial chaos representation (see for instance Ghanem and Spanos (2003);
Le Maitre and Knio (2010)) and in identifying its coefficients by using the maximum-likelihood
method and the experimental measurements of the train dynamic response Soize (2012).

• Theν corresponding independent realizations of the familyCmod of the vector-valued random
dynamic indicators{Cmod(τ1), . . . ,C

mod(τK)}, denoted byCmod(θ1, θ
′

1), . . . ,C
mod(θν , θ

′

ν)
and defined on the product of the probability spaces(Θ,F ,P) and(Θ′,F ′,P ′), are computed
such as

C mod
j (τk; θℓ, θ

′

ℓ) = C sim
j (τk; θℓ) exp(B

out
j (θ′ℓ)) ,

j = 1, . . . , N , k = 1, . . . ,K , ℓ = 1, . . . , ν . (2)

3 STOCHASTIC MODELING OF THE LONG-TIME EVOLUTION OF THE
VECTOR-VALUED RANDOM INDICATOR

3.1 Choosing the stochastic predictive model

Using the statistics of the vector-valued random dynamic indicatorCmod(τ1), . . . ,C
mod(τK),

which have been calculated for all long timeτ1, . . . , τK in Section2, a stochastic predictive model
of the vector-valued random dynamic indicator to long-timeevolution of track irregularities is
constructed and then identified. The vector-valued random dynamic indicator that is predicted by
the stochastic predictive model, is represented by theR

N -valued time seriesCk (also denoted by
C(τk)). The initial condition of the model is set asC1 = Cmod(τ1). If the stochastic predictive
model were perfect (no error), we would haveCmod(τk) = C(τk) for k = 1, . . . ,K (which is
not the case). Using the stochastic predictive model, the statistics of the vector-valued random
dynamic indicatorCK+1 are calculated for discrete long timeτK+1. Such a prediction is obtained
using the identified stochastic predictive model starting atinitial conditionCK = Cmod(τK). The
construction and the identification of the stochastic predictive model of the vector-valued random
dynamic indicator are relatively difficult for the followingreasons:

• The long-time evolution is strongly nonstationary (and consequently statistics cannot be enriched
by using time averaging estimators).

• The experimental data are very limited because only one measurement of the track geometry of
the given portion is available at each discrete long timeτk.

• The valueK of the number of discrete long times used for predicting the statistics of the vector-
valued random dynamic indicator at discrete long timeτK+1 is very low (typicallyK is of order
10).

• The vector-valued random dynamic indicator is a non-Gaussian random vector, in particular
the initial valueCmod(τ1) is non-Gaussian, which means that the time seriesCmod(τ1), . . . ,
Cmod(τK) is non-Gaussian and nonstationary.

Two steps are required for predicting the statistics of vector-valued dynamic indicator at long
time. The first one is related to the choice and the constructionof a stochastic predictive model
and the second one consists in identifying it by solving a statistical inverse problem. The time
seriesC(τ1), . . . ,C(τK) for which the discrete time evolution stochastic model has to be con-
structed using time series dataCmod(τ1), . . . ,C

mod(τK) is nonstationary, and consequently the
identification requires to solve a nonstationary statistical inverse problem. A general method for
such a problem consists in using the Bayesian filtering and, inour case, by using a discrete time
evolution model.



Since the vector-valued dynamic indicator is nonstationaryand non-Gaussian, the method
adopted for constructing and identifying the stochastic predictive model consists in using a non-
stationary ARMA model Priestley (1981, 1988); Hamilton (1994) with a non-Gaussian random
initial condition. The proposed stochastic predictive model is a particular nonstationary non-
Gaussian one-order Markov chain which is written as

Ck = ([IN ]−∆τk [A])C
k−1 +∆τk g

k + [hk] ∆Wk , k = 2, . . . ,K , (3)

with the non-Gaussian random initial condition

C1 = Cmod(τ1) , (4)

in which

• [IN ] is the identity matrix inRN×N .
• [A] is a matrix inRN×N , which has to be identified.
• ∆τk = τk − τk−1 are given time steps that depend onk.
• ∆Wk =

√
∆τk N

k, in which N 2, . . . ,NK are independent Gaussian normalized random
vectors defined on a third probability space(Θ′′,F ′′,P ′′), with values inRN (E{N k} =
0, E{N k (N k)T } = [IN ]). Therefore,E{∆Wk ⊗ ∆Wk} = ∆τk [IN ]. The family of ran-
dom vectors{N k, k ≥ 2} is statistically independent of random vectorsG andBout, and
consequently, is independent ofCmod(τ1).

• {g} = {g2, . . . ,gK} is a family ofK − 1 vectors inRN , which has to be identified.
• {[h]} = {[h2], . . . , [hK ]} is a family of (K − 1) real matrices inRN×N , which has to be

identified. For allk, [hk] is chosen as a lower triangular matrix with positive diagonal entries.
• in the initial condition,Cmod(τ1) is a non-Gaussian second-orderR

N -valued random variable
whose probability distribution is known (estimated using the stochastic computational model
of the high-speed train dynamics described in Section 2).

The nonstationarity property is induced by the coefficientsgk and[hk] that depend on discrete
timeτk, represented by indexk. The matrix[A] is chosen independent on discrete timek. It should
be noticed that, if matrix[A] had been chosen as a function ofk, the time series[Ak], gk, and[hk]
could not be identified by the loss of data. Moreover, if the initial conditionC1 = Cmod(τ1) were
a deterministic vector or a Gaussian random vector, then thenonstationary time seriesC(τk)
would be Gaussian. Nevertheless, since random vectorCmod(τ1) is not Gaussian, time series
C(τk) generated by the predictive model above is a non-Gaussian nonstationary time series.

3.2 Modeling the long time evolution of vector-valued random dynamic indicator

With such a proposed stochastic predictive model, the opitmal values{[Aopt], {gopt}, {[hopt]}}
of the parameters{[A], {g}, {[h]}} have to be identified using dataCmod(τ1), . . . ,C

mod(τK),
for which the statistics have been estimated in Section 2. The identification is done using the
classical least-squares method with weights, for which thecost function is constructed using the
first- and second-order moments equations associated with Eq.(3). For eachk = 1, . . . ,K, the
vector-valued random dynamic indicatorCk is constructed using Eq. (3), with the initial condi-
tion C1 = Cmod(τ1), using the optimal parameters{[Aopt], {gopt}, {[hopt]}}.

In the following, fork = 2, . . . ,K, we present a comparison of the vector-valued dynamic
indicatorCmod(τk), constructed in Section 2, with the modeled dynamic indicator Ck. In order
to limit the number of figures, we restrict the presentation tothe componentj = 6 of the vector-
valued dynamic indicator. The results for the other components are similar. For each quantity,
Cmod
6 (τk) andCk

6 , denoted hereinafter asD(τk), Figure 1 displays the graphk 7→ di(τk) in
which di(τk) is such thatProb{D(τk) ≤ di(τk)} ≥ qi, in which qi is the quantile varying in
the interval[0.4, 0.98]. This figure shows that the stochastic model of the long-time evolution
defined by Eqs. (3) and (4) is a good approximation for representing the long-time evolution of
the vector-valued dynamic indicator.
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Figure 1. Quantiles of the dimensionless long-time evolution for the dimensionless indicatorD(τk) =
Cmod

6 (τk) (solid line) andD(τk) = Ck
6 (dashed line), graphsk 7→ di(τk), in which di(τk) is such that

Prob{D(τk) ≤ di(τk)} ≥ qi for different values in percent of the quantileqi belonging to the interval
[40%, 98%]. The horizontal line corresponds to the threshold levelc∗6.

4 PREDICTION OF THE VECTOR-VALUED RANDOM INDICATORCK+1

Once the stochastic predictive model is identified, this model can be used for predicting the statis-
tics of the non-Gaussian random vectorCK+1. However, the values ofgK+1 and [hK+1] are
unknown. We then propose to representgk and[hk] as the valuesgaff(τk) and[haff(τk)] at τk of
affine functionsgaff and[haff ] (a more higher-degree representations could be introduced, but it
has been seen that no gain can be obtained with respect to the one-degree (affine) representation).
The optimal values for the parameters of the affine functions are computed solving optimization
problems with a classical least-squares method. The predictionCaff,K+1 of the vector-valued ran-
dom indicatorCK+1 = C(τK+1) at long timeτK+1 , givenCmod(τK), is then estimated using
Eq. (3) that yields

Caff,K+1 = ([IN ]−∆τK+1 [A
opt])Cmod(τK) + ∆τK+1 g

aff(τK+1)

+ [haff(τK+1)]∆WK+1 . (5)

The prediction atτK+1 of the quantiles of the dimensionless long-time evolution for the dimen-
sionless indicatorD(τK+1) = C

aff,K+1
6 givenD(τk) = Cmod

6 (τk), k = 1, . . . ,K, is represented
in Figure 2, where graphsk 7→ di(τk), in which di(τk) is such thatProb{D(τk) ≤ di(τk)} ≥
qi for different values in percent of the quantileqi belonging to the interval[40%, 98%], are
displayed.

5 QUALITY ASSESSMENT OF THE STOCHASTIC PREDICTIVE MODEL

The relevance of the stochastic predictive model can be obtained by quality assessment, in which
the predictionsCaff,K−1 andCaff,K are performed given the known random vectorCmod(τK−2).
This prediction is carried out using Eq. (5) that is rewritten as

Caff,k = ([IN ]−∆τk [A
opt])Caff,k−1 +∆τk g

aff(τk)

+ [haff(τk)]∆Wk , k = K − 1,K , (6)

with the initial condition

Caff,K−2 = Cmod(τK−2) . (7)

The quality assessment is then evaluated in comparingCaff,K−1 with Cmod(τK−1), and then in
comparingCaff,K with Cmod(τK).
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Figure 2. Quantiles of the dimensionless long-time evolution for the dimensionless indicatorD(τk) =
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[40%, 98%]. The horizontal line corresponds to the threshold levelc∗6.
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Figure 3. Quality assessment of the stochastic predictive model comparing the quantiles ofCaff,k
6 (dashed

line) with the quantiles ofCmod
6 (τk) (solid line) fork = K − 1 and fork = K.

For the quantiles of the dimensionless indicatorD(τk) = Cmod
6 (τk) andD(τk) = C

aff,k
6 for

k = K − 1 and fork = K, the quality assessment can be viewed in Figure 3 that displays
the graphsk 7→ di(τk), in which di(τk) is such thatProb{D(τk) ≤ di(τk)} ≥ qi for different
values in percent of the quantileqi belonging to the interval[40%, 98%]. This result shows that
the stochastic predictive model is good enough.

6 CONCLUSION

For the companies in charge of the maintenance of railways networks, there is a great interest to
predict the long-time evolution of the track irregularities for a given track portion of the network,
in order to be able to anticipate the start off of the maintenance operations. In this work, the
long-time evolution of the track irregularities of a given track portion has been evaluated through
a vector-valued random indicator related to the train dynamic response induced by the random
track irregularities. The long-time evolution of this vector-valued random indicator is modeled
by a discrete non-Gaussian nonstationary stochastic model(ARMA type model), for which the
coefficients are time-dependent. These coefficients have been identified by a least-squares method
and fitted on long time, using experimental measurements.

The proposed stochastic predictive model, based on big data made up of a lot of experimen-
tal measurements performed for the french high-speed trainnetwork, allows for predicting the
statistical quantities of the vector-valued random dynamic indicator for long times for which no
measurements have been performed yet. It has been demonstrated that this proposed stochastic
predictive model is good enough. This proposed model can helpto determine the best time to start
off the maintenance operations as a function of a chosen threshold for the indicator.
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