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ABSTRACT: There is a great interest to predict the long-timdgi@n of the track irregular-
ities for a given track portion of the high-speed train netyon order to be able to anticipate
the start off of the maintenance operations. In this papstpahastic predictive model is pro-
posed for predicting the long-time evolution of a vectolJeal random dynamic indicator related
to the nonlinear dynamic responses of the high-speed txaited by the stochastic track irregu-
larities. The long-time evolution of the vector-valued ramdindicator is modeled by a discrete
non-Gaussian nonstationary stochastic model (ARMA typdehofor which the coefficients are
time-dependent. The quality assessment of the stochastilictive model is presented, which
validates the proposed stochastic model.

1 INTRODUCTION

The maintenance work on railways tracks is very costly forrtikvays companies which are
permanently seeking to improve the maintenance strategpaiticular, the prediction of the

long-time evolution of the high-speed train dynamics antheftrack geometry would help rail-

ways companies to anticipate their maintenance operadiath$o improve their planning. Several
approaches for improving the track maintenance strategg baen studied in_Andrews et al.
(2014);. Chaolong et al. (2012); Mizuno et al. (2008). In thisrk, the long-time evolution of a

given track portion is characterized by the evolution of et@evalued random dynamic indicator
related to the train dynamic responses. The goal is to budd@identify a stochastic predictive

model of long-time evolution of this vector-valued randogmamic indicator by using experi-

mental data generated at discrete tifne, 72, ..., 7k}, and then to predict the statistics of the
vector-valued random dynamic indicator at long time, ;.

Section 2 deals with the construction of the random dynandicator, using a stochastic mod-
eling of the track irregularities of the given track portiand the simulation of the train dynamic
response on the track portion. Then, the construction of tihehastic predictive model of the
random dynamic indicator is presented in Secfibn 3. In Se@itre prediction of the random
indicator is computed.



2 STOCHASTIC MODELING OF THE TRAIN DYNAMIC RESPONSE

2.1 Local stochastic modeling of the track irregularities

For the given track portion and for discrete long timgsk = 1,..., K, the track irregularities
are measured by a measuring tralth £ 12 measures are available for the given track portion).
The spatial sampling of the four track irregularities arotimeir mean values (the track design)
is measured alV; + 1 sampling points of the curvilinear abscissa of the trackiporand the
measures at, are denoted bye® = (x5! x5 x1e? beasd) jn RUN.AD The track
irregularities vector dlscretlzmg the random fleld is m@rdietby a non-Gaussian centered random

variableX,, = (X! ,X2,X3 X2 ) with values inR*®™-*1). As explained in_Lestoille et al.

(2014, 2015) and on the base of the works published in Pereh ¢2012, 2013, 2015), this
local stochastic modeling of the track irregularities wed$s constructed using the experimental

measurements?** with k = 1, ..., K and is written as
XE = [Q"] (niess 4 §5°PtGF) | k=1,2,3,4, k=1,....K 1)
in which

e [Q"] is a rectangulaf(N, + 1) x N,) real matrix and is an extraction from the orthogonal
(4(Ns + 1) x N,)) matrix [Q] that contains the vectors of the global stochastic modeifrige
track geometry developed|in Perrin et al. (2012, 2013,/2015).

o n* defined onR™» is the projection of the measuremext®* on the basis of the global
stochastic modeling of the track irregularities.

o Pt = (61,°P% GZOPC, 630PY 5P is the optimal value of hyperparametgy, which is iden-
tified by usmg the maximum log-likelihood method and the ekpental measurements of the
track iregularities, as explained lin_Lestoille et al. (20159r this track portion, the optimal
value is6°P* = (0.15,0.9, 0.85,0.8).

e G = (G1 G2 G?3, G4) is a Gaussian second-order centered random vector defindteon t
probability spaceé@, F,P) with values inR*¥», for which its covariance matrix is the identity
matrix. This random vector allows to adapt the global stobhasodel to the local one for the
given track portion.

2.2 Constructing the vector-valued random dynamic indicator

The vector-valued indicator is defined in order to charaatetie high-speed train dynamic
response on a given track portion of lengthit is based on criteria related to the high-speed train
dynamic response that are described in norm UIC| 518 UIC (Pfad%he certification of railway
vehicles and denoted b§ with values inRY. The number of components of the vector-valued
indicator isN = 9. Forj = 1,...,9, these components are

C1: the lateral acceleration of the first bogie in the train.

C5: the vertical acceleration of the first bogie in the train.

Cj: the lateral acceleration of the third bogie in the train.

Cy: the lateral acceleration of the second coach in the train.

: the sum of lateral forces on the ninth wheelset in the train.

Cs: the sum of vertical forces on the first wheelset in the train.

C'7: the sum of vertical forces of the second wheelset in the trai

Cy: the sum of vertical forces of the tenth wheelset in the train

Cy: the difference between right-wheel and left-wheel vaitforces of the tenth wheelset in
the train.

e 6 6 6 06 06 0 0 O
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The vector-valued random dynamic indicator, denoted B¢, is constructed by using a train
nonlinear dynamic computational model for which model utainties are taken into account in
introducing a non-Gaussian noi#"* defined on the probability spa¢®’, 7', P’), which is
statistically independent of random vectar(see hereinafter). The stochastic solver used is the
Monte-Carlo method which is performed with= 2000 independent realizations of the stochastic
model. The steps achieved to evaluate the random dynamaatoediare the following:

e v = 2000 independent realization&(6,),...,G(6,) of G = (G!, G2, G3, G*) are gener-
ated.



e Thesev independent realizations & are gsed for~cons~trucgng, f~or eakh=1,..., K, thev
independent realizations of random vec®oy, = (X! , X2 /X2 /X1 ) by using Eq.[{L). For

each realization of the track irregularitiXs, , the deterministic train dynamic response induced
by this realization of the track irregularities is compuveith a multibody commercial software
(Vampirg, and thev corresponding independent realizatidd®™ (; 61), . . . C*™(7y; 6,) of

the random vector-valued dynamic indica€i™ (7, ) are computed.

e Then,v independent realizations of tfie -valued non-Gaussian second-order random vector
Be" = (BM, ..., BS") are generated. Random vecB#"* has been beforehand identified in
introducing its polynomial chaos representation (seerfstaince Ghanem and Spanos (2003);
Le Maitre and Knionl(2010)) and in identifying its coefficientsusing the maximum-likelihood
method and the experimental measurements of the train dgmesponse Soize (2012).

e Thev corresponding independent realizations of the far@ifi? of the vector-valued random
dynamic indicatorg C™°d(ry), ..., C™ (1)}, denoted byCc™°4(6y,67),...,C™4(0,,6!)
and defined on the product of the probability spa@@s?, P) and(©’, 7', P’), are computed
such as

O (3 0, 03) = O™ (73 00) exp(B™(0}))
j=1,....N |, k=1,....K , £=1,....v. (2

3 STOCHASTIC MODELING OF THE LONG-TIME EVOLUTION OF THE
VECTOR-VALUED RANDOM INDICATOR

3.1 Choosing the stochastic predictive model

Using the statistics of the vector-valued random dynamitcator C™°4(ry), ..., C™°d(rg),
which have been calculated for all long time.. . . , 7 in Sectiofi2, a stochastic predictive model
of the vector-valued random dynamic indicator to long-tiewelution of track irregularities is
constructed and then identified. The vector-valued randoramjmindicator that is predicted by
the stochastic predictive model, is represented byRtMevalued time serie€* (also denoted by
C(73)). The initial condition of the model is set &' = C™°4(r). If the stochastic predictive
model were perfect (no error), we would ha@&°d(r;,) = C(r;,) for k = 1,..., K (which is
not the case). Using the stochastic predictive model, thissts of the vector-valued random
dynamic indicatoiCX+! are calculated for discrete long timg_, ;. Such a prediction is obtained
using the identified stochastic predictive model startirigitil conditionCX = C™°d(7x). The
construction and the identification of the stochastic ptiadianodel of the vector-valued random
dynamic indicator are relatively difficult for the followingasons:

e The long-time evolution is strongly nonstationary (and espgently statistics cannot be enriched
by using time averaging estimators).

e The experimental data are very limited because only one measut of the track geometry of
the given portion is available at each discrete long time

e The valueK of the number of discrete long times used for predicting thgstics of the vector-
valued random dynamic indicator at discrete long tirpe is very low (typically K is of order
10).

e The vector-valued random dynamic indicator is a non-Ganssindom vector, in particular
the initial valueC™°(r;) is non-Gaussian, which means that the time se@&8d(r,),...,
C™°d (71 ) is non-Gaussian and nonstationary.

Two steps are required for predicting the statistics of meealued dynamic indicator at long
time. The first one is related to the choice and the construdfi@nstochastic predictive model
and the second one consists in identifying it by solving ¢istieal inverse problem. The time
seriesC(m), ..., C(7x) for which the discrete time evolution stochastic model lwabe con-
structed using time series dafd"°(r,), ..., C™°4(r) is nonstationary, and consequently the
identification requires to solve a nonstationary statistinzerse problem. A general method for
such a problem consists in using the Bayesian filtering anduircase, by using a discrete time
evolution model.



Since the vector-valued dynamic indicator is nonstatiorerg non-Gaussian, the method
adopted for constructing and identifying the stochastedptive model consists in using a non-
stationary ARMA model Priestley (1981, 1983); Hamilton (4p%vith a non-Gaussian random
initial condition. The proposed stochastic predictive middea particular nonstationary non-
Gaussian one-order Markov chain which is written as

CrF = (Iy] — A [ADCF L+ Ar g + [RF AWE | k=2,... K, (3)
with the non-Gaussian random initial condition

C' = C™d(n), (4)
in which

[Ix] is the identity matrix inRY <V,

[A] is a matrix inRY>Y  which has to be identified.

AT, = 1, — T_1 are given time steps that depend/an

AWF = /A7, N*, in which N2, ..., 'K are independent Gaussian normalized random

vectors defined on a third probability spage”, 7, P"), with values inRY (E{N*} =

0, E{N* (N*)T} = [Iy]). Therefore, E{AW* @ AWF} = A7, [Iy]. The family of ran-

dom vectors{N*, k > 2} is statistically independent of random vectéEsand B°*, and

consequently, is independent@f°4(r,).

o {g} ={g? ...,gl}isafamily of K — 1 vectors inR", which has to be identified.

e {[h]} = {[h?%,...,[h"]} is a family of (K — 1) real matrices inR"*¥  which has to be
identified. For allk, [h*] is chosen as a lower triangular matrix with positive diad@mdries.

e in the initial condition,C™°4(7) is a non-Gaussian second-ordeY -valued random variable

whose probability distribution is known (estimated usihg stochastic computational model

of the high-speed train dynamics described in Secfion 2).

The nonstationarity property is induced by the coefficigfitand[*] that depend on discrete
time 7, represented by indéx The matrix 4] is chosen independent on discrete tinét should
be noticed that, if matriA] had been chosen as a functiorkothe time seriegA”], g*, and[r"]
could not be identified by the loss of data. Moreover, if théahconditionC! = C™°4 () were
a deterministic vector or a Gaussian random vector, themdtmstationary time serie€(7y)
would be Gaussian. Nevertheless, since random ve(&t’tﬂd(ﬁ) is not Gaussian, time series
C() generated by the predictive model above is a non-Gaussizstatmnary time series.

3.2 Modeling the long time evolution of vector-valued randomatyic indicator

With such a proposed stochastic predictive model, the a@ditralues{[A°P*], {g°P'}, {[h°P!]}}

of the parameter$[A], {g}, {[h]}} have to be identified using da@™°d(ry), ..., C™d(7),
for which the statistics have been estimated in Sedflon 2. @éetification is done using the
classical least-squares method with weights, for whichctie function is constructed using the
first- and second-order moments equations associated wit{8Edror eachk = 1,..., K, the
vector-valued random dynamic indicatG¥ is constructed using Ed.1(3), with the initial condi-
tion C! = C™°d(7y), using the optimal parametefg4°Pt], {g°P}, {[h°P*]}}.

In the following, fork = 2,..., K, we present a comparison of the vector-valued dynamic
indicatorCmOd(rk), constructed in Sectidd 2, with the modeled dynamic indic@té. In order
to limit the number of figures, we restrict the presentatiothiocomponenj = 6 of the vector-
valued dynamic indicator. The results for the other comptsare similar. For each quantity,
Cmed(7,) and C§, denoted hereinafter aB(r;,), Figure[l displays the graph — d(7x) in
which di(7) is such thatProb{D(r;,) < d'(r)} > ¢, in which ¢’ is the quantile varying in
the interval[0.4,0.98]. This figure shows that the stochastic model of the long-timmugion
defined by Eqs[(3) andl(4) is a good approximation for represgitie long-time evolution of
the vector-valued dynamic indicator.
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Figure 1. Quantiles of the dimensionless long-time evotufor the dimensionless indicat@®(r;,) =
Cmed () (solid line) andD(ri,) = C¥ (dashed line), graphk +— di(7x), in which d*(7,) is such that
Prob{D(r,) < d'(m)} > ¢' for different values in percent of the quantifé belonging to the interval
[40%, 98%)]. The horizontal line corresponds to the threshold legel

4 PREDICTION OF THE VECTOR-VALUED RANDOM INDICATORC/A+1

Once the stochastic predictive model is identified, this rhoae be used for predicting the statis-
tics of the non-Gaussian random vec@F *!. However, the values o' and [r*!] are
unknown. We then propose to represghitand[»*] as the valueg®® () and[h* (7},)] at 7, of
affine functionsg®® and[»*f] (a more higher-degree representations could be intrognedt
has been seen that no gain can be obtained with respect todghgegree (affine) representation).
The optimal values for the parameters of the affine functioaxamputed solving optimization
problems with a classical least-squares method. The pradice®- % +1 of the vector-valued ran-
dom indicatorCX+! = C(7x,1) at long timerg 1 , givenC™°4(7x), is then estimated using
Eq. (3) that yields

I = ([Iy] = Ay [AP]) O 75c) + Ay g (ric 1)

+ [ (g AWETL L (5)

The prediction atx_; of the quantiles of the dimensionless long-time evolutmnrttie dimen-

sionless indicatoD (7x41) = Cgff’K“ givenD(7;,) = C&°d(7.), k = 1,..., K, is represented

in Figure[2, where graphs — d’(7;), in which d’(7;) is such thaProb{D(r;) < d'(rx)} >
q" for different values in percent of the quantije belonging to the intervald0%, 98%], are
displayed.

5 QUALITY ASSESSMENT OF THE STOCHASTIC PREDICTIVE MODEL

The relevance of the stochastic predictive model can bersdddy quality assessment, in which
the predictiongC*®X—1 andC* % are performed given the known random veditod (15 _»).
This prediction is carried out using E@l (5) that is rewritten a

Cafik _ ([IN] _ ATk [AoptDCafch—l + ATk gaﬂ“(,]_k>
+[N(n)] AWE k=K - LK, (6)
with the initial condition
Caff,K72 _ CmOd(TK_Q) ) (7)

The quality assessment is then evaluated in compa@fig —! with C™°4(7x_,), and then in
comparingC*t:-X with C™od (7).
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Figure 2. Quantiles of the dimensionless long-time evotufor the dimensionless indicat@®(r;,) =
Cmed(7,) (solid line) andD (51 ) = C2TX*! (dashed line), graphis— d (), in whichdi () is such
thatProb{D(7) < d’(7)} > ¢ for different values in percent of the quantilebelonging to the interval
[40%, 98%)]. The horizontal line corresponds to the threshold legel
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Figure 3. Quality assessment of the stochastic predicta@atcomparing the quantiles 6@5”“ (dashed
line) with the quantiles o4 (1) (solid line) fork = K — 1 and fork = K.

For the quantiles of the dimensionless indicatfry,) = C3°d(7) and D(7x) = Cgﬂ’k for
k = K —1and fork = K, the quality assessment can be viewed in Figure 3 that display
the graphs: — d'(7), in which d*(7) is such thatProb{D(7;) < d'(7)} > ¢' for different
values in percent of the quanti¢¢ belonging to the intervgl0%, 98%)]. This result shows that
the stochastic predictive model is good enough.

6 CONCLUSION

For the companies in charge of the maintenance of railwalyganks, there is a great interest to
predict the long-time evolution of the track irregulartior a given track portion of the network,
in order to be able to anticipate the start off of the mainteeaoperations. In this work, the
long-time evolution of the track irregularities of a giveadk portion has been evaluated through
a vector-valued random indicator related to the train dyinaesponse induced by the random
track irregularities. The long-time evolution of this veet@lued random indicator is modeled
by a discrete non-Gaussian nonstationary stochastic nfa&RMA type model), for which the
coefficients are time-dependent. These coefficients have testified by a least-squares method
and fitted on long time, using experimental measurements.

The proposed stochastic predictive model, based on big datie mp of a lot of experimen-
tal measurements performed for the french high-speed tretiwork, allows for predicting the
statistical quantities of the vector-valued random dyraimilicator for long times for which no
measurements have been performed yet. It has been deneddtrat this proposed stochastic
predictive model is good enough. This proposed model cantbeetermine the best time to start
off the maintenance operations as a function of a chosesttble for the indicator.
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