A whole farm approach based on farm management practices data coupled with crop and grassland mechanistic models

Fiorelli J.-L.1, Drouet J.-L.2, Duretz S.2, Gabrielle B.2, Cellier P.2, Blanfort V.3.4, Capitaine M.5, Boisdon I.5, Soussana J.-F.3

- ¹ INRA,UR 055, F-88500 Mirecourt, France.
- ² INRA, UMR 1091 INRA Environnement et Grandes Cultures AgroParisTech, F- 78850 Thiverval-Grignon, France
- ³ INRA, UR 874, F-63100 Clermont-Ferrand, France
- ⁴ CIRAD, UR 18, F-34398 Montpellier, France
- ⁵ ENITA, AFOS, F-63370 Lempdes, France

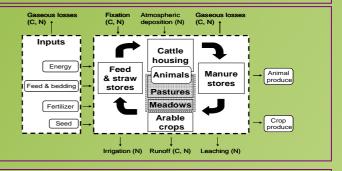
Context

Agriculture is a large source of emissions of greenhouse gases (GHG, nitrous oxide N_2O , methane CH_4 , carbon dioxide CO_2) in Europe. A lot of mitigation options have been reported, but they have mainly focused on a single gas and have generally

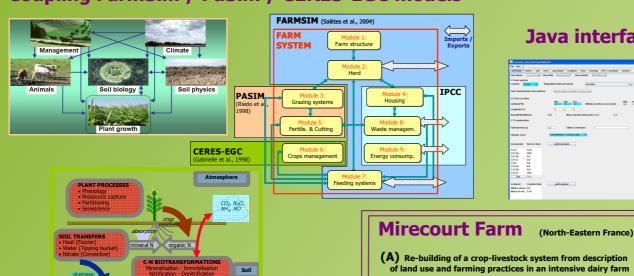
dealt with source-oriented processes.

Organic farming is considered as a possible strategy for reducing GHG emissions: these systems are characterised by low inputs and frequently aim for being self-sufficient. They are often mixed farming systems and combine grassland and crops.

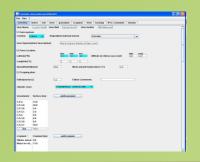
Organic farming presents a real opportunity to enhance soil carbon storage through ss-crop rotations with a special concern to grass-legume leys, intercrops and

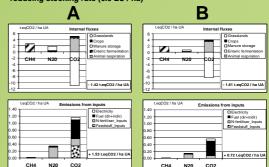

Methodology

Crop-livestock farming systems use fields, animals, buildings, machinery and stores generating energy and matter exchanges. Interactions between the different fluxes are especially strong in the organic mixed crop-livestock farms.


Emissions of GHG are related to carbon and nitrogen flows and environmental conditions. We consider carbon and nitrogen cycling through a whole farm system approach extended to the inputs used.

Objectives


- → To develop a simulation tool to assess the effect of farmers practices on the GHG balance and carbon sequestration at the whole
- → To assess the contribution of a mechanistic crop model instead of crop emission factors to simulate GHG balance
- ightarrow To assess the effect of mitigation options on farm GHG balance


Coupling FarmSim / PaSim / CERES-EGC models

Java interface

- (A) Re-building of a crop-livestock system from description of land use and farming practices in an intensive dairy farm
- (B) Designing of a mitigated farming system (conventional):
- strong reducing fertiliser spreading (-50%)
 changing the cropping system for animal feeds self-sufficiency
- increasing white clover rate in pasture composition
- reducing stocking rate (0.9 LU / ha)

Perspectives

Using FarmSim for assessing GHG emissions from different organic farming systems requires to:

- further assess the capability of FarmSim / PaSim / CERES-EGC model to predict nitrogen and carbon fluxes at the farm level
- analyse the sensitivity of model outputs to parameters (soils, climatic conditions...)
- assess the impact of mitigation options related to grassland and crops
- compare GHG balance of different crop-livestock farming systems, including a network of organic farms from different french areas