Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems
Résumé
Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T1/2) were measured in the seedbed samples under MT at 25 °C and -33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter. Tillage practices influence the spatial variability of diketonitrile degradation in soil and its sensitivity to pedoclimatic conditions.